
HAL Id: hal-01323794
https://hal.science/hal-01323794

Submitted on 31 May 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

DNS of turbulent channel flow: can we imitate conjugate
heat-transfer with a Robin boundary condition?

Cédric Flageul, Sofiane Benhamadouche, Eric Lamballais, Dominique
Laurence

To cite this version:
Cédric Flageul, Sofiane Benhamadouche, Eric Lamballais, Dominique Laurence. DNS of turbulent
channel flow: can we imitate conjugate heat-transfer with a Robin boundary condition?. 8th interna-
tional symposium of Turbulence Heat and Mass Transfer , Sep 2015, Sarajevo, Bosnia and Herzegovina.
�hal-01323794�

https://hal.science/hal-01323794
https://hal.archives-ouvertes.fr


 

DNS of turbulent channel flow: can we imitate 

conjugate heat-transfer with a Robin boundary 

condition? 

C. Flageul1, S. Benhamadouche1, E. Lamballais2 and D. Laurence1,3 
1EDF R&D, Fluid mechanics, Energy and Environment, 78401 Chatou, France, 
cedric.flageul@edf.fr 
2Institute PPRIME, Department of Fluid Flow, Heat Transfer and Combustion, 
Université de Poitiers, CNRS, ENSMA, Téléport 2 – Bd. Marie et Pierre Curie B.P. 
30179, 86962 Futuroscope Chasseneuil Cedex, France 
3School of Mechanical, Aerospace and Civil Engineering, The University of 
Manchester, Sackville Street, Manchester M60 1QD, UK 
 
Abstract – Turbulent heat fluxes, temperature variance and associated budgets obtained from 

the Direct Numerical Simulation of an incompressible turbulent channel flow with a Reynolds 

number of 150 based on the wall friction velocity and a Prandtl number of 0.71 are presented and 

analysed for four different cases: imposed temperature at the wall (Dirichlet), imposed heat flux 

(Neumann), heat exchange coefficient (Robin) and 3D conjugate heat transfer. Present results 

show that a Robin boundary condition can imitate most of the one point statistics obtained with 

conjugate heat-transfer accurately compared to the statistics obtained with an imposed 

temperature or heat flux at the wall. 
 

1. Introduction 

Most of the DNS of the turbulent channel flow performed with a passive 

scalar are based on an imposed temperature at the wall (Kasagi et al. 1992, 

Kawamura et al. 1998). When the temperature is imposed at the wall, there is a 

close similarity between thermal and momentum low-speed near-wall streaks (Abe 

et al. 2009). 

In a small number of DNS, a constant heat flux is imposed at the wall (Tiselj 

et al. 2001). However, it is widely recognized that neither isothermal nor isoflux 

boundary conditions can realistically mimic the actual heat transfer in real life 

where the wall has a thickness, especially when the thermal diffusivity of the 

fluid and solid are of the same order of magnitude. When such a coupling is 

considered, it is referred as conjugate heat-transfer. To the authors’ knowledge 

Tiselj et al. (2001) were the first to investigate by DNS the influence of the 

thermal boundary conditions with a direct comparison between conjugate heat 

transfer, imposed temperature and imposed heat flux at the wall. 



 

In the present paper, the turbulent heat-fluxes, the temperature variance 

and the associated budgets obtained for three different boundary conditions 

(imposed temperature (isoT), imposed heat flux (isoQ), heat exchange 

coefficient (Robin)) and conjugate heat transfer (Conjug) are compared. In the 

present conjugate simulations, the ratio of thermal diffusivity and conductivity 

between the solid and the fluid can be equal to 2, 1 and 0.5: 9 conjugate 

simulations were performed (the heat flux is imposed at the outer wall of the 

solid domain). 

 

2. Numerical setup 

Present simulations are based on the open-source software Incompact3d 

(https://code.google.com/p/incompact3d/) developed at Université de Poitiers 

and Imperial College London by Laizet et al. (2011). The details of the numerical 

methods employed here are similar to the ones given in Flageul et al. (2014): 

high-order compact finite difference schemes in the fluid domain are combined 

with a mixed finite difference/spectral discretization in the solid domain. The 

number of computational cells is equal to 256x193x256 and the domain size is 

[25.6,2,8.52]. For the conjugate heat transfer cases, the solid domain is on top 

and bottom of the fluid one, as sketched figure 1. For such cases, the equation of 

evolution of the passive scalar reads 
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where 
1G  is the ratio of thermal diffusivities sf 

 
and 2G  is the ratio of 

thermal conductivities fs  . Based on those dimensionless numbers, the 

thermal activity ratio K  can be defined with 121 GGK   (Tiselj et al. (2012)). 

The ratio of thermal diffusivities and conductivities considered here lead to 

 22;2;2;1;21;21;221K . Both for 21K  and 2K , two simulations 

were performed:    1,2, 21 GG ,    2,21, 21 GG  and    1,21, 21 GG , 

   21,2, 21 GG . Theoretical analysis shows that a very low (resp. high) thermal 

conductivity in the solid domain is equivalent to an imposed heat-flux (resp. 

imposed temperature) at the fluid boundary. Therefore, for a given 1G , the lower 

2G , the higher K , the closer to the imposed heat flux case. Accordingly as 

illustrated in figure 1 for the temperature variance, the higher K , the closer 

“Conjugate” results move to the imposed heat flux case. 



 

 

3. Compatibility condition for the non-conjugate cases 

One considers a general boundary condition for the temperature at the wall 

cTbaT y  . Furthermore, if one assumes the coefficients a , b  and c  are 

constant, one obtains: 
0'' and  TbaTcTbTacTbaT yyy
 (2) 

The second condition in (1) can be multiplied by 'T or 'Ty . The resulting 3 

equations can be used to build a matrix: 
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The determinant of the matrix must vanish to allow non trivial solutions. The 

resulting relation connects the values (at the wall) of the temperature variance, 

its derivative and the wall-normal part of the dissipation rate associated with the 

temperature variance. One can combine the second and the third lines of the 

matrix in (3) to obtain: 
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 . Our Robin boundary condition for 

   1,1, 21 GG  was built using this relation with the temperature variance from the 

isoQ case and the wall-normal part of the dissipation rate from the isoT one. The 

Robin boundary condition for the other conjugate cases was obtained using 

cross-multiplication between the one at    1,1, 21 GG , and the ratio 
''

'²
TT

T
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of the conjugate cases. 

 

4. Compatibility condition for the conjugate cases 

Assuming the solid domain is semi-infinite in the wall-normal direction and the 

 

 
Figure 1: Left: Sketch of the configuration. Right: Temperature variance. 



 

case is stationary, one can apply Fourier and Laplace analysis to the solid heat 

diffusion equation:  
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The denominator can be written as 22 Ss   with  ptzx CikkkS  222 . Applying 

an inverse Laplace transform leads to a compatibility condition between the 

wall-normal heat flux and the temperature at the wall: 000   yyy STT . The sign 

in the expression depends on the sign of the real part of S  and on the 

orientation of the y-axis. This condition is a product in the spectral space, which 

is equivalent to a convolution in physical space. If one were to neglect the 

dependency of S  on xk , 
zk  and tk , the quadratic norm of the compatibility 

condition would be 
''
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 . As this ratio is used to define our Robin 

boundary condition, there is strong connection between the conjugate cases and 

the Robin ones. Using a Robin boundary condition with constant coefficients, one 

can imitate conjugate heat transfer but neglect the non-local effects (i.e. the 

convolution). 

 

5. Results 

In figure 2, the temperature variance obtained for the conjugate cases and the 

Robin ones are in between the isoT and the isoQ one. There is a remarkable 

agreement between the conjugate cases and the Robin ones. It is similar for the 

dissipation rate associated with the temperature variance, although the 

agreement between the Robin case and the conjugate ones is degraded for 7y . 

For the ratio of thermal properties considered in the present conjugate 

simulations, the temperature variance and the associated dissipation rate 

depends only on the thermal activity ratio K . 

The one point correlation coefficient associated with the turbulent heat flux 

 '' Tu j  is  RMSjRMSj TuTu  '' . In figure 3, the one point correlation coefficient 

associated with the wall-normal turbulent heat flux obtained with conjugate heat 

transfer and a Robin boundary condition lies in between the isoT and isoQ cases. 

There is a good agreement between the Robin case and the conjugate ones, 

although the agreement is more qualitative for 3y . The one point correlation 

coefficient associated with the streamwise turbulent heat-flux obtained with 

conjugate heat transfer and a Robin boundary condition lies in between the isoT 

and isoQ cases. The Robin cases are however now very close to the isoT one. In 

addition, for a given thermal activity ratio, the one point correlation coefficient 

for the conjugate cases does not overlap (cases 21K  and 2K ). 



 

Therefore, the turbulent heat fluxes depends both on K  and 
1G , even if the 

temperature variance and the associated dissipation rate depends only on K . 

In figure 4, the two-point streamwise autocorrelation of the temperature at the 

wall for the Robin cases is lower than the conjugate and isoQ ones. Oppositely, 

the two-point streamwise autocorrelation of the wall-normal heat flux at the wall 

for the Robin cases is higher than the conjugate and isoT ones. As the 

coefficients in the Robin boundary condition are constants, the autocorrelation of 

the temperature and wall-normal heat flux are identical. This is obviously not the 

case for conjugate heat transfer. This confirms the failure of a Robin boundary 

condition with constant coefficients to mimic the non-local aspects of conjugate 

heat transfer. 

In figure 5, the two point spanwise autocorrelation of the temperature and 

wall-normal heat flux at the wall show a similar trend, although the impact of the 

thermal boundary condition is less severe. 

In figure 2, the temperature variance in the fluid domain overlap for the 

simulations at 21K  and 2K . As shown figure 6, this is not the case in 

the solid domain. This leads to distinct second derivatives of the temperature 

variance in the solid domain (for a given thermal activity ratio K ). In the budgets 

of the temperature variance in the solid domain,   balances the molecular 

diffusion. The small difference observed on 2  in the solid domain leads to a 

larger difference on s, . 

The relative contribution to   of its wall-normal part is 
''
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. As 

shown figure 7 (left), in the fluid domain, the wall-normal part of f, is dominant in 

the near-wall region for the conjugate, Robin and isoT cases. Therefore, in the 

vicinity of the wall, for the conjugate and Robin cases, the value of f,  
is closer 

to the isoQ case while its anisotropy is closer to the isoT case. Using the 

continuity of temperature and heat-flux at the fluid-solid interface and the 

budgets of the temperature variance in the fluid and solid domains leads to the 

interface condition: 
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Assuming the wall-parallel contribution to f,  
is negligible at the fluid-solid 

interface leads to: 
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This is in good agreement with our results: the higher K , the higher 
f

s
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In figure 7 (right), the temperature variance in the solid domain near the 



 

fluid-solid interface seems to overlap when the abscissa and ordinate axes are 

rescaled with 
2G  and K  respectively. However, the focus on the wall-value 

indicates large deviations. 

The relative contribution of the wall-normal part of f,  
at the wall as a function 

of K  seems linear with a slope of -0.19 for the ratio of thermal properties 

considered in this study. However, there are few chances for this trend to be 

valid for ratio of thermal properties farther from unity as this relative 

contribution is bounded in [0,1]. 

 

6. Discussion 

On the one hand, our results show that a Robin boundary condition can imitate 

accurately conjugate heat-transfer: the temperature variance and the associated 

budgets are in good agreement. On the other hand, the one point correlation 

coefficient associated with the streamwise turbulent heat flux and the 

streamwise autocorrelations at the wall show that there remains a difference 

between conjugate and non-conjugate heat-transfer. 

From section 4, in case of conjugate heat transfer, there is a compatibility 

condition that is a product in the spectral space, which is equivalent to a 

convolution in the physical space. Such a condition is non-local and cannot be 

imitated by a Robin boundary condition with constant coefficients. The 

theoretical failure of such a Robin boundary condition to mimic the non-local 

aspect of conjugate heat transfer is confirmed by our results. 

The relatively high autocorrelation of the temperature at the wall for the 

conjugate cases at large separations may be explained by the periodicity and the 

limited streamwise extension of our domain, even if it is longer than the 

reference ones (Kasagi et al. 1992, Tiselj et al. 2001). Very large scale thermal 

structures may also be intrinsic to conjugate heat transfer: those are the only 

ones able to penetrate deep inside the solid domain. For instance, at 21K , 

the streamwise autocorrelation of the temperature at the wall at the largest 

separation is 0.19 for    1,2, 21 GG  and 0.14 for    2,21, 21 GG . The higher 1G , 

the lower the thermal diffusion in the solid domain, the more important are very 

large scale thermal structures. 

 

7. Conclusion 

From a RANS perspective, a Robin boundary condition with constant coefficients 

seems able to mimic conjugate heat transfer: the second moments and their 

budgets are satisfactorily reproduced (fig. 2). From a LES perspective, this is no 

longer the case, as shown by the streamwise autocorrelations of the temperature 



 

and wall-normal heat-flux at the wall (fig. 4). 

Those conclusions may not be valid for ratio of thermal properties farther from 

unity than the ones considered here. When the Prandtl number is 0.01, the 

temperature variance at the wall depends both on K  and 
1G  (Tiselj et al. 

(2012)). 

Following the analysis developed in section 4, a Robin boundary condition with 

varying coefficient could offer a better potential to mimic conjugate 

heat-transfer. However, the coefficients should depend on values of the 

temperature and wall-normal heat flux at the wall in a non-local fashion: both 

previous time-steps and surrounding nodes should be considered to mimic the 

convolution accurately. 
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Figure 2. Left: Temperature variance. Right: Associated dissipation rate. Top: 21K . 

Middle: 1K . Bottom: 2K . +: Conjugate. ×: Robin. 
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Figure 3: One point correlation coefficient associated with the turbulent heat flux. Left: 

Wall-normal turbulent heat flux. Right: Streamwise turbulent heat flux. Top: 21K . 

Middle: 1K . Bottom: 2K . +: Conjugate. ×: Robin. 
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Figure 4: Two-point streamwise autocorrelation at the wall. Left: Temperature. Right: 

Wall-normal heat flux. Top: 21K . Middle: 1K . Bottom: 2K . +: Conjugate. ×: 

Robin. 
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Figure 5: Two-point spanwise autocorrelation at the wall. Left: Temperature. Right: 

Wall-normal heat flux. Top: 21K . Middle: 1K . Bottom: 2K . +: Conjugate. ×: 

Robin. 
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Figure 6: Left: Profile of 2 around the fluid-solid interface. Right: Profile of  around 

the fluid-solid interface. 
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Figure 7: Left: Relative contribution to  of its wall-normal part. Right: Scaling for 2 in 

the solid domain and for 
f,  and its wall normal contribution to at the fluid-solid 

interface. 

 

 


