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Abstract We describe a new approach allowing for

systematic causal attribution of weather and climate-

related events, in near-real time. The method is pur-

posely designed to facilitate its implementation at me-

teorological centers by relying on data treatments that

are routinely performed when numerically forecasting

the weather. Namely, we show that causal attribution

can be obtained as a by-product of so-called data as-
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similation procedures that are run on a daily basis

to update the meteorological model with new atmo-

spheric observations; hence, the proposed methodology

can take advantage of the powerful computational and

observational capacity of weather forecasting centers.

We explain the theoretical rationale of this approach

and sketch the most prominent features of a “data as-

similation based detection and attribution” (DADA)

procedure. The proposal is illustrated in the context

of the classical three-variable Lorenz model with ad-

ditional forcing. Several theoretical and practical re-

search questions that need to be addressed to make the

proposal readily operational within weather forecasting

centers are finally laid out.

Keywords Event attribution · Data assimilation ·
Causality theory · Modified Lorenz model

1 Background and motivation

A significant and growing part of climate research stud-

ies the causal links between climate forcings and ob-

served responses. This part has been consolidated into

a research topic known as detection and attribution

(D&A). The D&A community has increasingly been

faced with the challenge of generating causal informa-

tion about episodes of extreme weather or unusual cli-

mate conditions. This challenge arises from the needs

for public dissemination, litigation in a legal context,

adaptation to climate change or simply improvement

of the science associated with these events (Stott et al.,

2015).

The approach widely used so far to in D&A was in-

troduced one decade ago by M.R. Allen and colleagues

(Allen, 2003; Stone and Allen, 2005) and it originates

from best practices in epidemiology (Greenland and
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Rothman, 1998). In this approach, one evaluates the

extent to which a given external climate forcing —

such as solar irradiation, greenhouse gas (GHG) emis-

sions, ozone or aerosol concentrations — has changed

the probability of occurrence of an event of interest.

For this purpose, one compares the probability of

occurrence of said event in an ensemble of model sim-

ulations representing the observed climatic conditions,

which simulates the actual occurrence probability in the

real world, with the occurrence probability of the same

event in a parallel ensemble of model simulations, which

represent an alternative world. The former world is re-

ferred to as factual, the latter as counterfactual: it is

the latter that might have occurred had the forcing of

interest been absent.

Denoting by p1 and p0 the probabilities of the event

occurring in the factual world and in the counterfactual

world respectively, the so-called fraction of attributable

risk (FAR) is then defined as FAR= 1−p0/p1. The FAR

has long been interpreted as the fraction of the likeli-

hood of an event which is attributable to the external

forcing. Over the past decade, most causal claims have

been following from the FAR and its uncertainty, re-

sulting in statements such as “It is very likely that over

half the risk of European summer temperature anoma-

lies exceeding a threshold of 1.6◦C is attributable to hu-

man influence.” (Stott et al., 2004).

Hannart et al. (2015) have recently shown that, un-

der realistic assumptions, the FAR may also be inter-

preted as the so-called probability of necessary causation

(PN) associated — in a complete and self-consistent

theory of causality (Pearl, 2000) — with the causal link

between the forcing and the event. The FAR thus cor-

responds to only one of the two facets of causality in

such a theory, while the probability of sufficient causa-

tion (PS) is its second facet.

In this setting,

PN = 1− p0
p1
, (1a)

PS = 1− 1− p1
1− p0

, (1b)

PNS = p1 − p0 , (1c)

where PNS is the probability of necessary and sufficient

causation.

Pearl (2000) provides rigorous definitions of these

three concepts, as well as a detailed discussion of their

meanings and implications. It can be seen from Eqs.

(1) that causal attribution requires to evaluate the two

probabilities, p0 and p1, and not just one of them. Doing

so is, therefore, the central methodological question of

D&A for weather and climate-related events.

So far, most case studies have used large ensembles

of climate model simulations in order to estimate p1 and

p0 based on a variety of methods, in particular based

on statistical extreme value theory (EVT). However,

this general approach has a very high computational

cost and is difficult to implement in a timely and sys-

tematic way. As recognized by Stott et al. (2015), this

remains an open problem: “the overarching challenge

for the community is to move beyond research-mode

case studies and to develop systems that can deliver

regular, reliable and timely assessments in the after-

math of notable weather and climate-related events,

typically in the weeks or months following (and not

many years later as is the case with some research-

mode studies)”. For instance, the weather@home system

(Massey et al., 2014), or the system proposed by Chris-

tidis et al. (2013), aim at meeting those requirements

within the conventional ensemble-based approach. On-

going research aiming towards the development of such

a system also include the CASCADE project (Cali-

brated and Systematic Characterization, Attribution

and Detection of Extremes, U.S. Department of Energy,

Regional and Global Climate Modeling program).

The purpose of this article is to introduce a new

methodological approach that addresses the latter over-

arching operational challenge. Our proposal relies on

a class of powerful statistical methods for interfacing

high-dimensional models with large observational datasets.

This class of methods originates from the field of weather

forecasting and is referred to as data assimilation (DA)

(Bengtsson et al., 1981; Ghil and Malanotte-Rizzoli,

1991; Talagrand, 1997).

Section 2 explains the rationale of the approach pro-

posed herein, presents a brief overview of DA, and out-

lines the most prominent technical features of a “data

assimilation–based detection and attribution” (DADA)

approach. Section 3 illustrates the proposal by imple-

menting it on a version of the classical Lorenz convec-

tion model (Lorenz, 1963, L63 hereafter) subject to an

additional constant force. Finally, in Section 4, we dis-

cuss the main strengths and limitations of the DADA

approach, and highlight several theoretical and prac-

tical research questions that need to be addressed to

make it potentially operational within weather forecast-

ing centers in a near future.

2 Method description

2.1 General rationale

The rationale for addressing causal attribution of climate-

related events based on DA concepts and methods can
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be outlined in three steps. To do so briefly and clearly,

we need to introduce some notation.

Let yt denote the d-dimensional vector of observa-

tions at discrete times {t = 0, 1, . . . , T}. Here, y = {yt :

0 ≤ t ≤ T} corresponds, for instance, to the full set

of all available meteorological observations over a time

interval covering the event of interest, no matter the

diversity and source of the data; typically, the latter in-

clude ground station networks, satellite measurements,

ship data, and so on, cf. (Bengtsson et al., 1981, Preface,

Fig. 1) or (Ghil and Malanotte-Rizzoli, 1991, Fig. 1).

In the present probabilistic D&A context, the observed

trajectory y is viewed as a realization of a random vari-

able denoted Y = {Yt : 0 ≤ t ≤ T}, i.e. there exists

an ω ∈ Ω such that Y(ω) = y — where Ω denotes the

sample space of all possible outcomes and encompasses

observational error, as well as internal variability.

In event attribution studies, it is recognized that

defining the occurrence of an event, i.e. selecting a sub-

set F ⊂ Ω, depends on a rather arbitrary choice. Yet

this choice has been shown to greatly affect causal con-

clusions (Hannart et al., 2015). For instance, a generic

and fairly loose event definition is arguably prone to

yield a low threshold of evidence with respect to both

necessary and sufficient causality while, on the other

hand, a tighter and more specific event definition is

prone to yield a stringent threshold for necessary causal-

ity but a reduced one for sufficient causality.

Indeed, it is quite intuitive that many different fac-

tors should usually be necessary to trigger the occur-

rence of a highly specific event and conversely, that no

single factor will ever hold as a sufficient explanation

thereof. For the class of unusual events at stake in D&A,
where both p0 and p1 are very small, we arguably lean

towards specific definitions that inherently result in few

sufficient causal factors or none. This conclusion imme-

diately follows from Eq. (1b), which yields PS ' 0 when

both p0 and p1 are very small.

Usually, an event occurrence is defined in D&A based

on an ad hoc scalar index φ(Y) exceeding a threshold

u, i.e. pi = P (φ(Y) ≥ u); from now on, we associate

i = 0 with the counterfactual and i = 1 with the fac-

tual world. While this definition may be already quite

restrictive for u large, it is a defensible strategy to re-

strict the event definition even further: this may slightly

reduce an already negligible PS but in return may po-

tentially increase PN by a greater amount; one thus

expects to gain more than one loses in this trade-off. In

particular, this will be the case if additional features,

not accounted for in φ(Y), can be identified that will al-

low one to further discriminate between the two worlds.

In any case, a central element of our proposal is

to follow this strategy in its simplest possible form, by

using the tightest occurrence definition i.e. the singleton

{ω ∈ Ω | Y(ω) = y}. Note that the latter singleton has

probability zero in both worlds because the probability

density function (PDF) f(Y(ω)) of Y can be assumed,

in general, to be continuous, i.e. to contain no singular

δ-functions.

Consider, however, the paradox that arises from tak-

ing the limit h→ 0 for the set {ω ∈ Ω | ‖Y(ω)− y‖ ≤
h}. This set has non-zero probability for h arbitrarily

small but positive while, in the limit,

PN = 1− f0(y)

f1(y)
, PS = 0, (2)

where fi denotes the PDF of Y in world i. Equation (2)

thus shows that, while the probabilities of occurrence

of our singleton event in both worlds are null, its asso-

ciated probability of necessary causation is still positive

— but its probability of sufficient causation is always

zero. Our proposal thus intentionally sacrifices evidence

of sufficiency, in the hope of maximizing the evidence

of necessity.

Our betting on the singleton set is thus justifiable

already based on the above theoretical considerations.

This choice, moreover, is motivated by having a highly

simplifying implication from a practical standpoint. Eval-

uating the PDF of Y at a single point Y = y is in-

deed, under many circumstances, considerably easier

than evaluating the probability P (φ(Y) ≥ u) required

in the conventional approach.

To illustrate this point, let Y be for instance a d-

variate autoregressive process defined by Yt+1 = AYt+

wt, where wt is an i.i.d. noise having known PDF g(·)
and where A has the usual properties that insure sta-

tionarity (Gardiner, 2004). We then have:

f(y) =

T∏
t=1

g(yt −Ayt−1)π(y0) , (3a)

P (φ(Y) ≥ u) =

∫
φ(y)≥u

T∏
t=1

g(yt −Ayt−1)

× π(y0)dy1,0 . . . dyd,0 . . . dyd,T ,

(3b)

with π(·) the prior PDF on the initial state Y0. Equa-

tion (3a) shows that f(y) can be easily computed us-

ing a closed-form expression, while P (φ(Y) ≥ u) in

Eq. (3b) is an integral on d × T + 1 dimensions which

must instead be evaluated by using, for instance, a com-

putationally quite costly Monte-Carlo (MC) simulation.

Figure 1 illustrates this situation by showing the

details of the latter MC evaluation for a scalar AR(1)

process (panel a, when based on a standard EVT appli-

cation, as well as its associated accuracy (panels b and

c), and the computational cost as the MC sample size
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n varies (panel d); the latter cost is much larger than

the one of applying the DADA approach. This simple

example confirms the large computational discrepancy

between the two approaches.

The reason for the discrepancy is quite simple: eval-

uating the conventional probability requires integrating

a PDF over a predefined domain, instead of a one-off

evaluation at a single point. Because both the domain

of integration and the PDF may have potentially com-

plex shapes, one cannot expect, in general, that the

requisite integral be amenable to analytical treatment.

Hence numerical integration is the default option: no

matter how efficient an integration scheme one applies,

it will require evaluating the PDF at many points and is

thus as many times more costly computationally than

just evaluating f(y) at a single point.

This being said, it is not always straightforward to

obtain the PDF of Y. This is the case, for instance, for

the wide class of statistical models referred to as Hidden

Markov Models (HMMs); in fact, HMMs [e.g., (Ihler et

al., 2007, and references therein)] are often relevant in

the present context to describe Y.

More precisely, assume that the event of interest

can be represented by a large numerical model which

N -dimensional state vector at time t is denoted Xt. The

dynamics of the state vector is given by:

Xt+1 = M(Xt,Ft) + vt , (4)

where M is the model operator, vt is a stochastic term

representing modeling error, and Ft is a known, pre-

scribed forcing that is external to the model. In the

present context, it is precisely the forcing term F =

(Ft)
T
t=0 that is under causal scrutiny. Further, assume

that our observations Yt can be mapped to the state

vector Xt at any time t, i.e.

Yt = H(Xt) + wt (5)

where H is the so-called observation or forward operator

and wt is a stochastic term representing observational

error.

Denoting by F(i) the value of the forcing in the world

i, using the shorthand Mi(xt) = M(xt,F
(i)
t ) and denot-

ing by Mi the HMM associated with H and Mi, the

problem of interest here is thus to derive:

f0(y) = f(y | M0) and f1(y) = f(y | M1) , (6)

where f0(y) and f1(y) should be interpreted as the like-

lihoods of the observation y in the counterfactual and

factual models, respectively.

Finally getting to our point, one can view DA meth-

ods as a class of inference methods designed for the

above HMM setting. Actually, Ihler et al. (2007) al-

ready formulated both DA and HMMs within the broader

class of graphical models for statistical inference.

While inferring the unknown state vector trajectory

X, given the observed trajectory y, is clearly the main

focus of DA, the likelihood f(y) can also be obtained

as a side product thereof, as we will immediately clarify

below. Therefore, with DA able to derive the two like-

lihoods f0(y) and f1(y), and the latter two being the

keys to causal attribution in our approach, one should

be capable of moving towards near-real-time, system-

atic causal attribution of weather- and climate-related

events.

2.2 Brief overview of data assimilation

DA was initially developed in the context of numerical

weather forecasting, in order to initialize the model’s

state variables X based on observations y that are in-

complete, diverse in nature, unevenly distributed in space

and time, do not necessarily match the model’s state

variables, and are contaminated by measurement error

(Bengtsson et al., 1981; Talagrand, 1997). Over the past

decades, those methods have grown out of their origi-

nal application field to reach a wide variety of topics in

geophysics such as oceanography (Ghil and Malanotte-

Rizzoli, 1991), atmospheric chemistry, geomagnetism,

hydrology, and space physics, among many other areas

(Robert et al., 2006; Cosme et al., 2010; Kondrashov et

al., 2011; Bocquet, 2012; Martin et al., 2014).

DA is already playing an increasing role in the cli-

mate sciences, having being applied, for instance, to

initialize a climate model for seasonal or decadal pre-

diction (Balmaseda et al., 2009), to constrain a climate

model’s parameters (Kondrashov et al., 2008; Ruiz et

al., 2013), to infer carbon cycle fluxes from atmospheric

concentrations (Chevallier, 2013), or to reconstruct pa-

leoclimatic fields out of sparse and indirect observations

(Bhend et al., 2012; Roques et al., 2014). In the con-

text of D&A, Lee et al. (2008) actually tested a DA-like

approach to include the effects of the various forcings

over the last millennium, in addition to other paleocli-

mate proxy data, in combined climate reconstruction

and detection analysis. The present work thus follows

and further strengthens a general trend in climate stud-

ies.

Methodologically speaking, DA methods are tradi-

tionally grouped into two categories: sequential and vari-

ational (Ide et al., 1997, and references therein). In

the sequential approach (Ghil et al., 1981), the state

estimate and a suitable estimate of the associated er-

ror covariance matrix are propagated in time until new

observations become available and are used to update
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the state estimate. In practice, the evolution of the

system of interest is retrieved — like in earlier, typi-

cally much smaller-dimensional applications (Kalman,

1960; Jazwinski, 1970; Gelb, 1974) — through a se-

quence of prediction and analysis steps. In the varia-

tional approach, on the other hand, one seeks the sys-

tem trajectory that best fits all the observations dis-

tributed within a given time interval (Le Dimet and

Talagrand, 1986; Ide et al., 1997; Bocquet, 2012). Here,

we concentrate on the sequential approach, but the

two approaches are complementary and the choice of

method depends on the specifics of the problem at hand

(Ghil and Malanotte-Rizzoli, 1991; Ide et al., 1997; Ta-

lagrand, 1997).

Abundant literature is available on DA and on Kalman-

type filters. Kalman (1960) first presented the solution

in discrete time for the case in which both the dynamic

evolution operator M in Eq. 4 and the observation oper-

ator H in Eq. 5 are linear, and the errors are Gaussian.

Under these assumptions, the state-estimation problem

for the system given by Eqs. (5, 4) has an exact solution

given by the following sequential Kalman filter (KF)

equations:

xat = xft + K(yt −Hxft ) , (7a)

Pa
t = (I−KH)Pf

t , (7b)

xft+1 = Mxat , (7c)

Pf
t+1 = MPa

tM
′ + Q . (7d)

where ′ denotes the transpose operation. Here Eqs. (7a)

and (7b) are referred to as the analysis step and de-

noted by a superscript a, while the forecast step is

given by Eqs. (7c) and (7d), and is denoted by a super-

script f (Ide et al., 1997). The vector xat and the matrix

Pa
t are the mean and covariance of Xt conditional on

(Y1, ...,Yt) = (y1, ...,yt); K = Pf
t H
′(HPf

t H
′ + R)−1

is the so-called Kalman gain matrix; while Q and R are

the covariances associated with vt and wt, respectively.

Following Wiener (1949), one distinguishes between fil-

tering, in which xat and Pa
t are conditioned only on

the previous and current observations (y0,...,yt), and

smoothing, in which they are conditioned on the entire

sequence, 0 ≤ t ≤ T . Furthermore, the sequential algo-

rithm needs to be initialized at time t = 0 with xf0 and

Pf
0 , which thus represent the a priori mean and covari-

ance of X0, respectively, and have to be prescribed by

the user.

The likelihood function f(y), which is of primary

importance for DADA, also has an exact expression

under the above linearity and Gaussianity assumptions

(Tandeo et al., 2014), given by:

f(y) =

T∏
t=0

(2π)−
d
2 |Σt|−

1
2

× exp

{
−1

2
(yt −Hxft )′Σ−1t (yt −Hxft )

}
,

(8)

with Σt = HPf
t H
′ + R. The proof of Eq. (8) is pro-

vided in the Appendix, and f(y) is typically computed

by taking the logarithm of this equation to turn the

product on the right-hand side into a sum.

It follows from the above that, once the observations

yt have been assimilated on the interval 0 ≤ t ≤ T , the

necessary ingredients xft and Pf
t in Eq. 8 are available

and thus calculating f(y) is both straightforward and

computationally inexpensive. The fundamental connec-

tions between this calculation, the HMM context, and

Bayes theorem are further clarified in the Appendix.

Many difficulties arise in applying the simple ideas

outlined here to geophysical models, which are typically

nonlinear, have non-Gaussian errors and are huge in

size (Ghil and Malanotte-Rizzoli, 1991). Most of these

difficulties have been addressed by improving both se-

quential and variational methods in several ingenious

ways (Bocquet et al., 2010; Kondrashov et al., 2011).

In particular, the Ensemble Kalman Filter (EnKF;

Evensen, 2003)— in which the uncertainty propagation

is evaluated by using a finite-size ensemble of trajec-

tories — is now operational in numerical weather and

oceanic prediction centers worldwide; see e.g. Sakov et

al. (2013); Houtekamer et al. (2014). The EnKF is a

convenient approximate solution to the filtering prob-

lem in a nonlinear, large-dimensional context. We sim-

ply note here that it can also be applied to obtain an ap-

proximation of the likelihood f(y) by substituting the

approximate sequence {(x̂ft , P̂
f
t ) : t = 0, . . . , T} that

the EnKF produces into Eq. 8. This strategy is illus-

trated immediately below in the context of the L63 con-

vection model subject to an additional constant force.

3 Implementation within the modified L63

model

3.1 The modified model and its two worlds

A simple modification (Palmer, 1999) of the L63 sys-

tem (Lorenz, 1963) has been extensively used for the

purpose of illustrating methodological developments in

both DA and D&A [e.g. (Carrassi and Vannitsem, 2010;

Stone and Allen, 2005)]. In the nonlinear, coupled sys-

tem of three ordinary differential equations (ODEs) for
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x, y and z below,

dx

dt
= σ(y − x) + λi cos θi ,

dy

dt
= ρx− y − xz + λi sin θi ,

dz

dt
= xy − βz

(9)

the time-constant forcing terms in the x- and y-equation

represent, in fact, an addition to the forcing hidden in

the original L63 model. The latter forcing is revealed by

a well-known linear change of variables, in which x and

y are left unchanged and z → z+ ρ+σ (Lorenz, 1963).

In the new variables, the model of Eq. (9) will take the

canonical form of a forced-dissipative system (Ghil and

Childress, 1987, Sec. 5.4), with an extra forcing term

−β(ρ + σ) in the z-equation, just like the original L63

model.

Here λi is the intensity of the additional forcing and

θi is its direction in world i = 0, 1: i.e., λ0 = 0 repre-

sents a counterfactual world with no additional forcing,

while λ1 6= 0. We take the parameters (σ, ρ, β) to equal

their usual values (10, 28, 8/3) that yield the well-known

chaotic behavior, and the (nondimensional) time unit t

is interpreted as equaling days.

The ODE system given by (9) is discretized by using

∆t = 0.01 and t refers hereafter to the number of time

increments ∆t. This system is then turned into one of

stochastic difference equations [S∆Es: Arnold (2003);

Chekroun et al. (2011)] by adding an error term vt
assumed to be Gaussian and centered with covariance

Q = σ2
Q I, where I is the 3×3 identity matrix. Further-

more, we assume that all three coordinates (x, y, z) of

the state vector are observed, i.e. that H = I, and that

the measurement error term wt is also Gaussian and

centered, with covariance R = σ2
R I. Recalling the no-

tation introduced in Sec 2a, we associate a label ω ∈ Ω
with each realization of the pair of random processes

(vt,wt) that drive the model given by Eq. (9) and per-

turb its observations, respectively.

The S∆E system defined above is stationary, i.e.

the PDF of the state vector xt depends neither on t

nor on x0 after a sufficiently long time t. This PDF can

be obtained as the (numerical) solution of the Fokker-

Planck equation associated with Eq. (9), and it is the

mean over Ω of the sample measures obtained for each

realization ω of the noises vt and wt (Chekroun et al.,

2011, and references therein). Each sample measure is

supported on a random attractor that may have very

fine structure and be time-dependent (Chekroun et al.,

2011, Figs. 1–3 and supplementary material), but the

PDF is supported smoothly, in the counterfactual world

in which λ0 = 0, on a “thickened” version of the fairly

well-known strange attractor of the original L63 model.

In the factual world in which λ1 6= 0, the nature

of the PDF is quite similar, but its exact shape is af-

fected by the parameters (λ1, θ1) of the forcing. In both

worlds, the PDFs can be estimated, for instance, by us-

ing kernel density estimation applied to ensembles of

simulations obtained for either forcing. In Figs. 2a,b, we

plot the projections of both PDFs onto the plane associ-

ated with the greatest variance in the factual PDF. The

difference between the two PDFs is shown in Fig. 2c;

it emphasizes the existence of an area of the state space

(represented in white), which is more likely to be reached

in the factual world than in the counterfactual one.

Next, we define an event to occur for the sequence

{yt : t = 0, . . . , T} if the scalar product φ̂′yt between

the unit vector φ̂ in the direction φ and yt, i.e. the pro-

jection of yt onto the direction φ, exceeds u for some

0 ≤ t ≤ T , where φ is a specified direction and u is

a threshold chosen based on φ so that p1 = 0.01. Fig-

ure 2d shows a selection of sequences from both worlds

in which an event did occur, where φ was chosen to be

the leading direction in the projection plane.

For this choice of φ, the trajectories associated with

event occurrence happen to all lie in the area of the

state space which is more likely to be reached in the

factual world than in the counterfactual one. Accord-

ingly, the probability of the event in the former is found

to be higher than in the latter, i.e. p1 > p0, and the oc-

currence of an event {max{0≤t≤T} φ
′yt ≥ u} is thereby

informative from a causal perspective, i.e. the associ-

ated probabilities of necessary and sufficient causation

are positive.

Figure 2d also shows that the trajectories associ-

ated with the event in the two worlds — counterfactual

(green) and factual (red) –- appear to have slightly dis-

tinct features: the red trajectories are shifted towards

higher values in the second direction, of highest-but-one

variance. Such distinctions might help discriminate fur-

ther between the two worlds in the DADA framework.

3.2 DADA for the modified L63 model

The DADA procedure is illustrated in Fig. 3. We plot in

panel (a) a trajectory of the state vector xt simulated

under factual conditions, i.e. in the presence of the addi-

tional forcing (black solid line), along with the observa-

tions {yt : 0 ≤ t ≤ T} (gray dots), with T = 400. The

EnKF is used to assimilate these observations into a

factual model (i = 1) that thus matches the true model

M = M1 = M(λ1, θ1) used for the simulation: a recon-

structed trajectory is obtained from the corresponding

analyses xat (red solid line in panel (a)), cf. Eqs. (7),

and the likelihoods f1(yt) (red solid line in panel (c))

are obtained by application of Eq. (8), respectively.

Next, the assimilation is repeated in the counter-

factual model (i = 0, i.e. λ = 0) to obtain a second
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analysis of the trajectory, from the same observations;

see green solid line in panel (a), for T = 400. The corre-

sponding likelihoods f0(yt) are shown in panel (c) as a

green solid line. Comparing the trajectories of the two

analyses in Fig. 3a shows that, even though the coun-

terfactual analysis (green line) uses the same data as

the factual analysis (red line), the former lies closer to

the true trajectory (black line).

The local discrepancies between the trajectories es-

timated in the two worlds appear to be rather small

at first glance, cf. panel (a), and so are the instanta-

neous differences between the associated factors on the

right-hand side of Eq. (8); the latter are shown as gray

rectangles in panel (c) of the figure. Still, the evidence

in favor of the factual world accumulates as the time t

over which the two trajectories differ, albeit by a small

amount, lengthens. This cumulative difference in evi-

dence, log f0(yt)− log f1(yt), is reflected by a growing

gap between the two curves, red and green, in panel

(c), and by an associated high mean growth over time

of the probability PN of necessary causation, cf. the

black solid line in panel (d).

In order to evaluate more systematically its perfor-

mance and robustness compared to the conventional

FAR approach, the DADA procedure was applied to

a large sample of sequences yt of length T = 20 sim-

ulated under diverse conditions. The sample explored

all possible combinations of the triplet of parameters

(λ1, σQ, σR), with ten equidistributed values each, for a

total of 103 combinations; the ranges were 0 ≤ λ1 ≤ 40,

0.1 ≤ σQ ≤ 0.5 and 0.1 ≤ σR ≤ 1.0, respectively, with

θ1 = −140◦. For each combination of (λ1, σQ, σR), ten

directions φ were randomly generated and u was de-

fined based on φ as in Sec. 3a above, so as to achieve

p1 ≥ 0.01.

In order to estimate the corresponding conventional

probabilities p0 and p1 of the associated event defined

as {max{0≤t≤T} φ
′yt ≥ u}, n = 50 000 sequences yt

of length T = 20 were simulated, by using a single se-

quence of length nT = 106 and splitting it into n equal

segments. Probabilities p0 and p1 were then directly

estimated from empirical frequencies because the high

value of n here did not require the use of the EVT ex-

trapolation normally used for smaller n.

For each quintuplet of parameter values

(λ1, σQ, σR;φ, u), one hundred sequences of observa-

tions {yt : 0, . . . , T = 20} were generated with a pro-

portion p1/(p1 + p0) being simulated from the factual

world and a proportion p0/(p1 + p0) from the counter-

factual one. All sequences were treated with the DADA

procedure — by applying DA to the synthetic observa-

tions according to Eqs. (7a)–(7d) — and then Eq. (8)

to obtain f0(y) and f1(y) from the reconstructed tra-

jectories. The a priori mean and covariance xf0 and Pf
0

required as inputs to the DADA procedure were those

associated with the PDF of the attractor, given the forc-

ing conditions (λ1 ∈ [0, 40], θ1 = −140◦) assumed for

each assimilation experiment. As a result, two prob-

abilities PN of necessity are finally obtained for each

sequence yt, PNp = 1− p0/p1 for the conventional ap-

proach and PNf = 1 − f0(y)/f1(y) for the DADA ap-

proach.

We next wish to evaluate under various conditions

how well the two probabilities PNp and PNf perform

with respect to discriminating between the factual and

counterfactual forcings. Consider a simple discrimina-

tion rule whereby a trajectory yt is identified as factual

for PN exceeding a given threshold, and as counterfac-

tual otherwise. The so-called receiver operating charac-

teristic (ROC) curve plots the rate of true positives as

a function of the rate of false positives obtained when

varying the threshold in a binary classification scheme

from 0 to 1; it thus gives an overall visual representation

of the skill of our PN as a discriminative score.

The Gini (1921) index G was originally introduced

as a measure of statistical dispersion intended to sum-

marize the information contained in the Lorenz (1905)

curve that represents the income distribution of a na-

tion’s residents; G may be viewed, though, more gen-

erally as a metric summarizing the dispersion of any

smooth curve that starts at the origin and ends at the

point (1, 1) with respect to the diagonal of the corre-

sponding square. In particular, we use G here to sum-

marize into a single scalar the ROC curve, which ranges

from 0 for random discrimination to 1 for perfect dis-

crimination.

Figure 4a shows ROC curves obtained over the en-

tire sample of n = 50 000 sequences: they correspond to

G = 0.35 for the conventional method and to G = 0.82

for the DADA method, i.e. the overall performance gap

is more than twofold. As expected, the performance of

both methods is nil for λ1 = 0 and it is very sensitive

to the intensity of the forcing, cf. Fig. 4b.

Furthermore, the skill of the DADA method is boosted

when decreasing the level of model error, cf. Fig. 4c; this

is an expected result, since DA becomes more reliable

when the model is more accurate, and when it is known

to be so. Ultimately, under perfect model conditions,

i.e. as σQ → 0, DADA reaches perfect discriminative

power, with G→ 1, no matter how small, but still posi-

tive, the forcing is; see Fig. 4d. On the other hand, the

level of observational error σR appears to have but a

limited effect on DADA performance for the range of

values considered, cf. Fig. 4e.

Finally, Fig. 4f shows that both methods perform

better when the contrast between p0 and p1 is strong,



8 A. Hannart et al.

but the latter does not influence the gap between the

two methods, which remains nearly constant. This con-

stant gap thus appears to quantify the additional power

resulting from the extra discriminative features that the

PDF f(y) is able to capture on top of those associated

with the probability P (φ(y) ≥ u).

4 Discussion and conclusions

Hannart et al. (2015) have relied on the causality the-

ory of Pearl (2000) to show that the ratio between

the factual evidence f1(y) and the counterfactual evi-

dence f0(y) is important in studying causal attribution

of weather- and climate-related events. In this paper,

we first described data assimilation (DA) methods and

then demonstrated that they are well suited for deriv-

ing f0(y) and f1(y) from trajectories in the factual and

the counterfactual worlds, respectively. Besides, these

methods offer the key practical advantage of being al-

ready up-and-running in near real time at meteorolog-

ical centers.

Combining these two sets of considerations, theo-

retical and practical, opens a novel route towards near

real time, systematic causal attribution of weather- and

climate-related events, thereby addressing a key chal-

lenge in the field of detection and attribution (D&A)

at present (Stott et al., 2015).

4.1 Theoretical considerations

Implementing the DA for D&A (DADA) approach in

the context of the L63 model in Section 3 allowed for a

detailed step-by-step illustration of our methodological

proposal. It also provided a basic test for an initial per-

formance assessment, which showed an improved level

of discriminating power with respect to the conven-

tional approach outlined in Section 1. These results

are promising, and their promise is easy to understand,

given the fact that the DADA approach leverages the

available information on the entire trajectory y, as op-

posed to the single specific feature 1φ(y)≥u in the con-

ventional approach.

It is important, though, to stress that the term “per-

formance” here should be considered with caution: im-

proving discriminatory performance may or may not be

a desirable outcome, depending on the causal question

being asked. Hannart et al. (2015) have shown that the

causal question being formulated reflects the subjective

interests of a particular class of end-users, and that the

formulation itself may dramatically affect the answer.

For example, the question “did anthropogenic CO2

emissions cause the heatwave observed over Argentina

during January 2014?” has been traditionally treated

by defining a “heatwave” in terms of a predefined tem-

perature index reaching a predefined threshold, i.e., by

a singular index exceeding a singular threshold. This

class of questions matters for instance in the context of

insurance disbursements, where a financial compensa-

tion may typically be triggered based on such an index

exceedance. In this situation, the additional discrimina-

tory power of DADA is meaningless because the DADA

computation does not address the question at stake:

there is simply no alternative to computing the proba-

bilities p0 and p1 of the index exceeding the threshold.

However, if the question is formulated instead as

“did anthropogenic CO2 emissions cause the atmospheric

conditions observed over Argentina during January 2014?”

— i.e., without specifying which feature of the observed

sequence is most important — then improving discrim-

ination makes perfect sense and DADA becomes fully

relevant. Furthermore, DADA is still fully relevant even

if the question is formulated more specifically as “did

anthropogenic CO2 emissions cause the damages gen-

erated in Argentina by the atmospheric conditions of

January 2014?,” provided that is, that a model relat-

ing atmospheric observations to damages at every time

step t along the trajectory of the physical model used

in the assimilation is available and can be integrated

into the observation operator H.

On the other hand, the results of Section 3 should

also be considered with caution simply because the L63

testbed obviously differs in many respects from the real

situation envisioned for future applications, both in terms

of model dimension n and observation dimension d: in

practice n will be very large and d� n, while here we

took d = n = 3.

In particular, choosing a highly idealized, climato-

logical a priori distribution on the initial condition π(x0)

does not raise any difficulty under the tested conditions

nor does it influence significantly the outcome of the

procedure (not shown). The choice of π(x0), however,

may be an important problem in practice, when d� n,

and lead to potentially spurious results.

As a consequence, it may be both necessary and use-

ful to further constrain the so-called background PDF

π(x0) by using the forecasts originating from τ previous

assimilation cycles, thus following the ideas of lagged-

averaged forecasting (Hoffman and Kalnay, 1983; Dalcher

et al., 1988). The evidence thus obtained, though, will

then also depend on previous observations over the “ini-

tialization” window [−τ, ...,−1] — i.e., it will no longer

represent exclusively the desired evidence f(y). Besides,

choosing τ optimally to constrain the initial background

PDF in a satisfactory manner, while at the same time

limiting the latter unwanted dependence on previous
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observations, is a challenging question that needs to be

adressed.

More generally, the problem of evaluating the ev-

idence f(y) is not new in the HMM and DA litera-

ture; see, for instance, Baum et al. (1970); Hürzeler and

Künsch (2001); Pitt (2002) and Kantas et al. (2009).

Various algorithms are thus available to carry out this

evaluation, depending on a number of key assumptions

— such as lack of Gaussianity or linearity — and on the

inferential setting chosen, e.g. particle filtering. These

algorithms may provide accurate and effective solutions

to the above problem, as well as improved alternatives

to the Gaussian and linear approximation of Eq. (8),

since the latter may not be sufficiently accurate for suc-

cesfully implementing the DADA approach under real-

istic conditions.

4.2 Practical considerations

While we have shown here that the proposal of using

DADA for event attributions has intellectual merit, its

main strength lies, in our view, in down-to-earth cost

considerations. By design, the DADA approach allows

one to piggyback at a low marginal cost on the large

and powerful infrastructures already in place at sev-

eral meteorological centers, in terms of both hardware

and personnel. These centers are capable of process-

ing massive amounts of observational data with high-

throughput pipelines on the world’s largest computa-

tional platforms, as opposed to requiring the design,

set-up and maintenance of a new and large, D&A-specific

infrastructure to collect observations and generate —

under near real time constraints — the many model

simulations required by the conventional approach re-

called in Section 1.

Taking a step back, it is useful to examine our pro-

posal within the wider context of the emergence of so-

called climate services. It is widely recognized that ex-

tending the scope of activity of meteorological centers

from being “monoline” weather forecasting providers

to becoming “multiline” climate services providers – en-

compassing, for instance, weather forecasting and weather

event attribution as two service lines among several oth-

ers – is a relevant strategic option (Hewitt et al., 2012).

Such a strategy may foster the timely and cost-efficient

emergence of the latter services by building upon tech-

nological and infrastructure synergies with the former.

For these reasons, our proposal is particularly relevant

for, and could contribute to, the implementation of the

strategic option just outlined.

This being said, DADA can very well serve as a

method for near real time event attribution even for hy-

pothetical climate services providers that focus uniquely

or mainly on longer time scales, beyond a month, a sea-

son or a year. In such a context, DADA may allow for

the assimilation of a broader range of observations, and

in particular of ocean observations; it may, in fact, be

important to include the latter in causal analysis when

the event occurrence under scrutiny is defined over a

sufficiently large time window.
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Appendix: Derivation of the model evidence

In this appendix, we outline the derivation of model

evidence within a general Bayesian framework, and we

apply the latter to the narrower KF context to obtain

Eq. (8). Consider two consecutive cycles of a DA run,

the first with state vector xt and observation vector yt
at instant t and the subsequent one with state vector

xt+1 and observation vector yt+1 at instant t + 1. We

plan to find a tractable expression for the model evi-

dence p(yt,yt+1).

The model evidence provided by the full sequence of

observations y = (y0, ...,yT ) will be inferred by recur-

sion, using the results of this two-observation setting.

In order to decouple the two cycles, one first has to spell

out the Bayesian inference p(yt,yt+1) = p(yt)p(yt+1|yt).
We look for a tractable expression for p(yt+1|yt) by fur-

ther introducing the states xt+1 and xt as intermediate

random variables:

p(yt+1|yt) =

∫
xt+1

p(yt+1|yt,xt+1)p(xt+1|yt) dxt+1

=

∫
xt+1

p(yt+1|xt+1)

×
{∫

xt

p(xt+1|xt) p(xt|yt) dxt

}
dxt+1 ,

(10)

where p(yt+1|xt+1) is the likelihood of the observation

vector yt+1 conditional on the state vector xt+1 and it

is known from Eq. (5).

The conditional PDF p(xt|yt) of xt on yt at instant

t — which appears on the right-hand side of the above

equation — is referred to as the analysis PDF in the DA

literature, where it is denoted by a superscript a (Ide

et al., 1997), and it constitutes the main DA output.

The integral
∫
xt
p(xt+1|xt)p(xt|yt) dxt = p(xt+1|yt), in

which p(xt+1|xt) is known from the model dynamics

given by Eq. (4), propagates this analysis PDF further

in time, to instant t + 1. Hence, the result of this in-

tegration coincides with the forecast PDF, denoted by
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superscript f in the DA literature (Ide et al., 1997).

It follows that this decomposition is tractable using a

DA scheme that is able to estimate the conditional and

forecast PDFs.

Next, let us apply the general Bayesian inference

(10) to the case in which all the PDFs involved are

Gaussian; this requires, in turn, that both the dynam-

ics and observation models M and H be linear, and

that the input statistics all be Gaussian. In this case,

the Kalman filter allows for the exact computation of

the PDFs mentioned in Eq. (10), which turn out to be

Gaussian.

In the following, N (x,P) designates the Gaussian

PDF of mean x and covariance matrix P. In this con-

text, the analysis PDF at instant t is N (xat ,P
a
t ), where

xat and Pa
t are the analysis state and error covariance

matrix at instant t. As a result of the linearity assump-

tions, the forecast PDF at instant t + 1 is given by a

Gaussian distribution N (xft+1,P
f
t+1), where xft+1 and

Pf
t+1 are the forecast state and error covariance ma-

trix at instant t+1. Further, the integration on xt+1 in

Eq. (10) can readily be performed under these circum-

stances, with the outcome that p(yt+1|yt) is distributed

as N (H xft+1,R + H Pf
t+1 H′).

The desired model evidence f(y) can then be com-

puted by recursion on successive time steps as:

f(y) = p(y0)

T∏
t=1

(2π)−
d
2 |Σt|−

1
2

× exp

{
−1

2
(yt −Hxft )′Σ−1t (yt −Hxft )

}
;

(11)

here p(y0) represents the prior PDF of the initial state,

Σt = R + HPf
t H
′, and This expression coincides with

Eq. (8) and can be evaluated with the help of any DA

method that yields the forecast states and forecast error

covariance matrices, such as the KF or the EnKF. Note

that the traditional standard Kalman smoother would

give the same result as the KF, since they share the

same forecasts.

Finally, Eqs. (10) and (11) above show that the like-

lihood f(y) may be obtained as a by-product of the in-

ference on the state vector x, which usually is the main

purpose in numerical weather prediction. This idea may

actually be highlighted in even greater generality by

considering the equality:

f(y) =
p(y | x)p(x)

p(x | y)
. (12)

While Eq. (12) is a direct consequence of Bayes theo-

rem, it also illustrates a point that is arguably not so

intuitive. The likelihood f(y) is obtained here as the ra-

tio of two quantities: a numerator p(y | x)p(x) that is

a model premise inherently postulated by Eqs. (5) and

(4), and a denominator p(x | y) that may be viewed as

the end result of the primary inference on x. In other

words, estimating f(y) requires only a straightforward

division, provided x has been previously inferred.

Equation (12) thus expresses with great clarity and

simplicity a fundamental idea buttressing our proposal,

as it provides a general theoretical justification for the

suggestion of deriving the likelihood from an inferential

treatment that focuses on x. To put it succintly, this

equation basically says, “He who can do more can do

less.” In the context of DA, whose end purpose is to

infer the state vector x out of an observation y — i.e.,

the more part — it is possible to obtain the likelihood

as a by-product thereof — i.e., the less part — and thus

almost for free.
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Fig. 1 Illustration of the conventional D&A approach as ap-
plied to a univariate AR(1) process. (a) Observed time se-
ries (first component Y1, dotted line) and daily average φ(Y)
(heavy solid line). (b) Threshold level (vertical axis) as a func-
tion of the return period (horizontal axis): simulated values
(crosses); fit based on the Generalized Pareto distribution
(GPD, heavy dark-blue line); uncertainty range at the 95%
level (light blue area); and threshold value u = 3.1 (light solid
black line). (c) Estimated value of P = P (φ(Y) ≥ u) (heavy
dark-blue line) using a GPD fit as a function of the sample
size n (horizontal axis); uncertainty range (light blue area);
and true value P = 0.01 (light solid black line). (d) Computa-
tional time on a desktop computer (seconds, vertical axis) as
a function of sample size n (horizontal axis) required by the
conventional method (dark blue line) and the DADA method
(solid red line); the latter method is explained in Sections 2b
and 3 below.



12 A. Hannart et al.

PDF1

 

 

−10 −5 0 5 10 15
−30

−20

−10

0

10

20

30

40
PDF0

 

 

−10 −5 0 5 10 15
−30

−20

−10

0

10

20

30

40

PDF1 − PDF0

 

 

−10 −5 0 5 10 15
−30

−20

−10

0

10

20

30

40

−10 −5 0 5 10 15
−30

−20

−10

0

10

20

30

40

 

 

factual

counterfactual

0

0.005

0.01

0.015

0.02

(a) (b)

(d)(c)

>0

<0

=0

Fig. 2 Two-dimensional (2-D) projections of the PDF of the
modified L63 model; the projection is onto a plane defined by
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