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The transition from the complex Rayleigh-Bénard convection to the simple heated-from-the-sides configuration
in a cubical cavity filled with a Newtonian fluid is numerically studied. The cavity is tilted by an angle θ around
its lower horizontal edge and is heated and cooled from two opposite tilted sides. We first analyze the effect
of a marginal inclination angle on quasi-Rayleigh-Bénard convection (θ ≈ 0◦), which is a realistic physical
approximation to the ideal Rayleigh-Bénard convection. We then yield the critical angles where multiple solutions
that were initially found for θ ≈ 0◦ disappear, eventually resulting in the single steady roll solution found in the
heated-from-the-sides configuration (θ = 90◦). We confirm the existence of critical angles during the transition
θ : 0◦ → 90◦, and we demonstrate that such angles are a consequence of either singularities or collisions of
bifurcation points in the Rayleigh-number-θ parameter space. We finally derive the most important critical angles
corresponding to any Newtonian fluid of Prandtl number greater than that of air.
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I. INTRODUCTION

The phenomenon of buoyancy-driven natural convection
in closed environments is ubiquitous. In nature, for example,
this phenomenon can be found in large scales in the Earth’s
mantle [1] and the atmosphere of planets [2]. In engineering,
for example, natural convection in enclosures can be used in
microfluidic DNA analysis devices [3,4] and in temperature-
control strategies for solar-energy collectors [5] and nuclear
reactors [6]. Therefore, there exists a great diversity of
buoyancy-driven flows in enclosures that are of great interest
in science and technology [7,8]. Rayleigh-Bénard convection
(RBC) is arguably the most studied form of natural convection
in cavities [9–12] since the pioneering work of Bénard
and Rayleigh a century ago [13,14]. RBC results from the
development of convective instabilities due to a nonuniform
temperature distribution in a plane horizontal fluid layer heated
from below. This phenomenon is complex due to the diversity
of steady flows that can arise for given geometries and heating
configurations [15,16]. On the other hand, steady natural
convection in a cavity heated from the sides, or what we call
in this paper heated-from-the-sides convection (HSC), is a
much simpler problem that accounts for a single convective
roll [17]. In spite of the great number of published work on
both subjects, the transition from the complex RBC to the
simple HSC, e.g., as that shown in Fig. 1, is still a fundamental
physics problem whose mechanism is not fully understood
[18–24]. In an attempt to explain this transition, we previously
conducted a preliminary, but detailed, bifurcation analysis for
water (Prandtl number Pr = 5.9) in a cubical enclosure and
reported several critical angles where stable solutions cease
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to exist [25]. It is well-known, however, that the dynamics
of RBC in an enclosure is greatly dependent on the Prandtl
number, i.e., the ratio of momentum diffusivity to thermal
diffusivity expressed as Pr = ν/α, where ν and α are the
kinematic viscosity and thermal diffusivity, respectively.

In this paper, we provide new insight into the mechanism
behind the transition from RBC to HSC for any Newtonian
fluid with a Prandtl number larger than that of air. We first give
a detailed description of RBC and HSC for air (Pr = 0.71),
since it is a fluid of great relevance to human beings. We
then discuss the rich dynamics found during the RBC-HSC
transition. The main objective of this study is to reveal the
mechanism behind this transition for steady flow. We finally
derive the main critical angles as a function of the Prandtl
number for 0.71 � Pr → ∞.

II. PROBLEM DESCRIPTION

In this study, we keep the same cubical configuration,
system of coordinates, and notation as described in Ref. [25].
For RBC in noncubical cavities (aspect ratio A �= 1) an uneven
shear stress exerted from the sidewalls favors certain groups
of solutions [26]. In contrast, RBC in a cubical enclosure
(A = 1) yields symmetrical solutions that are only influenced
by the Rayleigh number, Prandtl number, and the boundary
conditions [12]. Thus, due to its rich symmetrical properties
[15,16,27], the cubical cavity is a suitable geometry to study
the RBC-HSC transition [28].

We consider a tilted cubical enclosure completely filled
with a Newtonian fluid, which is heated and cooled from
two opposite isothermal sides of the cavity. The Newtonian
fluid is taken as a pure fluid in order to avoid undesired
instabilities due to the Soret effect [29–31]. The cavity forms
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FIG. 1. (Color online) Stable solutions found in a cubical cavity filled with air at Ra = 10 000 in quasi-Rayleigh-Bénard convection
(θ = 0.1◦) and heated-from-the-sides configuration. Multiple solutions are found in the former case, whereas a single solution is found in the
latter case. The magnitude of the dimensionless velocity is plotted on the mean-isothermal surface T = (TH + TC)/2.

an angle θ between the horizontal plane and its isothermal
sides, as shown in Fig. 1 for the inclination angles θ = 0.1◦
(∼1.7 mrad) and θ = 90◦. The inclination vector can then be
written in vectorial form as � = −θez, where ez is a unit
vector in the z direction. The Cartesian system of coordinates
is fixed to three orthogonal edges of the cavity, as shown in
Fig. 1, with its z axis overlapping with a lower horizontal edge.
The sides yz are kept isothermal at temperatures TH and TC

(TH > TC), while the remaining sidewalls xz and xy are kept
adiabatic to avoid heat loss through these boundaries. This
heating configuration generates a buoyancy-driven convective
flow inside the cavity. Our goal is to clarify the behavior of
the stable flow solutions found in the cubical cavity during the
transition from RBC to HSC (θ : 0◦ → 90◦).

III. NUMERICAL TECHNIQUES

We have recently developed a continuation procedure to
study steady natural convection in a parallelepiped enclosure
[26]. The continuation method is based on a Jacobian-
free Newton solver [32]. We solve the governing equations
(conservation of mass, momentum, and energy) with a
three-dimensional spectral finite element method under the
Boussinesq approximation [33,34] while taking into account
the acceleration of gravity, which has components along
two edges of the cubical cavity. Our continuation method
yields comprehensive bifurcation diagrams, which describe
the behavior of the flow instability for a wide range of
Rayleigh numbers. Remember that the ratio of the buoyancy
driving force to its dissipative factors (diffusion of temperature
and momentum) is described by the Rayleigh number Ra
globally defined as Ra = gβ(TH − TC)L3/(να), where g,
β, T , and L are the acceleration of gravity, the thermal
expansion coefficient, the temperature, and the edge length
of the cubical cavity. The bifurcation diagrams, in contrast
to three-dimensional flow solutions for a given Ra (see
Fig. 1), describe the behavior of the stable solutions in the
Ra-parameter space.

IV. RESULTS

Quasi-Rayleigh-Bénard convection. In spite of the claim
by most experimentalists and theoreticians that their subject
of study is RBC, the configuration where the heated surface is
perfectly horizontal is an ideal condition impossible to achieve.
Even in a controlled experimental setup where the cavity is
intended to be horizontal [15], a marginal inclination is always
present. This marginal inclination is small but physically

significant [35,36], and it is a determining factor for the stable
solutions found when the Rayleigh number Ra is gradually
increased [19,37–40]. Therefore, we shift our attention from
the ideal RBC to the more realistic quasi-Rayleigh-Bénard
convection (QRBC). Figure 1 shows the multiple solutions that
arise in QRBC (θ = 0.1◦) in a cavity filled with air (Pr = 0.71);
the magnitude of the dimensionless velocity vector is plotted
as a contour on the mean-isothermal surface. As shown in
this figure, six stable solutions exist in QRBC (θ = 0.1◦) for
Ra = 10 000: four stable transverse-roll solutions (B+y , B+z,
B−y , B−z) and two four-roll solutions (BR4+ and BR4−).

Figure 2 shows the bifurcation diagrams in the range Ra �
100 000 for RBC and QRBC. The transition between these
two natural convective states, i.e., θ : 0◦ → 0.1◦, is clearly
depicted in this figure. See Ref. [16] for a thorough description
of the RBC configuration. In Fig. 2, the horizontal velocity w

at the reference point (x1,y1,z1) = (0.90,0.79,0.90) is used as
representative parameter to describe the stable flow solutions
as a function of Ra. The solid lines and dashed or dotted
lines represent stable and unstable steady-flow solutions,
respectively. The multiplicity of the problem is clearly depicted
by numerous stable branches. In Fig. 2(a), the dynamics
of the system is shown for 2000 � Ra � 6000, focused on
the solutions around the primary instability threshold P1. In
Fig. 2(b), the results are expanded to Ra � 100 000 focusing
on the stable solutions (unstable segments after a stabilizing
pitchfork bifurcation are also included). In insets (c), (d), and
(e), the transition from RBC to QRBC is shown in the vicinity
of some bifurcation points, where it is more pronounced.

It is interesting to see from Fig. 2 that the slight inclination
in QRBC breaks the degeneracy of the stable solutions found
in RBC as follows. The transverse stable rolls B−z, whose
rotation vector is in the same direction as the inclination
vector � (see Fig. 1), form a leading branch starting from
Ra → 0. The branch B+z consisting of transverse rolls, whose
rotation vector is opposite to �, develops from the saddle-node
bifurcation C+z, and is stabilized at the pitchfork bifurcation
S+z, as shown in Fig. 2(c). The semitransverse stable rolls B±y ,
whose rotation axis is perpendicular to � for θ = 0◦, develop
from the saddle-node bifurcations C±y−z. The branches of
four-roll solutions BR4±, which for θ = 0◦ start unstable at
SR4 [Fig. 2(a)] but are stabilized at other pitchfork bifurcations
[outside the range of Ra in Fig. 2(a)], now evolve as stable
branches for θ = 0.1◦ from the saddle-node bifurcations CR4±.
The transition from a pitchfork in RBC to a saddle-node
bifurcation in QRBC is then observed for B+z, B±y , and
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FIG. 2. (Color online) Bifurcation diagrams showing the multi-
ple stable solutions found in RBC (θ = 0◦, gray lines starting at P1)
and QRBC (θ = 0.1◦, color online) in a cubical cavity filled with air.
The velocity w at a reference point is plotted as a function of Ra
for 2000 � Ra � 6000 (a) and Ra � 100 000 (b). The insets (c), (d),
and (e) show the transition between RBC and QRBC around the main
bifurcations. The thick arrows indicate the translation of the critical
thresholds as θ is increased.

BR4±. Moreover, in Figs. 2(d) and 2(e) we see that the slight
inclination induces a translation in the Ra-parameter space of
the secondary bifurcations S1B+z, S1B−z, and S1B−y (S1B+y).
These translations, as well as those translations around P1, are
indicated by thick arrows in Fig. 2.

Heated-from-the-sides convection. Figure 2 illustrates the
multiplicity that characterizes QRBC, i.e., numerous stable
solutions exist for a given Ra. This multiplicity is, however,
bound to disappear when the cavity is tilted by 90◦, as shown
in Fig. 1 by the only stable solution found for HSC. The
convective regime of HSC can then be represented by a single
unbifurcated branch, as shown in Fig. 3(a). The light gray
branches in this figure correspond to RBC and are included to
add a contrast between the complexity of RBC and simplicity
of HSC.

RBC-HSC transition for air. The transition from RBC to
HSC, i.e., θ : 0◦ → 90◦, can be described by tracing the
thresholds Rac of the bifurcation points as θ is increased.
The resulting loci, or trajectories, are shown in Fig. 3(b)
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FIG. 3. (Color online) Transition from RBC to HSC for a cavity
filled with air. (a) The single branch found in HSC (θ = 90◦) is
depicted by a single solid black line, while the multiple branches
found in RBC are depicted by light-gray lines. (b) The loci of the most
relevant bifurcations are shown every �θ = 1◦ (open points) starting
from θ = 0◦ (solid points). The circles indicate those bifurcations that
evolve from the primary instability threshold P1 at θ = 0◦; the squares
indicate the saddle-node points where the stable four-roll solutions
evolve from; the triangles indicate those solutions related to the
bifurcation point S1B±y and S1B±z. The collisions ε and singularities
γ (dRac/dθ → ∞) are plotted using and , respectively.

by line points; the points show the bifurcations for the tilt
increase �θ = 1◦. The results shown in Fig. 3(b) are of great
interest because they demonstrate that the mechanism behind
the RBC-HSC transition involves collisions ε and singularities
γ of different bifurcation points as the inclination of the cavity
is increased, eventually resulting in the single stable solution
branch shown in Fig. 3(a).

The dynamics of these bifurcations as the inclination of
the cavity gets larger is described as follows. For the B+z

rolls unfavored by �, the stability threshold S+z increases
while S1B+z decreases, resulting in the collision ε+z at
θ+z
c ≈ 12.47◦ [shown in Fig. 3(b) using ]. We verified that,

in fact, this collision annihilates the stable solutions for this
group of solutions. Meanwhile, for the B±y rolls, which are
perpendicular to � when θ = 0◦, both C±y−z and S1B±y shift
to a larger stability threshold, but the latter at a higher rate
than the former. This leads to the singularities dRac/dθ → ∞
at θ

±y−z
c ≈ 5.56◦ for C±y−z and θ

±y
c ≈ 2.44◦ for S1B±y .

These singularities are, respectively, denoted as γ ±y−z and
γ ±y [shown in Fig. 3(b) using ]. Concerning the stable
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FIG. 4. (Color online) Collisions ε+z, εR4, and singularity γ −z for
any Newtonian fluid of Pr greater than that of air, i.e., 0.71 � Pr →
∞. The inverse of Prandtl number Pr−1 is given in the abscissa. The
transition from multiple solutions found in RBC to a single solution
found in HSC corresponds to the largest critical angle θc at a given
value of Pr.

solutions on the branches B−z, the locus of S1B−z has the
singularity γ −z at θ−z

c ≈ 10.22◦ [outside the range of Ra in Fig.
3(b)]. Furthermore, concerning the stable four-roll solutions
on the branches BR4±, the saddle-node bifurcations CR4±
increase with the inclination until they rendezvous with Hopf
bifurcations [whose loci are omitted in Fig. 3(b)], resulting
in the collisions εR4± (written as εR4 in the following) that
annihilate the stable four-roll solutions at θ±R4

c ≈ 10.56◦.
Therefore, the largest critical angle, which for air corre-

sponds to the collision critical angle θ+z
c ≈ 12.47◦, delimits

the final transition from a multiple-stable-solution to a single-
stable-solution configuration (characteristic of RBC and HSC,
respectively).

RBC-HSC transition for a fluid of 0.71 � Pr → ∞. In
order to obtain a more comprehensive understanding of the
transition between RBC and HSC, we investigate the collisions
ε+z, εR4 and the singularity γ −z for any Newtonian fluid of
Prandtl number greater than that of air. The singularities γ ±y−z

are not presented because their critical angles are much smaller
than those for ε+z, εR4, and γ −z.

For a given value of Pr, ε+z is determined by finding
the intersection in the Ra-θ -parameter space of the loci
corresponding to the secondary bifurcations S+z and S1B+z.
Likewise, εR4 is determined by finding the intersection of
the saddle-node bifurcations CR4± and the Hopf bifurcation
points involved in the collision. γ −z is found by following

the bifurcation point S1B−z in the same parameter space until
dRac/dθ → ∞. The results are shown in Fig. 4.

The filled area in Fig. 4 represents the range of Pr and θ

where a single solution exists (characteristic of HSC); i.e.,
there is no multiplicity of stable solutions (characteristic of
RBC). Moreover, from Fig. 4 we can identify three distinctive
regions: A, B, and C, in which the final transition to the single
stable solutions occurs for the singularity γ −z (1.47 < Pr →
∞), the collision εR4 (0.86 � Pr < 1.47), and the collision
ε+z (0.71 � Pr < 0.86), respectively. For any Newtonian fluid
with Pr � 0.71 as a whole, only one stable solution exists if
the inclination angle of the cavity is θ � 25◦.

V. CONCLUSIONS

In this paper, we have addressed a century-old problem
concerning the transition of steady natural convection from
Rayleigh-Bénard convection (RBC) to the heated-from-the-
sides configuration (HSC). Until now, RBC and HSC had been
thoroughly studied for the cubical cavity configuration, but
the mechanism underlining the RBC-HSC transition was still
unknown. As an initial step to understand this transition, we
first propose the concept of quasi-Rayleigh-Bénard convection
(QRBC) as a real physical approximation to the ideal RBC and
then analyze the effect of a marginal inclination angle on the
stability of the system. We show that theoretical results dealing
with Rayleigh-Bénard should include a marginal inclination in
order to be physically meaningful, especially in the vicinity of
instability thresholds. Our analysis then yields comprehensive
bifurcation diagrams for QRBC in a cubical cavity filled with
air (Pr = 0.71). Furthermore, we demonstrate the existence of
several critical angles during the RBC-HSC transition and
show that these critical angles are the result of collisions
and singularities of bifurcation points that translate in the
Ra-parameter space as the inclination angle is increased.
Finally, the main critical angles corresponding to two collisions
and one singularity are determined for a Newtonian fluid with a
Prandtl number larger than air, 0.71 � Pr → ∞. These results
unveil the transition to a single solution, which is characteristic
of HSC, and show that depending on the value of Pr either a
collision or a singularity of bifurcation points determines the
limit angle for this transition.

ACKNOWLEDGMENT

We thank Dolors Puigjaner for revising the manuscript and
stimulating discussion.

[1] M. Gurnis, Nature 332, 695 (1988).
[2] J. Leconte and G. Chabrier, Nature Geosci. 6, 347 (2013).
[3] D. Braun, N. L. Goddard, and A. Libchaber, Phys. Rev. Lett. 91,

158103 (2003).
[4] M. Krishnan, N. Agrawal, M. A. Burns, and V. M. Ugaz, Anal.

Chem. 76, 6254 (2004).
[5] A. D’Orazio, M. Corcione, and G. P. Celata, Int. J. Therm. Sci.

43, 575 (2004).

[6] J. Y. Moon and B. J. Chung, Nucl. Eng. Des. 274, 146
(2014).

[7] M. C. Cross and P. C. Hohenberg, Rev. Mod. Phys. 65, 851
(1993).

[8] A. Baı̈ri, E. Zarco-Pernia, and J. M. Garcı́a de Marı́a, Appl.
Therm. Eng. 63, 304 (2014).

[9] A. V. Getling, Rayleigh-Bénard Convection (World Scientific,
Singapore, 1998).

023031-4

http://dx.doi.org/10.1038/332695a0
http://dx.doi.org/10.1038/332695a0
http://dx.doi.org/10.1038/332695a0
http://dx.doi.org/10.1038/332695a0
http://dx.doi.org/10.1038/ngeo1791
http://dx.doi.org/10.1038/ngeo1791
http://dx.doi.org/10.1038/ngeo1791
http://dx.doi.org/10.1038/ngeo1791
http://dx.doi.org/10.1103/PhysRevLett.91.158103
http://dx.doi.org/10.1103/PhysRevLett.91.158103
http://dx.doi.org/10.1103/PhysRevLett.91.158103
http://dx.doi.org/10.1103/PhysRevLett.91.158103
http://dx.doi.org/10.1021/ac049323u
http://dx.doi.org/10.1021/ac049323u
http://dx.doi.org/10.1021/ac049323u
http://dx.doi.org/10.1021/ac049323u
http://dx.doi.org/10.1016/j.ijthermalsci.2003.11.002
http://dx.doi.org/10.1016/j.ijthermalsci.2003.11.002
http://dx.doi.org/10.1016/j.ijthermalsci.2003.11.002
http://dx.doi.org/10.1016/j.ijthermalsci.2003.11.002
http://dx.doi.org/10.1016/j.nucengdes.2014.04.017
http://dx.doi.org/10.1016/j.nucengdes.2014.04.017
http://dx.doi.org/10.1016/j.nucengdes.2014.04.017
http://dx.doi.org/10.1016/j.nucengdes.2014.04.017
http://dx.doi.org/10.1103/RevModPhys.65.851
http://dx.doi.org/10.1103/RevModPhys.65.851
http://dx.doi.org/10.1103/RevModPhys.65.851
http://dx.doi.org/10.1103/RevModPhys.65.851
http://dx.doi.org/10.1016/j.applthermaleng.2013.10.065
http://dx.doi.org/10.1016/j.applthermaleng.2013.10.065
http://dx.doi.org/10.1016/j.applthermaleng.2013.10.065
http://dx.doi.org/10.1016/j.applthermaleng.2013.10.065


TRANSITION FROM MULTIPLICITY TO SINGULARITY . . . PHYSICAL REVIEW E 92, 023031 (2015)

[10] J. Pallares, F. X. Grau, and F. Giralt, Int. J. Heat Mass Tran. 42,
753 (1999).

[11] D. Venturi, X. Wan, and G. E. Karniadakis, J. Fluid Mech. 650,
391 (2010).

[12] D. Puigjaner, J. Herrero, C. Simó, and F. Giralt, J. Fluid Mech.
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