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2 Division of Biostatistics, School of Public Health, UC Berkeley
3 MAP5 (UMR CMRS 8145), Université Paris Descartes

1 Introduction

Consider the following situation: we wish to build a confidence interval (CI) for a real-valued pathwise
differentiable parameter Ψ evaluated at a law P0, ψ0 ≡ Ψ(P0), from a data set O1, . . . , ON of independent
random variables drawn from P0 but, as is often the case nowadays, N is so large that we will not be
able to use all data. To overcome this computational hurdle, we decide (i) to select n among N observations
randomly with unequal probabilities and (ii) to adapt targeted minimum loss inference from the smaller data
set that results from the selection. First explored in (Bertail et al., 2016a), our approach is an alternative to
the so called “online targeted learning” developed by van der Laan and Lendle (2014).

The selection of n among N observations will be the random outcome of a survey sampling design. From
now on, we assume that each observation Oi is summarized by Vi, a low-dimensional random variable, and
that V1, . . . , VN are all observed. We will draw advantage from V1, . . . , VN to adjust the probability that each
Oi be sampled. We will develop two examples of survey sampling designs: Sampford’s and determinantal
sampling designs. Also known as rejective sampling design based on Poisson sampling with unequal inclusion
probabilities, Sampford’s sampling design is a particular case of sampling without replacement (Hanif and
Brewer, 1980). It has been thoroughly studied since the publication of the seminal articles (Hajek, 1964;
Sampford, 1967). Recently introduced in sampling theory by Loonis and Mary (2015), determinantal sam-
pling design benefits from a rich literature on determinantal point processes (Macchi, 1975; Lyons, 2003;
Hough et al., 2006).

The manuscript is organized as follows. Section 2 presents the general template for targeted inference
from large data sets by survey sampling. Section 3 introduces and discusses the two examples of survey
sampling designs mentioned above. Section 4 addresses their optimization in terms of minimization of the
asymptotic variance of the targeted estimator resulting from their use. Section 5 develops an example, that
of the inference of a variable importance measure of a continuous exposure. Section 6 presents a simulation
study illustrating the implementation of the general template in the example. Finally, Section 7 gathers some
elements of proof.

2 Template for targeted inference from large data sets by survey sampling

This section presents a template for carrying out targeted inference from large data sets by survey sampling.
Section 2.1 formalizes survey sampling. Section 2.2 quickly describes the construction of the targeted min-
imum loss estimator (TMLE, which also stands for targeted minimum loss estimation) based on a survey
sample and states a central limit theorem (CLT) which enables the construction of CIs of given asymptotic
level. The CLT relies on general assumptions typical of empirical processes theory. Section 3 discusses them
in the contexts of the Sampford’s and determinantal survey sampling designs.



Throughout the manuscript, we denote µf ≡
∫
fdµ and ‖f‖2,µ ≡ (µf2)1/2 for any measure µ and

function f (measurable and integrable with respect to µ).

2.1 Retrieving the observations by survey sampling

As explained in introduction, the first step of the inference procedure is the random selection without replace-
ment of n among N observations. The survey sample size n is set beforehand. Down to earth computational
considerations (how many data can the package handle?; how much time are we willing to wait for the results
of inference?) typically drive its choice.

Our analysis is asymptotic: we assume that N goes to infinity and that n goes to infinity as N does, in
such a way that the ratio n/N go to 0. How n depends on N may or may not need to be described more
precisely. The results of this manuscript could be extended to the case that n is random and satisfies these
two conditions almost surely (with respect to the law of the sampling design; more details to follow).

The random selection of n among N observations takes the form of a vector η ≡ (η1, . . . , ηN ) of binary
random variables where, for each 1 ≤ i ≤ N , Oi is selected if and only if ηi equals 1. The conditional joint
distribution of η given O1, . . . , ON is the survey sampling design. By construction, it coincides with the
conditional joint distribution of η given the summary measures V1, . . . , Vn which, contrary to O1, . . . , ON ,
are all observed at the beginning of the study.

We denote P s a generic conditional joint distribution of η given O1, . . . , On (the superscript “s” stands for
“survey”). The first order inclusion probabilities are the (conditional marginal) probabilities πi ≡ P s(ηi = 1)
for 1 ≤ i ≤ N . In case they are equal, the sampling design is said equally weighted. The second order
inclusion probabilities are the (conditional joint) probabilities πij ≡ P s(ηi = 1, ηj = 1) = P s(ηiηj = 1) for
1 ≤ i 6= j ≤ N . The Horvitz-Thompson empirical measure

PHT
n ≡ 1

N

N∑
i=1

ηi
πi

Dirac(Oi) (0.1)

takes up the role that the empirical measure PN ≡ N−1
∑N
i=1 Dirac(Oi) would play if we had access to it.

The former is an unbiased estimator of the latter in the sense that, for any function f of O drawn from P0,

EP s
[
PHT
n f

]
= PNf.

A CLT may hold for
√
n(PHT

n −PN )f (conditionally on O1, . . . , ON ). Whether it does or not notably depends
on the asymptotic behavior of VarP s

[
PHT
n f

]
. In general, it holds that

VarP s
[
PHT
n f

]
=

1

N2

N∑
i=1

(
1

πi
− 1

)
f2(Oi) +

1

N2

∑
1≤i 6=j≤N

(
πij
πiπj

− 1

)
f(Oi)f(Oj). (0.2)

Sections 3 and 4 focus on the specific examples of the Sampford and determinantal survey sampling
designs. The choice of the sampling design affects the limit variance of the TMLE. For the time being, we
do not characterize further the survey sampling design.

2.2 CLT on the TMLE and resulting confidence intervals

Constructing the TMLE. We begin with a minor twist. We assume that the real-valued pathwise differ-
entiable parameter of interest Ψ , originally seen as a real-valued mapping on the set of probability measures
on O equipped with the Borel σ-field, can be extended to a real-valued mapping on the set M of finite
measures on O equipped with the Borel σ-field. Moreover, we assume that the extension can be performed
in such a way that the pathwise differentiability of Ψ is preserved: for each P ∈ M (not necessarily a prob-
ability measure), there exists an influence function D(P ) ∈ L2

0(P ) (the set of measurable functions f on O
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satisfying Pf = 0 and Pf2 finite) such that, for all bounded s ∈ L2
0(P ) with ‖s‖∞ > 0, if we characterize

Pε ∈ M by setting dPε/dP = 1 + εs (all ε ∈ R with |ε| < ‖s‖−1∞ ), then ε 7→ Ψ(Pε) is differentiable at ε = 0
with a derivative equal to PsD(P ). This is not asking much, as the example developed in Section 5 illustrates.

Suppose that we have constructed P ∗n ∈M targeted to ψ0 in the sense that

PHT
n D(P ∗n) = oP (1/

√
n). (0.3)

The TMLE is the substitution estimator ψ∗n ≡ Ψ(P ∗n).

Central limit theorem and CIs. The CLT hinges on three assumptions. We suppose the existence of
F ⊂ {D(P ) : P ∈M} such that

A1. The empirical process
√
n(PHT

n −P0) converges in law in `∞(F) to a zero-mean Gaussian process with
covariance function Σh.

A2. With P0-probability tending to one, D(P ∗n) ∈ F , and there exists f1 ∈ F such that ‖D(P ∗n)− f1‖2,P0
=

oP (1). Moreover, one knows a conservative estimator σ2
n of σ2

1 ≡ Σh(f1, f1).

Conservative estimation of σ2
1 is not as easy as one might think at first sight. For instance, it is not guaranteed

in general that the substitution estimator

σ̂2
n ≡ PHT

n D(P ∗n)2h−1 (0.4)

estimates conservatively σ2
1 . Relying on the non-parametric bootstrap is not a solution either in general. The

third assumption guarantees that a second-order term in an expansion of ψ∗n = Ψ(P ∗n) around P0 is indeed
of second order:

A3. There exists a real-valued random variable γn converging in probability to γ1 6= 1 and such that
γn(ψ∗n − ψ0) + [ψ0 − ψ∗n − P0D(P ∗n)] = oP (1/

√
n). Moreover, one knows an estimator Γn such that

Γn − γn = oP (1).

The introduction of the term γn(ψ∗n − ψ0) in A3 gives some flexibility. This proves useful sometimes, as for
instance in the example developed in Section 5. If γn = 0, then the main condition in A3 reduces to the
classical ψ0 − ψ∗n − P0D(P ∗n) = oP (1/

√
n).

Assumptions A1, A2 and A3 are variations on the assumptions typically made in the asymptotic analysis
of TMLEs. They allow to derive the following CLT, whose proof is sketched in Section 7.1. Set α ∈ (0, 1)
and denote ξ1−α/2 the (1− α/2)-quantile of the standard normal distribution.

Proposition 0.1. Under A1, A2 and A3, (1− γn)
√
n(ψ∗n − ψ0) converges in law to the centered Gaussian

distribution with variance σ2
1. Consequently,[

ψ∗n ±
ξ1−α/2

√
σ2
n

(1− Γn)
√
n

]
(0.5)

is a confidence interval for ψ0 with asymptotic coverage no less than (1− α).

Resorting to survey sampling thus makes it possible to construct a CI for ψ0. It is through σ2
n that the

width of CI (0.5) depends on the survey sampling design and more precisely on the covariance function in
A1. In this regard, Sections 3 and 4 will show that all survey sampling designs are not equal. In particular,
simple random sampling (selecting n among N observations without replacement and with equal weights) is
suboptimal.

3 Survey sampling designs and assumption A1

This section introduces two examples of survey sampling designs and discusses A1 in their respective con-
texts.
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3.1 Sampford’s survey sampling design

Denote V the space where V drawn from P0 takes its values and let h be a (measurable) function mapping V
to R+, chosen by us in such a way that h be bounded away from 0 and P0h = 1. For each 1 ≤ i ≤ N , define

pi ≡
nh(Vi)

N
.

Let P sP be characterized by the fact that, under P sP, η is distributed from the conditional law of
(ε1, . . . , εN ) given

∑N
i=1 εi = n when ε1, . . . , εN are independently sampled from Bernoulli laws with pa-

rameters p1, . . . , pN , respectively (we recall that this statement is conditional on O1, . . . , ON ). This survey
sampling design is an instance of Sampford’s survey sampling design. It is also called rejective sampling
design based on Poisson (hence the superscript “P” in P sP) sampling with unequal inclusion probabilities
(unequal as soon as h is not constant).

By (Bertail et al., 2016a, Theorem 2), which builds upon (Bertail et al., 2016b), assumption A1 is met
when using of Sampford’s survey sampling design P sP provided that F , the class introduced in Section 2.2,
is not too complex: this is the message of Proposition 0.2 below.

Proposition 0.2. Assume that F is separable (for instance, countable), that it admits an envelope function
such that the corresponding uniform entropy integral be finite (see Condition (2.1.7) in van der Vaart and
Wellner, 1996), and that P0f

2h−1 is finite for all f ∈ F . Then A1 holds when using Sampford’s survey
sampling design P sP with a covariance function ΣP

h given by ΣP
h (f, g) ≡ P0fgh

−1.

The conclusions of Proposition 0.2 still hold under the same conditions when substituting

1

N

N∑
i=1

ηi
pi

Dirac(Oi) =
1

n

N∑
i=1

ηi
h(Vi)

Dirac(Oi) (0.6)

for PHT
n . It is thus unnecessary to compute the first order inclusion probabilities of Sampford’s survey

sampling design, which differ from p1, . . . , pN when h is not constant, and the targeting of P ∗n ∈ M to ψ0

can be achieved by ensuring n−1
∑N
i=1 ηiD(P ∗n)(Oi)h

−1(Vi) = oP (1/
√
n) instead of (0.3).

3.2 Determinantal survey sampling design

A minimalist introduction. Determinantal survey sampling designs are built upon determinantal point
processes. Let K be a N ×N Hermitian matrix whose eigenvalues belong to [0, 1]. It happens that the set
of equalities: for all I ⊂ {1, . . . , N}, ∑

I′⊃I
P s(I ′) = det(K|I), (0.7)

uniquely characterizes the determinantal survey sampling design P sK , a probability measure on the powerset
of {1, . . . , N}. Here, K|I denotes the Hermitian matrix derived from K by keeping only its rows and columns
indexed by the elements of I.

The first and second order inclusion probabilities of P sK characterized by (0.7) are easily derived from
the entries of K: for all 1 ≤ i 6= j ≤ N , if holds that πi = det(K|{i}) = Kii and πij = det(K|{i,j}) =
Kii×Kjj − |Kij |2. Furthermore, draws from P sK are of fixed size if and only if the eigenvalues of K belong
to {0, 1}, in which case K is a projection matrix and the fixed size equals the trace of K. From now on, we
focus on this case.

If the first order inclusion probabilities are all positive then, for any bounded function f of O drawn
from P0, PHT

n f −EP sK
[
PHT
n f

]
satisfies a concentration inequality (Pemantle and Peres, 2014, Theorem 3.1;

see also (0.20) in our Section 7.3). Moreover, if f meets the so called Soshnikov conditions (0.17), (0.18) and
(0.19), then

√
n(PHT

n − PN )f satisfies a CLT (Soshnikov, 2000). These two remarkable properties are the
building blocks of Proposition 0.3 below. Let F ′ be defined as F deprived of its elements which depend on
O through V only.
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Proposition 0.3. Assume that F ′ is countable, uniformly bounded, and that its bracketing entropy with
respect to the supremum norm is finite (see the condition preceding Condition (2.1.7) in van der Vaart and
Wellner, 1996). Assume moreover that, for every f ∈ F ′, nVarP sK

[
PHT
n f

]
> 0 converges in P0-probability

to a positive number and f meets the Soshnikov conditions (0.17), (0.18), (0.19) P0-almost surely. Then
A1 holds with F ′ substituted for F when using any fixed-size determinantal survey sampling design P sK ,
provided that its first order inclusion probabilities are bounded away from 0 uniformly in N . The covariance
function is defined as a limit with no closed-form expression in general.

The message of Proposition 0.3 is the following: if the F ′ is not too complex, and if n/N goes to 0 suf-
ficiently slowly, then A1 is met with F ′ substituted for F when using most determinantal survey sampling
designs P sK . The proof of Proposition 0.3 is sketched in Section 7.3. The condition on the ratio n/N is
included implicitly in the assumption that the elements of F ′ satisfy the Soshnikov conditions P0-almost
surely. We elaborate further on this issue in Proposition 0.4 below.

We wish to follow the same strategy as in Section 3.1, i.e., to define possibly unequal first order inclusion
probabilities depending on V1, . . . , VN . There exists an algorithm to both construct and sample from a
fixed-size determinantal survey sampling design with given first order inclusion probabilities (Loonis and
Mary, 2015). Unfortunately, its computational burden is considerable for both tasks in general, especially
in the context of large data sets (N large). In addition, the second set of conditions on F ′ (and not F) in
Proposition 0.3 would typically be very demanding for the yielded determinantal survey sampling design.
Moreover, computing the limit variance of the TMLE resulting from its use would be difficult, and its
inference would typically be achieved through the use of a very conservative estimator.

These difficulties can be overcome by focusing on V -stratified determinantal survey sampling designs
equally weighted on each V -stratum.

V -stratified determinantal sampling equally weighted on each V -stratum. We now consider the
case that V drawn from P0 takes finitely many different values. To alleviate notation, we assume without
loss of generality that V ≡ {1, . . . , ν} and that O1, . . . , ON are ordered by values of V1, . . . , VN .

Let h be a function mapping V to R∗+ such that PNh = N−1
∑N
i=1 h(Vi) = 1. We will hide and neglect

notation-wise the dependency of h on V1, . . . , VN due to the normalization PNh = 1. In the limit, h does not
depend on the summary measures anymore: by the strong law of large numbers, PNh converges P0-almost
surely to P0h, revealing that condition PNh = 1 is similar to its counterpart P0h = 1 from Section 3.1. For
each 1 ≤ i ≤ N , define

πi ≡
nh(Vi)

N
.

Similar to the proportions p1, . . . , pN used in Section 3.1 to characterize a Sampford survey sampling design,
π1, . . . , πN are the exact (as opposed to approximate) first order inclusion probabilities that we choose for our
determinantal survey sampling design. Its complete characterization now boils down to elaborating a N ×N
Hermitian matrix Π with π1, . . . , πN as diagonal elements and eigenvalues in {0, 1}. Since

∑N
i=1 πi = n, the

resulting determinantal survey sampling design will be of fixed size n.
For simplicity, we elaborate Π under the form of a block matrix with zero matrices as off-diagonal blocks

and make each of the ν diagonal blocks be a projection matrix featuring the prescribed diagonal elements.
This last step is easy provided that nv ≡

∑N
i=1 πi1{Vi = v} is an integer dividing Nv ≡

∑N
i=1 1{Vi = v}. In

that case, the projection matrix can be a block matrix consisting of n2v square matrices of size Nv/nv×Nv/nv,
with zero off-diagonal blocks and diagonal blocks having all their entries equal to n−1v . Otherwise, we may
rely on an algorithm to derive the desired projection matrix.

The determinantal survey sampling design P sΠ encoded by Π (hence the superscript “Π”) is said V -
stratified and equally weighted on each V -stratum. It randomly selects a deterministic number nv of obser-
vations from the stratum where V = v, for each 1 ≤ v ≤ ν. Sampling from it makes it possible to derive the
next result, proven in Section 7.2: for any function f of O drawn from P0,
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EP0

[
VarP sΠ

[
PHT
n f

]]
=

1

n
EP0

[
VarP0

[f(O)|V ]h−1(V )
]
− 1

N
EP0

[VarP0
[f(O)|V ]] . (0.8)

Equality (0.8) is instrumental in deriving the following corollary to Proposition 0.3, whose proof is sketched
in Section 7.3.

Proposition 0.4. Let us impose that n is chosen in such a way that N/n = o((N2/n)ε) for all ε > 0. This is
the case if n ≡ N/ loga(N) for some a > 0, for instance. Assume that F is separable (for instance, countable)
and that its bracketing entropy with respect to the supremum norm is finite (see the condition preceding
Condition (2.1.7) in van der Vaart and Wellner, 1996). Then A1 holds when using the V -stratified and
equally weighted on each V -stratum determinantal survey sampling design P sΠ with a covariance function
ΣΠ
h given by ΣΠ

h (f, g) = EP0

[
CovP0 [f(O)g(O)|V ]h−1(V )

]
.

Note that ΣΠ
h (f, f) = 0 for every f ∈ F which depends on O through V only. Actually, for such a function,√

n(PHT
n − P0)f =

√
n(PN − P0)f = OP (

√
n/N) = oP (1). Moreover, for every f ∈ F , combining (0.8) and

equality EP sΠ
[
PHT
n f

]
= PNf readily implies

VarP0P sΠ
[√
n(PHT

n − P0)f
]

= ΣΠ
h (f, f) +

n

N

(
VarP0 [f(O)]− EP0 [VarP0 [f(O)|V ]]

)
. (0.9)

Proved in Section 7.2, (0.9) relates the exact variance of
√
n(PHT

n − P0)f with the limit variance ΣΠ
h (f, f),

showing that their difference is upper-bounded by a O(n/N) = o(1)-expression.

It is an open question to determine whether or not the extra condition on how n depends on N could be
relaxed or even given up by proving directly a functional CLT for

√
n(PHT

n − P0). By “directly”, we mean
without building up on functional CLTs conditional on the observations, and managing to go around the
Soshnikov conditions. This route was followed to prove (Bertail et al., 2016a, Theorem 2).

Sobolev classes are known to have finite bracketing entropy with respect to the supremum norm (van der
Vaart, 1998, Example 19.10). The fact that the bracketing entropy is meant relative to the supremum norm
instead of the L2(P0)-norm is a little frustrating, though. Indeed, a bracketing entropy condition relative to
the latter would have allowed a larger variety of classes. The supremum norm comes from the concentration
inequality (Pemantle and Peres, 2014, Theorem 3.1). Perhaps the aforementioned direct proof might also
allow to replace it with the L2(P0)-norm.

The covariance functions ΣP
h and ΣΠ

h in Propositions 0.2 and Proposition 0.4 differ. In particular, for
every f ∈ F ,

ΣP
h (f, f) = EP0

[
EP0

[
f2(O)|V

]
h−1(V )

]
≥ EP0

[
VarP0 [f(O)|V ]h−1(V )

]
= ΣΠ

h (f, f) (0.10)

(using the same h on both sides of (0.10) is allowed because, in the limit, condition PNh = 1 is similar to
condition P0h = 1). Consequently, P sΠ is more efficient than P sP when V is finite in the sense that whichever
function hP is used to define P sP, it is always possible to choose function hΠ to define P sΠ in such a way
that ΣP

hP(f, f) ≥ ΣΠ
hΠ (f, f) for every f ∈ F .

4 Optimizing the survey sampling designs

This section discusses the optimization of functions hP and hΠ used to define the first order inclusion
probabilities of the survey sampling designs P sP and P sΠ that we developed in Sections 3.1 and 3.2. The
optimization is relative to the asymptotic variance of the TMLE, ΣP

h (f1, f1) or ΣΠ
h (f1, f1), respectively.

In light of (0.10), let fP2 and fΠ2 be the functions from V to R+ given by

fP2 (V ) ≡
√

EP0
[f21 (O)|V ] and fΠ2 (V ) ≡

√
VarP0

[f1(O)|V ]. (0.11)

Then (0.10) shows in particular that ΣP
h (f1, f1) = P0(fP2 )2h−1 is always larger than ΣΠ

h (f1, f1) =
P0(fΠ2 )2h−1. Now, with f2 equal to either fP2 or fΠ2 , the Cauchy-Schwarz inequality yields that
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P0(f2)2h−1 × P0h ≥ (P0f2)
2
,

where equality holds if and only if h is proportional to f2.
In the case of P sP, h satisfies P0h = 1. Therefore, the optimal h and corresponding optimal asymptotic

variance of the TMLE are

hP ≡ fP2 /P0f
P
2 and ΣP

hP(f1, f1) =
(
P0f

P
2

)2
. (0.12)

In the case of P sΠ , h satisfies PNh = 1 and P0h = 1 in the limit. By analogy with (0.12), the optimal h
and corresponding optimal asymptotic variance of the TMLE are

hΠ ≡ fΠ2 /P0f
Π
2 and ΣΠ

hΠ (f1, f1) =
(
P0f

Π
2

)2
. (0.13)

5 Example: variable importance measure of a continuous exposure

We illustrate our template for survey sampling targeted learning with the inference of a variable importance
measure of a continuous exposure. In this example, the ith observation Oi writes (Wi, Ai, Yi) ∈ O ≡ W ×
A × [0, 1]. Here, Wi ∈ W is the ith context, Ai ∈ A is the ith exposure and Yi ∈ [0, 1] is the ith outcome.
Exposures take their values in A 3 0, a bounded subset of R containing 0, which serves as a reference level
of exposure. Typically, in biostatistics or epidemiology, Wi could be the baseline covariate describing the ith
subject, Ai could describe her assignment (e.g., a dose-level) or her level of exposure, and Yi could quantify
her biological response.

Section 5.1 presents and analyzes the parameter of interest. Section 5.2 discusses the construction of the
corresponding TMLE.

5.1 Preliminaries

For each finite measure P on O equipped with the Borel σ-field, we denote PW , PA|W and PY |A,W the
marginal measures of W and conditional measures of A and Y given W and (A,W ), respectively. (The
conditional measure PA|W is P (O) times the conditional distribution of A given W under the probability
distribution P/P (O). The conditional measure PY |A,W is defined analogously.) Moreover, for each (w, a) ∈
W × A, we introduce and denote gP (0|w) ≡ PA|W=w({0}) and QP (a,w) ≡

∫
[0,1]

ydPY |A=a,W=w(y). In

particular if P (O) = 1, then gP (0|W ) = P (A = 0|W ) is the conditional probability that the exposure equal
the reference value 0 and QP (A,W ) = EP [Y |A,W ] is the conditional expectation of the response given
exposure and context.

We assume that P0,A|W (A 6= 0|W ) > 0 P0,W -almost surely and the existence of a constant c(P0) > 0
such that gP (0|W ) ≥ c(P0) P0,W -almost surely. Introduced in (Chambaz et al., 2012; Chambaz and Neuvial,
2015), the true parameter of interest is

ψc0 ≡ arg min
β∈R

EP0

[
(Y − EP0

[Y |A = 0,W ]− βA)
2
]

= arg min
β∈R

EP0

[
(EP0

[Y |A,W ]− EP0
[Y |A = 0,W ]− βA)

2
]

(the superscript “c” stands for “continuous”).
In the context of this example, M stands for the set of finite measures P on O equipped with the Borel

σ-field such that there exists a constant c(P ) > 0 guaranteeing that the marginal measure of {w ∈ W :
PA|W=w(A \ {0}) > 0 and PA|W=w({0}) ≥ c(P )} under PW equals P (O). In particular, P0 ∈ M by the
above assumption. We see ψc0 as the value at P0 of the functional Ψ c characterized over M by

Ψ c(P ) ≡ arg min
β∈R

∫
A×W

(QP (a,w)−QP (0, w)− βa)
2
dPA|W=w(a)dPW (w).
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By (Chambaz et al., 2012, Proposition 1), for each P ∈M,

Ψ c(P ) =

∫
A×W a(QP (a,w)−QP (0, w))dPA|W=w(a)dPW (w)∫

A×W a2dPA|W=w(a)dPW (w)
.

If P is a distribution, then

Ψ c(P ) =
EP [A(QP (A,W )−QP (0,W ))]

EP [A2]
.

For clarity, we define µP (w) ≡
∫
A adPA|W=w(a) and ζ2(P ) ≡

∫
A×W a2dPA|W=w(a)dPW (w) for all P ∈M,

(w, a) ∈ W × A. If P (O) = 1, then µP (W ) = EP [A|W ] and ζ2(P ) = EP
[
A2
]
. Adapting (Chambaz et al.,

2012, Proposition 1) yields that Ψ c is pathwise differentiable with influence curve Dc(P ) ≡ Dc
1(P )+Dc

2(P ) ∈
L2
0(P ),

ζ2(P )Dc
1(P )(O) ≡ A (QP (A,W )−QP (0,W )−AΨ c(P )) ,

ζ2(P )Dc
2(P )(O) ≡ (Y −QP (A,W ))

(
A− µP (W )1{A = 0}

gP (0|W )

)
(all P ∈M). Let now Rc : M2 → R be given by

Rc(P, P ′) ≡ Ψ c(P ′)− Ψ c(P )− (P ′ − P )Dc(P )

≡ Ψ c(P ′)− Ψ c(P )− P ′Dc(P ).

In light of A3, ψ0 − ψ∗n − P0D
c(P ∗n) = Rc(P ∗n , P0). Adapting the last step of the proof of (Chambaz et al.,

2012, Proposition 1) yields that, for every P, P ′ ∈M,

Rc(P, P ′) =

(
1− ζ2(P ′)

ζ2(P )

)
(Ψ c(P ′)− Ψ c(P ))

+
1

ζ2(P )
P ′
(

(QP ′(0, ·)−QP (0, ·))
(
µP ′ − µP

gP ′(0|·)
gP (0|·)

))
. (0.14)

We will use this equality to derive an easy to interpret sufficient condition for A3 to hold.

5.2 Construction of the TMLE

Let Qw, Mw and Gw be three user-supplied classes of functions mapping A × W, W and W to [0, 1],
respectively. We first estimate QP0 , µP0 and gP0 with Qn and µn and gn built upon PHT

n , Qw,Mw and Gw.
For instance, one could simply minimize (weighted) empirical risks and define

Qn ≡ argmin
Q∈Qw

PHT
n `(Y,Q(A,W )), µn ≡ argmin

µ∈Mw

PHT
n `(A,µ(W )),

gn ≡ argmin
g∈Gw

PHT
n `(1{A = 0}, g(0|W ))

(assuming that the argmins exist). Alternatively, one could prefer minimizing cross-validated (weighted)
empirical risks. One then should keep in mind that the observations are dependent, because of the selection
process by survey sampling. We also estimate the marginal distribution P0,W of W under P0 with PHT

n,W ,

defined as in (0.1) with Wi substituted for Oi, and the real-valued parameter ζ2(P0) with ζ2(PHT
n,X) where

PHT
n,X is defined as in (0.1) with Xi substituted for Oi.

Let P 0
n be a measure such that QP 0

n
= Qn, µP 0

n
= µn, gP 0

n
= gn, ζ2(P 0

n) = ζ2(PHT
n,X), P 0

n,W = PHT
n,W ,

and from which we can sample A conditionally on W . Picking up such a P 0
n is an easy technical task,

8



see (Chambaz et al., 2012, Lemma 5) for a computationally efficient choice. Then the initial estimator
Ψ b(P 0

n) of ψb0 can be computed with high accuracy by Monte-Carlo. It suffices to sample a large number B
(say B = 107) of independent (A(b),W (b)) by (i) sampling W (b) from P 0

n,W = PHT
n,W then (ii) sampling A(b)

from the conditional distribution of A given W = W (b) under P 0
n repeatedly for b = 1, . . . , B and to make

the approximation

Ψ c(P 0
n) ≈

B−1
∑B
b=1A

(b)(Qn(A(b),W (b))−Qn(0,W (b)))

ζ2(P 0
n)

.

We now target the inference procedure and bend P 0
n into P ∗n satisfying (0.3) with Dc substituted for D.

We proceed iteratively. Suppose that P kn has been constructed for some k ≥ 0. We fluctuate P kn with the
one-dimensional parametric model {P kn (ε) : ε ∈ R, ε2 ≤ c(P kn )/‖Dc(P kn )‖∞} characterized by dP kn (ε)/dP kn =
1 + εDc(P kn ). Lemma 1 in (Chambaz et al., 2012) shows how QPkn (ε), µPkn (ε), gPkn (ε), ζ

2(P kn (ε)) and P kn,W (ε)
depart from their counterparts at ε = 0. The optimal move along the fluctuation is indexed by

εkn ≡ arg max
ε

PHT
n log

(
1 + εDc(P kn )

)
,

i.e., the maximum likelihood estimator of ε. Note that the random function ε 7→ PHT
n log(1 + εDc(P kn )) is

strictly concave. The optimal move results in the (k + 1)-th update of P 0
n , P k+1

n ≡ P kn (εkn).
There is no guarantee that a P k+1

n will coincide with its predecessor P kn . We assume that the iterative
updating procedure converges (in k) in the sense that, for kn large enough, PHT

n Dc(P knn ) = oP (1/
√
n). We

set P ∗n ≡ P knn . It is actually possible to come up with a one-step updating procedure (i.e., an updating
procedure such that P kn = P k+1

n for all k ≥ 1) by relying on universally least favorable models (van der Laan,
2016). We adopt this multi-step updating procedure for simplicity.

We can assume without loss of generality that we can sample A conditionally on W from P ∗n . The final
estimator is computed with high accuracy like Ψ c(P 0

n) previously: with Q∗n ≡ QP∗n , we sample B independent

(A(b),W (b)) by (i) sampling W (b) from P ∗n,W then (ii) sampling A(b) from the conditional distribution of A

given W = W (b) under P ∗n repeatedly for b = 1, . . . , B and make the approximation

ψ∗n ≡ Ψ c(P ∗n) ≈
B−1

∑B
b=1A

(b)(Q∗n(A(b),W (b))−Q∗n(0,W (b)))

ζ2(P ∗n)
.

To conclude this section, let us use (0.14) to derive an easy to interpret sufficient condition for A3 to
hold. If we introduce

γn ≡ 1− ζ2(P0)

ζ2(P ∗n)
and Γn ≡ 1− ζ2n(P0)

ζ2n(P ∗n)

where ζ2n(P0) and ζ2n(P ∗n) estimate ζ2(P0) and ζ2(P ∗n), then A3 is met provided that ζ2(P ∗n) converge in
probability to a finite real number such that γ1 6= 1 and

1

ζ2(P ∗n)
P0

(
(QP0

(0, ·)−QP∗n (0, ·))
(
µP0
− µP∗n

gP0
(0|·)

gP∗n (0|·)

))
= oP (1/

√
n).

Through the product, we draw advantage of the synergistic convergences of QP∗n (0, ·) to QP0
(0, ·) and

(µP∗n , gP∗n ) to (µP0
, gP0

) (by the Cauchy-Schwarz inequality for example).

The next section illustrates further this example of application of our survey sampling targeted learning
methodology with a simulation study.

6 Simulation study

Section 6.1 presents the setting of the simulation study, which illustrates the example developed in Section 5
in three related but different scenarios. Section 6.2 summarizes its results and comments on them.
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6.1 Setting

We consider three data-generating distributions P0,1, P0,2 and P0,3 of a data-structure O = (W,A, Y ). The
three distributions differ only in terms of the conditional mean and variance of Y given (A,W ). Specifically,
O = (W,A, Y ) drawn from P0,j (j = 1, 2, 3) is such that

• W ≡ (V,W1,W2) with P0,j(V = 1) = 1/6, P0,j(V = 2) = 1/3, P0,j(V = 3) = 1/2 and, conditionally on
V , (W1,W2) is a Gaussian random vector with mean (0, 0) and variance

(
1 −0.2
−0.2 1

)
(if V = 1), (1, 1/2)

and ( 0.5 0.1
0.1 0.5 ) (if V = 2), (1/2, 1) and ( 1 0

0 1 ) (if V = 3);
• conditionally on W , A = 0 with probability 80% if W1 ≥ 1.1 and W2 ≥ 0.8 and 10% otherwise; moreover,

conditionally on W and A 6= 0, 3A − 1 is drawn from the χ2-distribution with 1 degree of freedom and
non-centrality parameter

√
(W1 − 1.1)2 + (W2 − 0.8)2;

• conditionally on (W,A), Y is a Gaussian random variable with mean
- A(W1 +W2)/6 +W1 +W2/4 + exp((W1 +W2)/10) for j = 1, 2,
- A(W1 +W2)/6 +W1 +W2/4 + exp((W1 +W2)/10) + 3AV for j = 3,
and standard deviation
- 2 (if V = 1), 1.5 (if V = 2) and 1 (if V = 3) for j = 1,
- 9 (if V = 1), 4 (if V = 2) and 1 (if V = 3) for j = 2, 3.

The true parameters equal approximately Ψ c(P0,1) = Ψ c(P0,2) = 0.1201 and Ψ c(P0,3) = 6.9456.

For B = 103 and each j = 1, 2, 3, we repeat independently the following steps:

1. simulate a data set of N = 107 independent observations drawn from P0,j ;
2. extract n0 ≡ 103 observations from the data set by simple random sampling (SRS, which is identical to
P sP with h0 ≡ 1), and based on these observations:

a) apply the procedure described in Section 5 and retrieve fn0,1 ≡ Dc(P
kn0
n0 );

b) regress fn0,1(O) and fn0,1(O)2 on V , call fPn0,2 the square root of the resulting estimate of fP2 and

fΠn0,2 the square root of the resulting estimate of fΠ2 , see (0.11);

c) estimate the marginal distribution of V , estimate P0f
P
n0,2 with πn0,2 and set hPn0

≡ fPn0,2/πn0,2,

hΠn0
≡ fΠn0,2/PNf

Π
n0,2, see (0.12) and (0.13);

3. for each n in {103, 5 × 103, 104}, successively, and for each survey sampling design among SRS, P sP

with hPn0
and P sΠ with PΠn0

, extract a sub-sample of n observations from the data set (deprived of the
observations extracted in step 2) and, based on these observations, apply the procedure described in
Section 5. We use σ̂2

n given in (0.4) to estimate σ2
1 , although we are not sure in advance that it is a

conservative estimator.

We thus obtain 27×B estimates and their respective CIs.

To give an idea of what are hPn0
and hΠn0

in each scenario, we report their averages across the B simulation
studies under P0,1, P0,2 and P0,3:

- under P0,1, we expect similar hPn0
and hΠn0

, and do get that they are approximately equal (on average) to
(h1(1), h1(2), h1(3)) ≈ (2.10, 0.83, 0.75);

- under P0,2, we also expect similar hPn0
and hΠn0

, and do get that they are approximately equal (on average)
to (h1(1), h1(2), h1(3)) ≈ (3.39, 0.83, 0.32);

- under P0,3, we do not expect similar hPn0
and hΠn0

, and get that they are approximately equal (on aver-
age) to (h1(1), h1(2), h1(3)) ≈ (2.93, 0.66, 0.58) and (h1(1), h1(2), h1(3)) ≈ (2.97, 0.68, 0.56), respectively
(although small, the differences are significant).

Applying the TMLE procedure is straightforward thanks to the R package called tmle.npvi (Chambaz
and Neuvial, 2016, 2015). Note, however, that it is necessary to compute Γn and σ̂2

n. Specifically, we fine-tune
the TMLE procedure by setting iter (the maximum number of iterations of the targeting step) to 7 and
stoppingCriteria to list(mic=0.01, div=0.001, psi=0.05). Moreover, we use the default flavor called
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"learning", thus notably rely on parametric linear models for the estimation of the infinite-dimensional
parameters QP0 , µP0 and gP0 and their fluctuation. We refer the interested reader to the package’s manual
and vignette for details.

The Sampford sampling method (Sampford, 1967) implements P sP. However, when the ratio n/N is close
to 0 or 1 (here, when n/N differs from 10−3), this acceptance-rejection algorithm typically takes too much
time to succeed. To circumvent the issue, we approximate P sP with a Pareto sampling (see Algorithm 2 in
Bondesson et al., 2006, Section 5). We implement P sΠ as described in Section 3.2, with minor changes to

account for the fact that for some 1 ≤ v ≤ 3,
∑N
i=1Kii1{Vi = v} may not be an integer or may not divide∑N

i=1 1{Vi = v}.

6.2 Results

The results are summarized in Table 0.1. We focus on the empirical coverage, empirical variance and mean
of the estimated variance of the TMLE.

SRS P sP with hP
n0

P sΠ with hΠn0

n n n
103 5× 103 104 103 5× 103 104 103 5× 103 104

P0,1 empirical coverage 96.2% 98.9% 99.2% 98.1% 98.6% 99.4% 97.8% 99.2% 99.3%
empirical variance 09 08 07 07 06 06 07 06 06
estimated variance 13 14 14 11 11 11 11 11 11

P0,2 empirical coverage 94.0% 98.9% 99.2% 98.9% 99.9% 99.1% 98.4% 99.4% 99.3%
empirical variance 129 104 102 44 41 44 49 42 42
estimated variance 171 196 200 85 86 87 86 85 86

P0,3 empirical coverage 95.6% 98.8% 97.8% 97.8% 97.9% 97.1% 98.5% 98.3% 96.3%
empirical variance 157 134 168 85 91 116 81 85 104
estimated variance 216 242 245 130 133 135 124 128 127

Table 0.1. Summarizing the results of the simulation study. The top, middle and bottom groups of rows correspond to
simulations under P0,1, P0,2 and P0,3. Each of them reports the empirical coverage of the CIs (B−1 ∑B

b=1 1{Ψ
c(P0,j) ∈

In,b}), n times the empirical variance of the estimators (n[B−1 ∑B
b=1 ψ

∗2
n,b − (B−1 ∑B

b=1 ψ
∗
n,b)

2]) and empirical mean

of n times the estimated variance of the estimators (B−1 ∑B
b=1 σ̂

2
n,b), for every sub-sample size n and for each survey

sampling design.

All empirical coverages are larger than 95% but one (equal to 94%). In each case, the mean of estimated
variances is larger than the corresponding empirical variance, revealing that we achieve the conservative
estimation of σ2

1 . Regarding the variances, we observe that P sP and P sΠ perform similarly and provide
slightly better results than SRS under P0,1. This is in line with what was expected, due to the contrast
induced by the conditional standard deviation of Y given (A,W ) under P0,1. Under P0,2, we observe that
P sP and P sΠ perform similarly and provide significantly better results than SRS. This too is in line with
what was expected, due to the contrast induced by the conditional standard deviation of Y given (A,W ),
which is stronger under P0,2 than under P0,1. Finally, under P0,3, we observe that P sP performs better than
SRS and that P sΠ performs even slightly better than P sP. This again is in line with what was expected,
due to the contrast induced by the conditional standard deviation of Y given (A,W ) (same as under P0,2)
and to the different conditional means of Y given (A,W ) under P0,3 and P0,2.

Acknowledgements.
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7 Elements of proof

For every f ∈ F , let f̄ , f2 be given by f̄(V ) ≡ EP0
[f(O)|V ], f2(V ) ≡ EP0

[
f2(O)|V

]
. Note that f2(V ) −

f̄2(V ) = VarP0
[f(O)|V ].

For every 1 ≤ v ≤ ν, let `1, . . . , `ν and I1, . . . , Iν be given by `v(V ) ≡ 1{V = v} and Iv ≡ {1 ≤ i ≤ N :
Vi = v}.

7.1 Proof of Proposition 0.1

Combining (0.3) and A3 yields that

(1− γn)
√
n(ψ∗n − ψ0) =

√
n(PHT

n − P0)D(P ∗n) + oP (1)

=
√
n(PHT

n − P0)f1 +
√
n(PHT

n − P0)(D(P ∗n)− f1) + oP (1),

where f1 ∈ F is introduced in A2. By A1, the first RHS term in the above equation converges in distribution
to the centered Gaussian distribution with variance σ2

1 . Moreover, by a classical argument of empirical
processes theory (van der Vaart, 1998, Lemma 19.24), A1 and the convergence of D(P ∗n) to f1 in A2 imply
that the second RHS term converges to 0 in probability. This completes the sketch of proof.

7.2 Proof of Eq. (0.8) and (0.9)

By construction of P sΠ , the number of observations sampled from each V -stratum is deterministic. In other
words, it holds for each 1 ≤ v ≤ ν that VarP sΠ

[
PHT
n `v

]
= 0. In light of (0.2), this is equivalent to

∑
i∈Iv

(
1

Πii
− 1

)
=

∑
i 6=j∈Iv

|Πij |2

ΠiiΠjj
(0.15)

for each 1 ≤ v ≤ ν.
Now, since Vi 6= Vj implies Πij = 0 by construction, (0.2) rewrites

N2 VarP sΠ
[
PHT
n f

]
=

N∑
i=1

(
1

Πii
− 1

)
f2(Oi)−

∑
1≤i 6=j≤N

|Πij |2
f(Oi)

Πii

f(Oj)

Πjj

=

ν∑
v=1

∑
i∈Iv

(
1

Πii
− 1

)
f2(Oi)−

ν∑
v=1

∑
i 6=j∈Iv

|Πij |2

ΠiiΠjj
f(Oi)f(Oj).

Because O1, . . . , ON are conditionally independent given (V1, . . . , VN ) and since each factor |Πij |2/ΠiiΠjj is
deterministic given i, j ∈ Iv, the previous equality and (0.15) then imply

N2EP0

[
VarP sΠ

[
PHT
n f

]]
= EP0

 ν∑
v=1

f2(v)
∑
i∈Iv

(
1

Πii
− 1

)
−

ν∑
v=1

f̄2(v)
∑

i 6=j∈Iv

|Πij |2

ΠiiΠjj


=

ν∑
v=1

(
f2(v)− f̄2(v)

)
EP0

[∑
i∈Iv

(
1

Πii
− 1

)]
. (0.16)

For each 1 ≤ v ≤ ν,

EP0

[∑
i∈Iv

(
1

Πii
− 1

)]
=

(
N

nh(v)
− 1

)
EP0

[card(Iv)] =

(
N

nh(v)
− 1

)
NP0(V = v).

Therefore, (0.16) yields
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EP0

[
VarP sΠ

[
PHT
n f

]]
=

1

n

ν∑
v=1

(
f2(v)− f̄2(v)

)
h−1(v)P0(V = v)− 1

N

ν∑
v=1

(
f2(v)− f̄2(v)

)
P0(V = v)

=
1

n
EP0

[
VarP0

[f(O)|V ]h−1(V )
]
− 1

N
EP0

[VarP0
[f(O)|V ]] ,

as stated in (0.8).
We now turn to (0.9). Since EP sΠ

[
PHT
n f

]
= PNf , it holds that

VarP0P sΠ
[√
n(PHT

n − P0)f
]

= nEP0

[
EP sΠ

[
(PHT
n f)2

]]
− n

(
EP0P sΠ

[
PHT
n f

])2
= nEP0

[
VarP sΠ

[
PHT
n f

]]
+ nVarP0

[PNf ]

= nΣΠ
h (f, f) +

n

N

(
VarP0

[f(O)]− EP0
[VarP0

[f(O)|V ]]
)
,

where the last equality follows from (0.8). This completes the proof.

7.3 Proof of Proposition 0.3

Let us first state the so called Soshnikov conditions (Soshnikov, 2000). A function f of O drawn from P0

meets them if

N2 VarP sK
[
PHT
n f

]
goes to infinity, (0.17)

max
1≤i≤N

K−1ii f(Oi) = o
(
N2 VarP sK

[
PHT
n f

])ε
for all ε > 0, (0.18)

NEP sK
[
PHT
n |f |

]
= O

(
N2 VarP sK

[
PHT
n f

])δ
for some δ > 0. (0.19)

Conditions (0.17), (0.18) and (0.19) are expressed conditionally on a trajectory (Oi)i≥1 of mutually inde-
pendent random variables drawn from P0. We denote Ω(f) the set of trajectories for which they are met.
By assumption, P0(Ω(f)) = 1 for all f ∈ F ′. It is worth emphasizing that this assumption may implicitly
require that the ratio n/N go to zero sufficiently slowly, as evident in the sketch of proof of Proposition 0.4.
Since F ′ is countable, Ω ≡ ∩f∈F ′Ω(f) also satisfies P0(Ω) = 1.

Set f ∈ F ′ and define ZN (f) ≡ (VarP s
[
PHT
n f

]
)−1/2(PHT

n − P0)f . On Ω, the characteristic function

t 7→ EP sK
[
eitZN (f)

]
converges pointwise to t 7→ e−t

2/2. Therefore, t 7→ EP0

[
EP sK

[
eitZN (f)

]
1{Ω}

]
also

does. Since P0(Ω) = 1, this implies the convergence in distribution of ZN (f) to the standard normal law
hence, by Slutsky’s lemma, that of

√
n(PHT

n − P0)f to the centered Gaussian law with a variance equal to
the limit in probability of nVarP sK

[
PHT
n f

]
. The asymptotic tightness of

√
n(PHT

n − P0)f follows. Finally,
applying the Cramér-Wold device yields the convergence to a centered multivariate Gaussian law of all
marginals

√
n(PHT

n − P0)(f1, . . . , fM ) with f1, . . . , fM ∈ F ′.
The second step of the proof hinges on the following concentration inequality (Pemantle and Peres, 2014,

Theorem 3.1): if C(f) ≡ max1≤i≤N |K−1ii f(Oi)| then, for all t > 0,

P sK
[
|(PHT

n − P0)f | ≥ t
]
≤ 2 exp

(
−nt2/8C(f)2

)
. (0.20)

This statement is conditional on O1, . . . , ON . Note that there exists a deterministic upper-bound to all C(f)s
because F ′ is uniformly bounded and because the first order inclusion probabilities are bounded away from
0 uniformly in N . We go from the convergence of all marginals to A1 by developing a so called chaining
argument typical of empirical processes theory. The argument builds upon (0.20) and the assumed finiteness
of the bracketing entropy of F ′ with respect to the supremum norm. This completes the sketch of the proof.

7.4 Proof of Proposition 0.4

Consider f ∈ F \ F ′, a function of O drawn from P0 which depends on V only. It holds that
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PHT
n f =

1

n

ν∑
v=1

f(v)h−1(v)nv,

where nv =
∑N
i=1 ηi`v(Vi) = nh(v)Nv/N with Nv ≡

∑N
i=1 `v(Vi) (each 1 ≤ v ≤ ν). Therefore, the above

display rewrites PHT
n f = PNf , hence VarP sΠ

[
PHT
n f

]
= 0. Moreover, the CLT for bounded, independent and

identically distributed observations implies
√
n(PHT

n − P0)f =
√
n/N ×

√
N(PN − P0)f = OP (

√
n/N) =

oP (1) .
Consider now f ∈ F ′. We wish to prove that f meets the Soshnikov conditions and that nVarP sΠ

[
PHT
n f

]
converges in P0-probability to ΣΠ

h (f, f), which is positive because f ∈ F ′. When relying on P sΠ , the LHS
expression in (0.18) rewrites max1≤i≤N Nf(Oi)/nh(Vi) and is clearly upper-bounded by a constant times

N/n. As for the LHS of (0.19), it equals
∑N
i=1 |f(Oi)| and is thus clearly upper-bounded by a constant

times N . Let us now turn to VarP sΠ
[
PHTn f

]
. By construction of P sΠ , the variance decomposes as the

sum of the variances over each V -stratum, each of them being a quadratic form in sub-Gaussian, indepen-
dent and identically distributed random variables conditionally on (V1, . . . , VN ). Because quadratic forms of
independent sub-Gaussian random variables are known to concentrate exponentially fast around their expec-
tations (see the Hanson-Wright concentration inequality in Rudelson and Vershynin, 2013), VarP sΠ

[
PHTn f

]
concentrates around its expectation (0.8). Consequently, N2 VarP sΠ

[
PHTn f

]
is of order N2/n. It is then clear

that N/n = o((N2/n)ε) for all ε > 0 ensures that f meets the Soshnikov conditions. This holds for instance
if n ≡ N/ loga(N) for some a > 0. Finally, the concentration of VarP s

[
PHT
n f

]
around its expectation also

yields the convergence of nVarP s
[
PHT
n f

]
to ΣΠ

h (f, f) in P0-probability.
At this point, we have shown that

√
n(PHT

n − P0)f converges in distribution to the centered Gaussian
law with variance ΣΠ

h (f, f). The rest of the proof is similar to the end of the proof of Proposition 0.3. This
completes the sketch of proof.
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