Tunable spin polarization and superconductivity in engineered oxide interfaces - CNRS - Centre national de la recherche scientifique Accéder directement au contenu
Article Dans Une Revue Nature Materials Année : 2016

Tunable spin polarization and superconductivity in engineered oxide interfaces

D. Stornaiuolo
  • Fonction : Auteur
C. Cantoni
  • Fonction : Auteur
G. M. de Luca
  • Fonction : Auteur
R. Di Capua
  • Fonction : Auteur
E. Di Gennaro
  • Fonction : Auteur
G. Ghiringhelli
  • Fonction : Auteur
Benoit Jouault
D. Marre
  • Fonction : Auteur
D. Massarotti
  • Fonction : Auteur
F. Miletto Granozio
  • Fonction : Auteur
I. Pallecchi
  • Fonction : Auteur
C. Piamonteze
  • Fonction : Auteur
S. Rusponi
  • Fonction : Auteur
F. Tafuri
  • Fonction : Auteur
M. Salluzzo
  • Fonction : Auteur

Résumé

Advances in growth technology of oxide materials allow single atomic layer control of heterostructures. In particular delta doping, a key materials’ engineering tool in today’s semiconductor technology, is now also available for oxides. Here we show that a fully electric-field-tunable spin-polarized and superconducting quasi-2D electron system (q2DES) can be artificially created by inserting a few unit cells of delta doping EuTiO3 at the interface between LaAlO3 and SrTiO3 oxides1, 2. Spin polarization emerges below the ferromagnetic transition temperature of the EuTiO3 layer (TFM = 6–8 K) and is due to the exchange interaction between the magnetic moments of Eu-4f and of Ti-3d electrons. Moreover, in a large region of the phase diagram, superconductivity sets in from a ferromagnetic normal state. The occurrence of magnetic interactions, superconductivity and spin–orbit coupling in the same q2DES makes the LaAlO3/EuTiO3/SrTiO3 system an intriguing platform for the emergence of novel quantum phases in low-dimensional materials.

Dates et versions

hal-01296509 , version 1 (01-04-2016)

Identifiants

Citer

D. Stornaiuolo, C. Cantoni, G. M. de Luca, R. Di Capua, E. Di Gennaro, et al.. Tunable spin polarization and superconductivity in engineered oxide interfaces. Nature Materials, 2016, 15 (3), pp.278-+. ⟨10.1038/NMAT4491⟩. ⟨hal-01296509⟩
33 Consultations
0 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More