
HAL Id: hal-01331125
https://hal.sorbonne-universite.fr/hal-01331125

Submitted on 13 Jun 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Spin-orbit stiffness of the spin-polarized electron gas
Florent Baboux, Florent Perez, C. A. Ullrich, G. Karczewski, T. Wojtowicz

To cite this version:
Florent Baboux, Florent Perez, C. A. Ullrich, G. Karczewski, T. Wojtowicz. Spin-orbit stiffness of
the spin-polarized electron gas. physica status solidi (RRL) - Rapid Research Letters, 2016, 10 (4),
pp.315-319. �10.1002/pssr.201600032�. �hal-01331125�

https://hal.sorbonne-universite.fr/hal-01331125
https://hal.archives-ouvertes.fr


Spin-orbit stiffness of the spin-polarized electron gas

F. Baboux,1, 2, ∗ F. Perez,1, † C. A. Ullrich,3 G. Karczewski,4 and T. Wojtowicz4

1Institut des Nanosciences de Paris, CNRS/Université Paris VI, Paris 75005, France
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In a spin-polarized electron gas, Coulomb interaction couples the spin and motion degrees of
freedom to build propagating spin waves. The spin-wave stiffness Ssw quantifies the energy cost
to trigger such excitation by perturbing the kinetic energy of the electron gas (i. e. putting it in
motion). Here we introduce the concept of spin-orbit stiffness, Sso, as the energy necessary to excite
a spin wave with a spin polarization induced by spin-orbit coupling. This quantity governs the
Coulombic enhancement of the spin-orbit field acting of the spin wave. First-principles calculations
and electronic Raman scattering experiments carried out on a model spin-polarized electron gas,
embedded in a CdMnTe quantum well, demonstrate that Sso = Ssw. Through optical gating of the
structure, we demonstrate the reproducible tuning of Sso by a factor of 3, highlighting the great
potential of spin-orbit control of spin waves in view of spintronics applications.

I. INTRODUCTION

Spintronics exploits the electronic spin degree of
freedom to develop new functionalities for solid-state
devices1. In this context, spin-orbit and Coulomb in-
teractions have emerged as two protagonists. On the one
hand, spin-orbit coupling, which transforms electric fields
into effective magnetic fields, opens promising ways to
manipulate the electronic spin through, e.g., spin orien-
tation by electric current3–5, spin Hall effect6 or zero-bias
spin separation7. On the other hand, Coulomb interac-
tions govern the existence and behavior of spin waves8,9,
which can be used to transmit and modify logical infor-
mation with reduced dissipation10. Both research paths
can also usefully be combined: recently, the spin polariza-
tion generated by static11 or oscillating12 electric fields,
through spin-orbit coupling, was used to trigger the pre-
cession of spin waves.

In the absence of spin-orbit effects, the spin-wave dis-
persion of an itinerant magnetic system can be written
as ~ωq = Ssw~2q2/2mb, where q is the wavevector of the
spin wave and mb is the electron band mass13. Ssw is
the spin-wave stiffness, which is the energy cost to excite
an itinerant spin wave with a kinetic disturbance of the
electrons8. The question then arises how the spin-wave
dispersion is modified if spin-orbit coupling is present. In
this paper, we will show that spin-orbit coupling adds a
linear term to the spin-wave dispersion, which originates
from the changes of the one-particle spin-orbit energies
during a disturbance of the spin polarization. The re-
lated coefficient entering the spin-wave dispersion will be
defined as the spin-orbit stiffness Sso.

We have carried out a combined experimental and the-
oretical determination of the spin-wave and spin-orbit
stiffnesses of a two-dimensional electron gas (2DEG). We
find that Sso = Ssw: remarkably, the electron gas re-
sponds in the same manner to a kinetic or spin-orbit
disturbance of its ground state. In addition, we show
that Sso governs the Coulombic enhancement of the col-

lective spin-orbit field Bcoll
SO (q) acting on the spin-wave:

Bcoll
SO (q) = Sso BSO(q), where BSO(q) is the single-

particle spin-orbit field. We demonstrate the tuning of
Sso by a factor of 3, by varying the electron density
through optical gating14,15. From the point of view of
potential applications such as spin-wave transistors10,11,
our results indicate that spin waves can be efficiently con-
trolled via spin-orbit coupling, with the electron density
as the tuning parameter.

II. THEORETICAL BACKGROUND

We consider the 2DEG embedded in a dilute mag-
netic CdMnTe quantum well16–18. In such system, the
application of a moderate in-plane magnetic field (∼ 1
T) polarizes the spins localized on the Mn impurities,
which in turn polarizes the electron gas through ex-
change interaction19. This induces a giant Zeeman split-
ting Z (of order meV) of the electron gas, which dom-
inates over the orbital quantization. One thus obtains
a spin-polarized electron gas supporting spin wave ex-
citations. The latter are collective precession of the
itinerant spins, which were shown, theoretically17 and
experimentally16,17,20,21, to obey the energy dispersion:

~ωq = Z − 1

|ζ|
Z

Z∗ − Z
~2

2mb
q2 , (1)

where ζ is the spin-polarization degree of the electron gas
(−1 ≤ ζ ≤ 1) and Z∗ is Coulomb-renormalized Zeeman
energy, i.e., the energy required to flip the spin of single
electrons while keeping others unchanged20. Such spin-
flip requires overcoming the Coulomb-exchange interac-
tion between conduction electrons: thus, Z∗ differs from
Z by 2∂εxc/∂ζ, where εxc is the exchange-correlation en-
ergy per particle of the electron gas9. In addition, ζ is
also given by −Z∗/2EF where EF is the Fermi energy,
such that the ratio Z∗/Z is linked to the spin-stiffness
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ρs by Z∗/Z = EF/ρs
9. For a system with finite ζ, one

obtains ρs = ζ−1∂ε/∂ζ, with ε the total ground state en-
ergy per particle. Combined with the dispersion relation
(1), this yields the spin-wave stiffness:

Ssw =
1

ζ

∂ε

∂ζ

(
∂εxc
∂ζ

)−1
. (2)

Recently, the influence of spin-orbit coupling on the
spin modes of 2DEGs, including the spin wave above, was
investigated18,22,23. Due to internal electric fields arising
from the inversion asymmetry of the confining potential
(Rashba effect)24 and of the crystalline cell (Dresselhaus
effect)25, spin-orbit coupling introduces an in-plane crys-
tal magnetic field BSO for each electron. To lowest order
of the momentum k, we have

BSO(k) = 2α (ky,−kx) + 2β (kx,−ky) , (3)

with x̂ ‖ [100] and ŷ ‖ [010], and with α and β the single-
particle Rashba and Dresselhaus coupling constants, re-
spectively. These fields induce a distribution of spin
splitting and spin orientation among electrons26, which
is a very efficient decoherence mechanisms in a macro-
scopic spin distribution27. However, Coulomb interac-
tion breaks the expected scenario of such fast spin deco-
herence: the spin wave averages over the single-particle
spin-orbit coupling and only experiences a macroscopic
collective spin-orbit field Bcoll

SO (q), which depends on the
spin-wave momentum q.

The field Bcoll
SO (q) was found18,23 to be proportional

to the single-particle field BSO(q) acting on individual
electrons. As we will see below, the proportionality factor
corresponds exactly to the spin-orbit stiffness introduced
in the beginning:

Bcoll
SO (q) = Sso BSO(q) . (4)

It was shown that Sso = 5.2 for the GaAs quantum well
of Ref.23 and Sso = 6.5 for the CdMnTe quantum well
of Ref.18. This already shows that the influence of spin-
orbit fields on a spin wave is more complex than for a
drifting spin packet, which simply precesses in the indi-
vidual spin-orbit field BSO(qdrift) felt by an electron with
the drift momentum qdrift

28–30.
The collective spin-orbit field Bcoll

SO (q) can be super-
imposed with other magnetic fields18,23. In the present
case of CdMnTe, it adds up to the giant Zeeman field
coming from magnetic impurities, such that Eq. (1)
becomes ~ωq = |Zu + Bcoll

SO (q)| − Ssw~2q2/2mb, where
u = Bext/Bext. This yields for the spin wave dispersion,
in presence of spin-orbit coupling:

~ωq ' Z − Ssw
~2

2mb
q2 − Sso(α+ β sin 2ϕ)2q . (5)

III. EXPERIMENTAL SIGNATURES OF
SPIN-ORBIT COUPLING

Figure 1a illustrates the angle ϕ between the momen-
tum q and the [100] axis, and also the orientation of Bext.
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Figure 1. (a) Inelastic light scattering (ERS) geometry: ki

and ks are the incoming and scattered light wavevectors, re-
spectively; q is the transferred momentum, of in-plane ori-
entation measured by the angle ϕ from [100]. An external
magnetic field Bext is applied perpendicular to q. (b) ERS
spectra of the spin wave, obtained at Bext = 2 T and ϕ = π/4,
for a series of transferred momenta q. (c) Wavevector disper-
sion of the spin wave for ϕ = π/4 and ϕ = 3π/4. (d) Variation
of the linear term ESO of the spin-wave dispersion (see text)
as a function of the in-plane angle ϕ.

Figures 1b-d highlight the spin-orbit features of Eq. (5).
To measure the spin-wave dispersion, we have employed
electronic Raman scattering (ERS), which transfers a
well-controlled momentum q to the spin excitations of
the electron gas embedded in a quantum well16,31. We
consider an asymmetrically modulation-doped, 20 nm-
thick Cd1−xMnxTe (x ' 0.13%) quantum well, grown
along the [001] direction by molecular beam epitaxy, and
immersed in a superfluid helium bath (2 K). The elec-
tronic density is n2D = 2.7× 1011 cm−2 and the mobility
is 1.7 × 105 cm2V−1s−1. Our setup, shown in Fig. 1a,
allows us to vary q both in magnitude and in-plane ori-
entation. The magnetic field Bext is applied in the plane
of the well, always perpendicular to q. The incoming
and scattered light are cross-polarized, so as to selectively
probe spin excitations only16.

Figure 1b displays a series of spin-wave ERS lines.
They were obtained at fixed Bext = 2 T and ϕ = π/4,
but for transferred momenta q between −3.4 and +2.5
µm−1 (the positive sign is defined by the orientation of
q in Fig. 1a). The corresponding wave-vector dispersion
is plotted in Fig. 1c (squares): it shows a quadratic de-
pendence with q, with a maximum shifted from the zone
center. The dispersion for ϕ = 3π/4 (circles) has its
maximum at a different value of q. These characteris-
tics are consistent with Eq. (5) and are signatures of the
spin-orbit contribution.
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By fitting the dispersions to Eq. (5), we extract the
spin-wave stiffness Ssw and the spin-orbit term ESO(ϕ) =
−2Sso (α+ β sin 2ϕ). We repeat the procedure for a se-
ries of in-plane angles ϕ, and plot ESO(ϕ) in Fig. 1d. The
experimental variation ESO(ϕ) is in excellent agreement
with the predicted sinusoidal variation. Using this pro-
cedure we obtain Ssw = 30.6±0.6, and Ssoα = 46.7±1.2
meVÅ, Ssoβ = 93.0 ± 2.3 meVÅ. The two latter quan-
tities completely determine the collective spin-orbit field
Bcoll

SO (q) [Eq. (4)] acting of the spin wave: they define
collective Rashba and Dresselhaus coupling constants,
respectively, which are enhanced with respect to their
single-particle counterparts by the spin-orbit stiffness
Sso.

IV. CALCULATION OF THE SPIN-ORBIT
STIFFNESS

We have carried out a first-principles calculation of
the spin-orbit stiffness Sso. The calculation adapts the
linear-response formalism developed earlier for the case
of intersubband excitations22,32,33 to calculate the spin-
wave dispersions of a spin-polarized 2DEG in a quantum
well with spin-orbit coupling. To first order in α and β
and to second order in the wavevector q, we obtain after
a rather involved calculation the following, surprisingly
simple analytic result for the spin-wave dispersion:

~ωq = Z − Ssw(∆εkin + ∆εso) . (6)

Here, ∆εkin = ~2q2/2mb is the single-particle kinetic en-
ergy change and ∆εso = BSO(q) ·u = (α+ β sin 2ϕ) 2q
is the single-particle spin-energy change. Both contribu-
tions originate in the motion of electrons activated by the
transfer of momentum q. Comparing Eqs. (5) and (6),
one immediately identifies the spin-orbit stiffness as

Sso = Ssw , (7)

which is the central theoretical result of this work. This
equality means that, remarkably, the electron gas re-
sponds with the same stiffness to a kinetic or spin distur-
bance of its ground state.

V. VERIFICATION OF THE THEORY

To test the result of Eq. (7), we will explore the density
dependence of the spin-wave and spin-orbit stiffnesses.
For this we illuminate the quantum well with an above-
barrier cw green laser beam (514.5 nm) to depopulate
the electron gas14,15. By fitting the energy of the q = 0
spin wave versus Bext with a Brillouin function [see Eq.
(1) of Ref. 18], we checked that the green beam does
not alter the temperature of the system by more than
0.3 K. We calibrate the density changes caused by the
green illumination by extracting the Fermi energy EF
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Figure 2. (a) Electron density as a function of the power
density Fgreen of a secondary green laser beam, used to depop-
ulate the electron gas. Density values are extracted from pho-
toluminescence (solid circles) and ERS (empty circles) data.
The line is a fit to the theory of Chaves et al.14. (b) Variation
of the Rashba (Ssoα, blue circles) and Dresselhaus (Ssoβ, red
triangles) collective coupling constants with the electron den-
sity. Inset: Calculated Rashba (αkp, blue circles) and Dres-
selhaus (βkp, red triangles) single-particle coupling constants.

in two independent ways: from the width of the pho-
toluminescence (PL) spectra, and from the slope of the
cross-polarized ERS spectra of the single-particle excita-
tions at zero spin polarization, as detailed in Ref.34. The
corresponding values of n2D are plotted in Fig. 2a. Both
determinations are in good agreement, showing that the
electron density can be reproducibly tuned by a factor of
2 in our sample.

We can now determine how the changes in n2D affect
the spin-wave and spin-orbit stiffnesses. For a series of
electron densities, we extract at fixed Bext = 2 T, the
quantities Ssw, Ssoα and Ssoβ by fitting the dispersions
to Eq. (5), as above. We first concentrate on the spin-
wave stiffness, and plot in Fig. 3b the experimental Ssw

(orange squares) as a function of n2D. We compare it to
the theory of Eq. (2) (solid orange line): for this we cal-
culate Ssw = 2EF

Z∗−Z
Z
Z∗ , using the experimental Zeeman

energy Z and Fermi energy EF, and calculating Z∗ fol-
lowing Ref.20. An excellent agreement is found between
theory and experiment. Next we consider the spin-orbit
terms. Figure 2b shows the experimental Ssoα (blue cir-
cles) and Ssoβ (red triangles) as a function of n2D. The
Dresselhaus part Ssoβ exhibits a strong variation from 93
to 26 meVÅ, while the Rashba contribution Ssoα varies
dramatically from 47 meVÅ to nearly zero as the density
is lowered.
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Figure 3. Spin-orbit stiffness (Sso) and spin-wave stiffness
(Ssw) as a function of the electron density. Orange: spin-
wave stiffness, as extracted experimentally from the curvature
of the spin-wave dispersion (squares), and calculated using
Eq. (2) (line). Blue circles: spin-orbit stiffness determined
from the ratio Ssoα/αkp. Red triangles: spin-orbit stiffness
determined from the ratio Ssoβ/βkp.

Having determined the collective spin-orbit coupling
constants Ssoα and Ssoβ for various electron densities,
the remaining task to obtain Sso is to determine the
single-particle spin-orbit constants α and β. To that end,
we perform a self-consistent Schrödinger-Poisson calcula-
tion of the confining potential and electronic wavefunc-
tion. We then calculate the Rashba coefficient αkp =
r6c6c41 e〈Ez〉 and the Dresselhaus coefficient βkp = γ〈k2z〉26.
Here, r6c6c41 and γ are material-dependent parameters, e
is the electronic charge and Ez, kz are respectively the
electric field and wavevector along the growth axis. Us-
ing r6c6c41 = 6.93 Å2 and γ = 43.9 eVÅ3 calculated by
k ·p perturbation theory26 for CdTe, we show the calcu-
lated αkp and βkp as a function of the electron density in
the inset of Fig. 2b.

We can now plot in Fig. 3 the experimental spin-
orbit stiffness Sso, as given by Ssoα/αkp (blue circles)

and Ssoβ/βkp (red triangles). Both quantities slightly
differ from each other and from the experimental spin-
wave stiffness. It is difficult to discuss the relevance of
this discrepancy, because α and β subtly depend on the
exact shape of the wavefunction and confining potential,
which are calculated here in a simple model. But despite
these quantitative differences, we not that the qualitative
increase of the spin-orbit stiffness with the density, as
predicted by Eq. (7), is clearly attested experimentally.
Figure 3 demonstrates that the experimental spin-orbit
stiffness can be reproducibly tuned from 2-5 to 10-20, by
changing the density by a factor of 2 only.

In conclusion, we have investigated the spin-orbit stiff-
ness Sso of a model spin-polarized electron gas confined
in a CdMnTe quantum well. From first-principles calcu-
lations we showed that Sso = Ssw, where Ssw is the spin-
wave stiffness. This result means that the electron gas
responds in the same manner to a kinetic or spin-orbit
disturbance of its ground state. We further employed
electronic Raman scattering on a diluted magnetic quan-
tum well of CdMnTe, and used optical gating to study
the density dependence of Sso and test our theory. We
demonstrated the tuning of Sso, which governs the mag-
nitude of the spin-orbit field acting of the spin wave, by
a factor of 3. In the perspective of a spin-wave based
transistor10,11, our findings thus suggest the ability to ef-
ficiently switch such transistor by tuning the spin-orbit
stiffness through the electron density.
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