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Abstract We design an image quality measure inde-

pendent of contrast changes, which are defined as a

set of transformations preserving an order between the

level lines of an image. This problem can be expressed

as an isotonic regression problem. Depending on the

definition of a level line, the partial order between ad-

jacent regions can be defined through chains, polytrees

or directed acyclic graphs. We provide a few analytic

properties of the minimizers and design original op-

timization procedures together with a full complexity

analysis. The methods worst case complexities range

from O(n) for chains, to O(n log n) for polytrees and

O
(
n2
√
ε

)
for directed acyclic graphs, where n is the num-

ber of pixels and ε is a relative precision. The proposed

algorithms have potential applications in change detec-

tion, stereo-vision, image registration, color image pro-

cessing or image fusion. A C++ implementation with

Matlab headers is available at https://github.com/

pierre-weiss/contrast_invariant_snr.
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1 Introduction

Invariance to illumination conditions is often a key el-

ement for the success of image processing algorithms.

The whole field of mathematical morphology is based

on contrast invariance [1]. The structural similarity in-

dex [2] - one of the most popular image quality mea-

sures - also strongly relies on a partial invariance to

illumination changes.

1.1 Contrast invariant SNR

The main objective of this work is to measure the simi-

larity between two images u0 : Ω → R and u1 : Ω → R,

where Ω is a discrete domain, in a way robust to illu-

mination changes. To this end, we propose to solve the

following variational problem:

∆T (u1, u0) = min
T∈ T

‖u0 − T (u1)‖22, (1)

where T is a family of transforms modeling illumina-

tion changes. Designing a family T reproducing faith-

fully variations of illuminations is probably out of reach

and would most likely turn out to be of little interest

from a computational point of view. Here, we will fo-

cus on simple families T that preserve the level-lines of

the image u1 as well as a partial order between them.

This amounts to comparing images independently of

local contrast changes, as defined in [3]. The contrast

invariant signal-to-noise-ratio is then defined by:

SNRT (u1, u0) = −10 log10(∆T (u1, u0)/‖u0‖22). (2)

1.2 Potential applications

In this paper, we primarily focus on the basic properties

of the model and exemplify its use as an image qual-

https://github.com/pierre-weiss/contrast_invariant_snr
https://github.com/pierre-weiss/contrast_invariant_snr
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ity metric. It can however be used in more advanced

applications mentioned below.

Change detection Let T ? denote the optimal transform

in problem (1). The image u? = T ?(u1) has the same

level-lines (i.e. geometry) as u1, with the contrast of u0.

The difference image u0−T ?(u1) contains the “objects”

in u0 which are not in u1. The proposed tool can there-

fore be used as a contrast invariant change detection

algorithm. We show a few difference images in Fig. 6.

Let us mention that a similar idea was proposed in [4]

and [5]. It was however based on a purely morphological

approach, while the proposed method is both morpho-

logical and variational.

Inverse problems The image T ?(u1) is the projection

of u0 on a convex set. Projections and more generally

proximal operators have proved to be key tools for the

resolution of inverse problems [6,7]. The proposed algo-

rithms may therefore be used as a basic brick in more

advanced inverse problems, where a natural regularizer

is to impose a given topographic map. The proposed

method hence possesses potential applications in differ-

ent fields such as image fusion [8] or color image pro-

cessing [8–10].

Let us exemplify how it could be used for panchro-

matic and multi-spectral image fusion. In this appli-

cation, we are given a high resolution image u0 and a

set of low resolution images vi at different wavelengths.

The aim is to construct a high resolution multi-spectral

image. If the wavelengths of ui are not too far from the

wavelength of u0, we may assume that no local con-

trast inversion occur. Fusing u0 and an image ui might
therefore be achieved by solving:

min
u∈T (u0)

1

2
‖Hu− ui‖22,

where H is a down-sampling operator and where T (u0)

is the set of admissible images.

Image registration Given two images u1 and u0 coming

from different modalities, or from the same modality

with different stainings, we may try to register them by

solving a problem of the form:

inf
d∈D

∆T (u1 ◦ d, u0), (3)

where D is a family of admissible deformations and ∆T
is one of the measures proposed in the paper. This idea

is similar to an idea developed in [11], with the impor-

tant difference that we promote level-lines with an iden-

tical partial order, while [11] only focussed on aligning

level-lines, with no care for their relative orders.

Optical flow The same idea can be applied to estimate

the optical flow, where changes of illuminations need to

be taken with care (see e.g. section 6.3.3 of [12]). Under

the assumption that the deformation d in equation (3)

is small, we may linearize u1◦d as u1◦d ' u1+∇u1�v,

where v is a displacement field of small amplitude and

where ∇u1� v is the image corresponding to the pixel-

wise scalar product between v and ∇u1. This simplifi-

cation leads to problems of the form:

inf
v∈V

∆(u1 +∇u1 � v, u0), (4)

where V is a set of admissible displacements. If the set

V is convex, the problem (4) is convex too and could be

solved efficiently using first-order methods (see e.g. [12])

combined with the tools provided later in this paper.

We leave the practical investigation of this idea for fu-

ture works.

1.3 Isotonic regressions

After a few algebraic manipulations, the variational prob-

lem (1) can be turned into an isotonic regression prob-

lem with a structure that depends on the family of

transforms T . Isotonic regressions have been introduced

in the context of statistics in the 1950’s [13]. Letting

(V,E) denote the vertices and edges of a directed acyclic

graph (DAG) and y ∈ R|V | denote a label of the graph,

they can be written as follows:

min
x∈R|V |

xj−xi≥0,∀(i,j)∈E

d(x, y), (5)

where d : R|V | × R|V | → R is a convex function mea-

suring the closeness from x to y.

Solving (5) efficiently is a rather involved problem

despite its convexity. It has received a considerable at-

tention and significant progresses have been achieved

recently [14–20]. The existing methods may be exact

or approximate and their complexity depends on the

structure of the directed acyclic graph. In our work, we

will consider 3 different types of graphs: i) linear graphs

with a single orientation, ii) polytrees and iii) generic

directed acyclic graphs.

The case of linear graphs with a single orientation is

well understood and can be solved in O(|V |) operations

using pool adjacent violators algorithms for instance

[16].

To the best of our knowledge, the case of poly-

trees has not been studied in the literature yet, even

though the case of directed trees is well understood [17].

In a recent work, Kolmogorov, Pock and Rolinek [21]

introduced efficient dynamic programming approaches
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to solve families of convex problems defined on trees.

Building upon this work, we design algorithms with a

complexity O(|V |) when the graph is linear with edges

oriented in arbitrary directions. We also design an algo-

rithm with complexity O(|V | log |V |), when the graph

is a polytree (i.e. a tree with edges in arbitrary ori-

entations). To the best of our knowledge, this is the

first time that these problems are considered. Combin-

ing these tools with the Fast Level Set Transform [22]

of Guichard and Monasse, we can solve an instance

of our main problem (1) with a worst-case complex-

ity O(n log n), where n is the number of pixels in the

image.

Finally, we introduce a simple first order algorithm

in the case of arbitrary directed acyclic graphs, to-

gether with a full complexity analysis. The proposed

method has some comparative advantages with the cur-

rent state-of-the-art approaches [18,20] both from a the-

oretical and practical point of view.

2 Existing approaches

Various approaches are commonly used to compare two

images u0 and u1 independently of illumination varia-

tions. We briefly describe a few of them below.

2.1 Contrast equalization

Probably the most common approach consists in equal-

izing histograms, i.e. to change the gray-values of u1
in such a way that the resulting histogram matches

approximately that of u0 (see e.g. [23, 24]). This ap-

proach suffers from the fact that the image geometry is

completely forgotten: histograms only account for gray-

level distributions and not geometrical features such as

edges, textures,...

2.2 Mutual information

Mutual information has been popularized in the field

of image registration [25, 26] to compare images. In its

simplest form, the mutual information treats the gray

values of two images u0 and u1 as random variables X

and Y with values in a discrete set Λ. This measure is

then defined as:

H(X,Y ) =
∑

x∈Λ,y∈Λ
P (x, y) log

(
P (x, y)

P (x)P (y)

)
,

where P (x, y) denotes the probability of the event X =

x and Y = y, P (x) the probability of the event X = x

and P (y) the probability of the event Y = y.

Mutual information is based solely on the gray level

distributions and does not account for the image ge-

ometry (that could be captured by the gradient for in-

stance). It is invariant to affine transforms of the pixels

values, but not to more complex nonlinear mappings

of the gray levels. More generally, the measure is not

invariant to local contrast changes as defined in this

paper (i.e. changes that can affect distant pixels in a

different manner). In addition, the mutual information

H(X,X) of two identical images is equal to the entropy

of X which varies from an image to another, while we

could expect from a metric to yield an identical value.

2.3 Optimal linear and affine maps

The set T in problem (1) can be replaced by any class of

transformations that describe changes of illuminations.

Probably the simplest classes T are the set of linear

maps T (u) = au or the set of affine maps T (u) = au+b,

where a and b are scalars. The solution of both problems

can be computed explicitly in terms of u0 and u1. The

same approach can be used locally and the L2-norm

can be replaced by a weighted L2-norm. This idea is

the basis of the Structural Similarity Index Measure

(SSIM).

2.4 Optimal global contrast change

A richer set of transformations T is that of global con-

trast changes. Two images u0 and u1 are said to differ

by a global contrast change if there exists a non decreas-

ing function T : R → R such that T ◦ u1 = u0, where

the composition T ◦ u1 has to be understood pixelwise.

Let

Uglo = {u = T ◦ u1, T : R→ R, non decreasing} (6)

Finding the best global contrast change amounts to

solving:

∆glo(u1, u0) = min
u∈Uglo

1

2
‖u− u0‖22. (7)

We let u?glo denote the solution of (7) and

SNRglo(u1, u0) = −10 log10(∆glo(u1, u0)/‖u0‖22)

denote the globally contrast invariant SNR. This ap-

proach seems to be vastly ignored. In fact we only found

its description in the excellent lecture notes of Lionel

Moisan [27] and we will therefore quickly recall its prin-

ciple below.

In what follows, we let

Uglo = {u = T ◦ u1, T : R→ R, non decreasing}. (8)
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and Λ = (λi) denote the set of gray-scale values u1(Ω)

sorted in ascending order. The infinite dimensional prob-

lem (7) can be turned to an optimization of a vector

α ∈ R|Λ|. We first define the discrete level lines of u1
by ρi = {x ∈ Ω, u1(x) = λi} and get∑
x∈Ω

(T (u1(x))− u0(x))
2

=
∑

1≤i≤|Λ|

∑
x∈ρi

(T (λi)− u0(x))2.

Letting

S =
{
α ∈ R|Λ|, αi+1 − αi ≥ 0, ∀1 ≤ i < |Λ|

}
,

problem (7) then becomes:

min
α∈S

∑
1≤i<|Λ|

∑
x∈ρi

(αi − u0(x))2, (9)

where αi = T (λi). We will use the following result re-

peatedly in the paper:

Lemma 1 Let βi = ū0(ρj) := 1
|ρi|
∑
x∈ρi u0(x) be the

mean of u0 over the region ρi. We have for all αi ∈ R:∑
x∈ρi

(αi − u0(x))2 = |ρi|Varρi(u0) + |ρi|(αi − βi)2, (10)

where Varρi(u0) := 1
|ρi|
∑
x∈ρi(βi − u0(x))2 and where

|ρj | denotes the cardinality of ρj.

Proof∑
x∈ρi

(u0(x)− αi)2

=
∑
x∈ρi

(u0(x)− βi + βi − αi)2

=
∑
x∈ρi

(u0(x)− βi)2 + (βi − αi)2 + 2(u0(x)− βi)(βi − αi)

= |ρi|Varρi(u0) + |ρi|(βi − αi)2.

Therefore Problem (7) can be rewritten as:

min
α∈S

∑
1≤i<|Λ|

|ρi|(αi − βi)2 + |ρj |Varρj (u0), (11)

The problem (11) is a simple case of isotonic re-

gression [15,16] on a linear graph. This problem can be

solved in O(n) operations using active sets type meth-

ods called pool adjacent violators. Unfortunately, global

contrast changes do not capture all the complexity of il-

lumination changes: in most applications, the variations

are local and we will therefore introduce more complex

sets of transformations in the next section.

3 Local contrast changes using a tree

3.1 The tree of shapes

Mathematical morphology emerged with the works of

Matheron [28]. Therein, he proposed to analyze and

process an image u by operating on their upper level-

sets χ+
λ = {x ∈ Ω, u(x) ≥ λ} and lower level-sets

χ−λ = {x ∈ Ω, u(x) < λ}. The level-sets are geomet-

rical features invariant to global contrast changes. In

order to obtain a representation invariant to local con-

trast changes, it is possible to consider their saturated
1 connected components called shapes. This idea was

proposed and detailed thoroughly in [3, 29] in the con-

tinuous setting and in [22,30] in the discrete one.

Let (ωi)i∈I denote the set of shapes, i.e. the set of

saturated connected components of the lower and up-

per level-sets. In the discrete setting and under suitable

choices of connexity 2, it can be shown that the family

of shapes (ωi)i∈I satisfy the following inclusion rela-

tionships:

For i 6= j, either ωi ⊂ ωj or ωj ⊂ ωi or ωj∩ωi = ∅. (12)

This allows to embed the shapes in a tree called the

tree of shapes. This idea goes back to Kronrod [31] and

we refer the interested reader to the book [29] for more

insight on its properties in the continuous setting. The

vertices of the tree coincide with the shapes. A shape

ωj is a descendant of ωi in the tree if ωj ⊂ ωi. This

property allows to define the set of edges E, encoding

the inclusion relationship between shapes. An edge e is

a pair of indices (i, j) indicating that ωj is a child of ωi.

An illustration of this idea is proposed in Fig. 1. In this

figure, we added arrows to the tree, indicating whether

the difference of gray values between consecutive shapes

is positive or negative.

In the discrete setting and for 2D images, the tree of

shapes can be constructed in O(n log n) operations us-

ing the so-called fast level-set transform (FLST) [22]. In

arbitrary dimensions, the complexity remains moderate

if the images are quantized [30].

3.2 Local contrast changes on a tree

The level-set transform can be seen as a decomposition

of the image u of the following form:

u = Lγ :=
∑
i∈I

γisi1ωi , (13)

1 The saturation of a set S is constructed by filling the
holes of S. A hole is defined as a connected component of the
complementary of S which is in the interior of S.
2 One should choose the 4 connexity for the upper-level sets

and the 8 connexity for the lower level-sets (or the reverse)
to satisfy a discrete version of Jordan’s theorem [22]
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0

1
2 2

(a) An image

ω0

ω1

ω2

ω3

(b) Its tree of shapes

Fig. 1: An example of tree of shapes

where I is a set of cardinality |I| = |V | ≤ n, (γi) ∈ R|I|+

is a vector of nonnegative coefficients encoding the jump

between a shape and its parent and si ∈ {−1, 1} is a

sign vector indicating whether ωi is a connected com-

ponent of a lower or upper level-set of u. Unfortunately,

the decomposition of an image using the linear mapping

L : γ → u in equation (13) is not computationally at-

tractive. Indeed, if L is stored as a sparse matrix, it can

contain up to O(n2) nonzero coefficients since a single

pixel can belong to O(n) shapes.

A more efficient reconstruction formula requires us-

ing the level-lines instead of the level-sets.

Definition 1 (Level-lines on a tree) Let children(i)

denote the indices of the children of ωi. The i-th level-

line ∂ωi is defined by ∂ωi = ωi\(∪j∈children(i)ωj)3.

The set of level-lines (∂ωi)i∈I forms a partition of the

image domain Ω and we have the following decomposi-

tion formula:

u = Rα :=
∑
i∈I

αi1∂ωi . (14)

where αi = u|∂ωi
is the value of u restricted to the

level-line. A matrix-vector product with R has a com-

plexity O(n) since the level-lines partition Ω. The rela-

tionship between α and γ is simply αj − αi = γjsj , for

all (i, j) ∈ E since γ defines the jump between adjacent

level-lines. We can now introduce the first definition of

a local contrast change.

Definition 2 (Local contrast change on a tree)

Let u1 denote a reference image, (E, V ) denote its tree

of shapes and R denote its associated reconstruction

operator. An image u is said to differ from u1 by a local

contrast change on a tree (LCCT) if it can be written

as u = Rα, where (αj − αi)sj ≥ 0 for all (i, j) ∈ E.

In words, this means that u1 and u should have the

same level-lines and that the difference between the

gray levels of connected level-lines should have the same

sign.

3 This is a slight abuse of notation since a level-line defined
this way can have a nonempty interior.

We are now ready to convert the problem (1) into an

isotonic regression problem. As in the previous section,

we let

Uloc1 = {u differs from u1 by a LCCT}, (15)

∆loc1(u1, u0) = min
u∈Uloc1

1

2
‖u− u0‖22,

SNRloc1(u1, u0) = −10 log10

(
∆loc1(u1, u0)

‖u0‖22

)
,

and u?loc1 denote the solution of (15). Letting Λ = {α ∈
R|I|, (αj − αi)sj ≥ 0,∀(i, j) ∈ E}, we get the following

problem:

min
u∈Uloc1

1

2
‖u− u0‖22 (16)

= min
α∈Λ

1

2
‖Rα− u0‖22 (17)

= min
α∈Λ

1

2
‖
∑
i∈I

αi1∂ωi
− u0‖22 (18)

= min
α∈Λ

1

2
|∂ωi|Var∂ωi

(u0) +
1

2

∑
i∈I
|∂ωi|(αi − βi)2, (19)

where we used Lemma 1 with βi := ū0(∂ωi). By skip-

ping the constant terms 1
2 |∂ωi|Var∂ωi

(u0), this problem

can still be rewritten as:

min
α∈R|I|

∑
i∈I

fi(αi) +
∑

(i,j)∈E

fi,j(αj − αi), (20)

with fi(αi) = 1
2 |∂ωi|(αi − βi)

2 and

fi,j(z) =

{
0 if zsj ≥ 0

+∞ otherwise.
(21)

The equation (20) corresponds to an isotonic regres-

sion problem on a polytree, for which we will design an

efficient algorithm in the next section.

3.3 A dynamic programming approach

The review paper [32] shows that problems of the form

(20) can be solved efficiently using dynamic program-

ming, when the values of α are restricted to a set of

finite cardinality. In [21], the authors show that this re-

striction is not necessary provided that the functions

fi and fi,j have a favorable convex structure. They

give a particular attention to combinations of piecewise

quadratic and piecewise linear functions. This is very

close to our setting since fi is quadratic and that the

function fi,j in (21) can be seen as a degenerate piece-

wise linear function with an infinite slope. We sketch

the principle of the approach below.
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We let Mi(x) denote the optimal value of the energy

restricted to the subtree rooted at i, and fixing the value

x at node i. This energy function can be computed di-

rectly on the leaves since it only contains the unary

terms fi. It can then be propagated to the parents by

using the recursion formula:

Mi(x) = fi(x) +
∑

j∈children(i)

(Mj�fi,j)(x), (22)

where the symbol � stands for the inf-convolution de-

fined by:

(Mj�fi,j)(x) = inf
z∈R

Mj(z) + fi,j(x− z). (23)

The dynamic programming approach works by first eval-

uating recursively the functions Mi on each node in a

first pass from the leaves towards the root. Then, the

optimal solution can be obtained using a backpropaga-

tion: the optimal value x?r at the root r is obtained by

x?r = argminx∈RMr(x). The rest of the values can be

computed using the recursion:

x?j = argmin
x∈R

Mj(x) + fi,j(x− xi), (24)

for all j ∈ children(i).

Making this general principle practical and efficient

requires many subtelties which are well described in

[21]. We review the main elements below:

– First, the messages Mi can be shown to be piecewise

quadratic, with a number of pieces that does not ex-

ceed the number of nodes in the tree. Since the func-

tions Mi are used only for minimization purposes,

it is more practical to encode them through their

subgradients mi which are piecewise linear. Hence,

they can be simply encoded as a finite sequence of

slopes and breakpoints.

– In equation (22), the inf-convolution and the sum-

mation of the messages need to be computed in an

efficient manner. In practice, this requires using an

advanced data structure called double ended prior-

ity queue [33]. In our codes, we simply used a dou-

ble ended queue from the standard C++ library,

since we could find no open-source implementation

allowing to do all the necessary operations (min,

max, merge, removemin, removemax, insertmin, in-

sertmax).

– The messages mi are not stored on each node of

the tree, since it would require storing up to O(n2)

numbers. In practice it suffices to store the location

of the minimum of Mi, which is the only information

necessary in the back-propagation.

Using these tricks, it can be shown that the method’s

worst case complexity is O(|I| log |I|). Our current im-

plementation has a worst case complexity in O(|I|2)

since we did not use a double ended priority queue, but

it turns out to have a near linear complexity in prac-

tice. This is due to the fact that the number of break-

points does not scale as n for practical problems, but

remains small compared to n. We illustrate the prac-

tical method’s behavior in Fig. 2. The points on the

curves represent the average computing time evaluated

by comparing 16 pairs of natural images. As can be

seen on the green dash-dotted curve, the behavior of

the dynamic programming algorithm is slightly worst

than the one of the tree of shapes for large image sizes,

but is still very efficient. For instance, an image of size

1000 × 1000 is treated in 0.7 seconds on average using

a single core of a personal laptop.

10
4

10
5

10
6

10
7

10
8

# pixels

10
-3

10
-2

10
-1

10
0

10
1

10
2

ti
m

e
 i
n

 s
e

c
o

n
d

s

Tree of shapes

Dynamic programming

Total

Fig. 2: Log-log plot of the computing times in seconds

w.r.t. the number of pixels of the image. Red: time to

construct the tree of shapes. Green: time to solve the

isotonic regression via dynamic programming. Blue: to-

tal time for the algorithm (including copies of trees,

arrays, etc...).

3.4 Comparison to the state-of-the-art

Nearly all the ideas described above are present in the

paper [21]. The only difference is that we consider de-

generate functions fi,j with an infinite slope, but the

theoretical analysis remains unchanged. Our contribu-

tion on the side of dynamic programming is therefore

mostly to point out that the dynamic programming ap-

proach from [21] allows to solve many instances of iso-

tonic regressions using a single algorithm. Some of these

instances were not considered previoulsy in the litera-

ture. We list the improvements below:
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0

1 2 1

Fig. 3: Left: a simple image u1. Right: a level-line in the

tree of shapes has two disconnected components.

– We exactly solve isotonic regression problems on lin-

ear graphs with arbitrary orientations in O(|I|) op-

erations. This seems to be a novel result.

– We exactly solve isotonic regression problems on

polytrees in O(|I| log |I|) operations. This seems to

be a novel result.

– Using the algorithm in section 4.3 of [21], it can be

shown that isotonic regressions with an `1 data fit-

ting term on a linear graph can be solved inO(|I| log-

log |I|) operations, while the best existing complex-

ity was O(|I| log |I|) [34].

To finish, let us mention that our C++ implemen-

tation with a Matlab header is seemingly the first one

to deal with isotonic regression on trees and polytrees.

4 Local contrast changes using a DAG

4.1 Local contrast changes using a DAG

The definition of level-lines and local contrast changes

provided in the previous section has the important ad-

vantage of yielding a tree structure, which allows de-

signing very efficient algorithms. In some cases, this def-

inition might however be too global. This is illustrated

in Fig. 3. In this picture, we see that two disconnected

regions might be linked together when a level-set is sep-

arated by one of its children. In practice we may want

to design an algorithm able to set different values to the

left and right parts of the level-line. This is the purpose

of this section.

4.1.1 Definitions

We endow the image domain Ω with a neighborhood

relationship N : Ω → P(Ω). We assume that N is

symmetric, meaning that x ∈ N (y)⇒ y ∈ N (x) for all

y ∈ Ω. We will focus on the 4-connectedness to establish

theoretical properties of the model and in the numerical

experiments. For each pixel x ∈ Ω, the set N (x) is the

set of all neighbors of x. We assume that |N (x)| ≤ cmax

for all x, with cmax = 4 when using the 4-connectedness

denoted N4. We can now introduce a second definition

of level-lines and local contrast changes.

Definition 3 (Level-lines on a DAG) The set of

level-lines (∆i)1≤i≤p of an image u1 is the set of N -

connected component of {x ∈ Ω, u1(x) = λ} for λ ∈
u1(Ω).

The set of all level-lines (∆i)1≤i≤p partitions the

image domain Ω and has a cardinality p ≤ n. In what

follows, the notation ∆i
N∼ ∆j means that the level-lines

are adjacent, i.e. that there exists x ∈ ∆i and y ∈ ∆j

such that y ∈ N (x).

Definition 4 (Local contrast changes on a DAG

) Let u and u1 denote two images. The image u is said

to differ from u1 by a local contrast change on a DAG

(LCCD) if u|∆i
is constant for all i and if the gray levels

between adjacent pixels have the same order, i.e. for all

x
N∼ y:

(u(x)− u(y)) · (u1(x)− u1(y)) ≥ 0. (25)

As in the previous section, we let

Uloc2 = {u differs from u1 by a LCCD}, (26)

∆loc2(u1, u0) = min
u∈Uloc2

1

2
‖u− u0‖22,

SNRloc2(u1, u0) = −10 log10

(
∆loc2(u1, u0)

‖u0‖22

)
,

and u?loc2 denote the solution of (26).

4.1.2 Constructing the graph

From an algorithmic point of view, we need to construct

the sets (∆i)1≤i≤p and a directed acyclic graph G =

(V,E) from the image u1. The vertices V = (v1, . . . , vp)

of this graph represent the sets (∆i)1≤i≤p. The set E =

(e1, . . . , em) contains the edges of the graph. The edge

ek ∈ E is an ordered pair of vertices written ek =

(i(k), j(k)) going from vertex i(k) to vertex j(k). Such

an edge exists if the sets∆i(k)
N∼ ∆j(k) and if u1(∆j(k)) >

u1(∆i(k)). The graph G can be encoded through an in-

cidence matrix (or more precisely its transpose) A ∈
Rm×p. Each row of this matrix describes an edge with

the convention A(k, i(k)) = −1 and A(k, j(k)) = 1 and

all the other coefficients of row k are null. A simple 3×3

image u1, the associated regions (∆i)1≤i≤4, graph and

incidence matrix are represented in Figure 4.

The list of regions (∆i)1≤i≤p can be constructed in

O(n) operations using flood fill algorithms. This yields a

labeling of the regions (∆i)i. The graph or matrix A can

be constructed in O(n log n) operations. The idea is to

first scan all the edges in N to construct a preliminary

matrix Ã with repetitions. For instance, the region ∆1

is connected three times to ∆3 (see arrows in Figure
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2 2 0

0 1 1

0 0 1

(a) Image u1

∆2

∆1

∆4

∆3

(b) Connected components

1

2

3

4

(c) Associated graph

A =


−1 1 0 0
−1 0 1 0
0 1 −1 0
0 1 0 −1
0 0 1 −1


(d) Transpose of the inci-
dence matrix

Fig. 4: Illustration of the graph construction

4a), so that after the first scan, the matrix Ã contains

three identical rows. The complexity of building this

initial matrix is O(cmaxn). Then, the repetitions can be

suppressed in O(n log n) operations. First, the array can

be rearranged by putting the identical rows adjacently

(this can be achieved with a quicksort algorithm), then,

the repetitions are removed.

4.1.3 The optimization problem

With these definitions, the problem (1) can be rephrased

as follows:

min
u∈Uloc2

1

2
‖u0 − u‖22, (27)

where Uloc2 is the set of images satisfying Definition 4:

Uloc2 = {u : Ω → R, u|∆i
= αi, 1 ≤ i ≤ p,Aα ≥ 0} .

Hence, we can simplify (27) as follows:

min
u∈Uloc2

1

2

∑
x∈Ω

(u0(x)− u(x))2

= min
u∈Uloc2

1

2

p∑
i=1

∑
x∈∆i

(u0(x)− αi)2

= min
α∈Rp,Aα≥0

1

2

p∑
i=1

|∆i|(βi − αi)2 + |∆i|Var∆i
(u0),

where βi = ū0(∆i). By letting w ∈ Rp denote the vec-

tor with components wi = |∆i|, W = diag(w) and by

skipping the constant terms |∆i|Var∆i
(u0), problem (1)

finally simplifies to:

min
Aα≥0

1

2
〈W (α− β), α− β〉. (28)

Problem (28) is an isotonic regression problem on a

DAG. Its solution α? is unique since it is the projection

of β onto a closed convex set. We will design a simple

first order solver in the next section.

4.2 A first order solver

The main idea is to exploit the strong convexity of the

squared l2-norm to design a first order algorithm on

the dual. Nesterov type accelerations [35] make this

method particularly relevant for large scale problems

[36]. Proposition 1 summarizes the nice properties of

the dual problem.

Proposition 1 The dual problem of (28) reads:

sup
λ≤0

D(λ) = −1

2
‖W−1/2ATλ‖22 + 〈λ,Aβ〉. (29)

Let α(λ) = β−W−1ATλ, then any primal-dual solution

(α?, λ?) satisfies α? = α(λ?). The function D is differ-

entiable with an L-Lipschitz continuous gradient and

L = λmax(AW−1AT ). Finally, the following inequality

holds for any λ ∈ Rm− 4:

‖α(λ)− α?‖22 ≤ 2(D(λ?)−D(λ)). (30)

We refer the reader to the Appendix A for the proofs.

In addition, the Lipschitz constant L can be bounded

above by a constant.

Proposition 2 The Lipschitz constant L satisfies L ≤
4cmax.

The problem (29) has a simple structure, compatible

with the use of accelerated projected gradient ascents

methods [37] described in Algorithm 1.

Algorithm 1 Accelerated proximal gradient ascent

method.

1: input: initial guess µ(1) ∈ Rm, τ = 1/4cmax and Nit.
2: for k = 1 to Nit do
3: λ(k) = min

(
µ(k) + τ∇D(µ(k)), 0

)
.

4: µ(k+1) = λ(k) + k−1
k+2

(λ(k) − λ(k−1)).

5: α(k) = α(λ(k)).
6: end for

Proposition 3 Algorithm 1 provides the following guar-

antees:

‖α(k) − α?‖22 ≤
8cmax‖λ(0) − λ∗‖22

(k + 1)2
, (31)

4 This result can be strengthened slightly, we refer the in-
terested reader to the example 3.1 in [7] for more details.
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where λ? is any solution of the dual problem (29). The

complexity to obtain an estimate α(k) satisfying ‖α(k)−
α?‖2 ≤ ε is bounded above by

O
(m
ε
‖λ(0) − λ?‖2

)
operations. (32)

4.3 Complexity analysis

At this point, the convergence analysis is not complete

since ‖λ(0)−λ?‖2 could be arbitrarily large. In order to

compare the proposed first order method with the in-

terior point method from [20], we need to upper-bound

this quantity. Unfortunately, we did not manage to find

a universal bound. Instead, we propose a detailed com-

plexity analysis in the Appendix B. The main conclu-

sions are given in the following theorem.

Theorem 1 The number of operations needed by Al-

gorithm 1 to reach a relative accuracy of the form:

‖α(k) − α?‖2
‖α(0) − α?‖2

≤ η (33)

varies from O
(
m
η

)
operations for simple problems and

can reach O
(
m2

η

)
operations for adversarial problems.

Unfortunately the worst-case complexity O
(
m2

η

)
would make the proposed approach irrelevant. In the

practical examples that we treated, the ratio ‖λ?‖2
‖ATλ?‖2

however remained bounded by values never exceeding

100, explaining the rather good behavior of the pro-

posed method.

4.3.1 Comparison with existing solvers

Isotonic regression on a DAG received a considerable at-

tention in the optimization literature lately. The recent

reference [20] is seemingly the best approach available

so far. Therein, the authors propose to use an interior

point algorithm [38] exploiting the special graph struc-

ture of the matrix A [39]. Their tailored algorithm pro-

vides a feasible estimate α(ε) of α? satisfying Aα(ε) ≥ 0

with ‖α(ε) − α?‖22 ≤ ε in no more than

O(m1.5 log2 p log(p/ε)) (34)

operations. This worst-case bound is significantly bet-

ter than ours, both in terms of dimension and precision.

The source code is provided here: https://github.

com/sachdevasushant/Isotonic. Unfortunately in our

experiments, the algorithm worked nicely for small m,

but systematically failed to converge when dealing with

the large graphs appearing in our problems. This prob-

lem seems to be related to some instabilities of the cur-

rent fast randomized Laplacian solvers for large scale

graphs [39].

An alternative algorithm was proposed in [18], where

the authors proposed to solve a sequence of linear pro-

grams https://www.tau.ac.il/~saharon/files/IRPv1.

zip to reach the solution by partitioning the graph.

This algorithm has a worst case complexity of order

O(n4) 5, which is far too large. Fortunately, the worst-

case analysis seems to be very pessimistic and the algo-

rithm implemented with MOSEK [40] is much more effi-

cient in practice. From a practical point of view, our ex-

periments on real data showed that: i) the time needed

to find exact solutions on real images was significantly

too large, but ii) the computing times to get approx-

imate solutions are on par with the ones obtained by

our first-order approach for a similar precision with our

method becoming preferable with large images. To our

belief, the main advantage of our approach is that it

is based on simple and portable algorithms, while the

recursive partitioning approach in [18] requires the use

of heavy large scale linear programming solvers such as

MOSEK.

5 Some properties of the models

In this section, we propose to analyze some of the mod-

els properties.

5.1 Local mean preservation

An important property of the three models is that they

promote piecewise constant images and that the value

of the solution on the constant parts are equal to the

mean of u0 over the parts. This is reminiscent of the

total variation regularized solutions which suffer from

staircasing. An important difference however is the mean

preservation: the Rudin-Osher-Fatemi model [41] pre-

serves the mean of the image globally, but the mean on

the constant part is not preserved. This produces an

undesirable bias in the jump set [42]. The models pro-

posed in this paper do not suffer from this drawback as

proved below.

We consider the problem (28) which encompasses

(20) and (11) as specific instances. We let α? denote its

solution.

5 As far as we could judge, there seems to be an inaccu-
racy in the complexity analysis, which is based on the exact
resolution of linear programs using interior point methods
(which are inexact in nature). In practice the implementa-
tion is based on a simplex-type algorithm which is exact, but
with an uncontrolled complexity.

https://github.com/sachdevasushant/Isotonic
https://github.com/sachdevasushant/Isotonic
https://www.tau.ac.il/~saharon/files/IRPv1.zip
https://www.tau.ac.il/~saharon/files/IRPv1.zip
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Theorem 2 (Mean preservation) Let (Bk) denote

the partition of (V,G) into connected components, such

that α?|Bk
is constant and α?|Bk

6= α?|Bj
if Bk is ad-

jacent to Bj. Then

α?|Bk
=

∑
i∈Bk

wiβi∑
i∈Bk

wi
. (35)

The proof is reported to the appendix, see Section C.

Let us mention that the Theorem 2 is rather standard

in the literature of isotonic regressions with a slightly

refined notion of partition [17,43]. It shows that solving

an isotonic regression is equivalent to partitioning the

graph. This is the main idea underlying methods such as

[18]. The following result directly follows from Theorem

2.

Corollary 1 (Global mean preservation and max-

imum principle) Let u? be any of the three solutions

u?glo, u
?
loc1 or u?loc2. Then ū?(Ω) = ū0(Ω) and

min
x∈Ω

u0(x) ≤ min
x∈Ω

u?(x) ≤ max
x∈Ω

u?(x) ≤ max
x∈Ω

u0(x). (36)

5.2 Inclusion of models

The following inclusion relationship holds between the

3 models.

Theorem 3 For any image u1, we have

Uglo ⊆ Uloc1 ⊆ Uloc2. (37)

Hence, SNRglo ≤ SNRloc1 ≤ SNRloc2.

The proof is reported to the appendix, see Section D.

5.3 Regularity properties

The functions ∆glo, ∆loc1 and ∆loc2 can be seen as the

Moreau-Yosida regularization of the indicators of the

sets Uglo, Uloc1, Uloc2. Hence, the following proposition

directly follows.

Proposition 4 (Convexity and regularity) Let u1
denote an arbitrary image. Let ∆ : u 7→ ∆(u) de-

note any of the functionals ∆glo(u1, u), ∆loc1(u1, u) or

∆loc2(u1, u) and u? denote the associated minimizer.

Then:

– The function ∆ is convex and lower semi-continuous.

– The function ∆ is differentiable with a 1-Lipschitz

continuous gradient.

– The gradient of ∆ is given by ∇∆(u) = u− u?.

The proposition 4 may be useful to design numerical

procedures when the metric ∆ is used within a varia-

tional framework.

5.4 Invariance properties

To finish this theoretical study, let us mention a few

properties of the different SNRs introduced in this pa-

per. The notation S(u1, u0) stands for any of the mea-

sures SNRglo, SNRloc1 or SNRloc2.

– The SNRs are invariant to linear and affine trans-

forms of gray levels with a coefficient a ≥ 0, i.e.

S(au1 + b, u0) = S(u1, u0), ∀a ≥ 0. (38)

– They are invariant to global contrast changes, by

the inclusions of models in Theorem 3. For all non

decreasing functions φ : R→ R, we get:

S(φ(u1), u0) = S(u1, u0). (39)

Similarly, SNRloc1 and SNRloc2 are invariant to

local contrast changes on a tree by construction and

by Theorem 3, while SNRloc2 is invariant to local

contrast changes on a DAG by construction.

– The SNRs are not invariant to isometries in the

space domain (i.e. translations and rotations of the

image) due to discretization issues. However, the

continuous counterparts of the measures are invari-

ant.

– For all images u0 and u1, we have S(u1, 0) =∞ and

S(0, u0) = −10 log10(|Ω|VarΩ(u0)/‖u0‖22).

– In general, the SNRs are not symmetric:

S(u1, u0) 6= S(u0, u1).

However, it is possible to make them symmetric by

computing max(S(u1, u0), S(u0, u1)).

5.5 Invariance to real illumination changes

At this point the reader might object that transforma-

tions preserving the level-lines are far from approaching

the complexity of real world illumination changes. This

is definitely a valid objection.

The first counter-example that comes to mind is

probably that of shadows: they create new level-lines

and shapes in the images. Hence they would be de-

tected as changes in our model, while they are simply

due to variations of illuminations. Even if shadows are

neglected, it is quite easy to see that the most realistic

models of image formation based on ray tracing or in-

volving the bidirectional reflectance distribution func-

tion (BRDF) would yield significantly more complex

phenomena. Even in the case of a Lambertian model of

reflectance, it was shown in [5] that only 3D developable

surfaces make the level-lines invariant to illumination
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change. Overall the proposed model only accounts for

very simple models involving occlusions, transparencies

and variations of color and reflectance as basic bricks,

with no care for the differential geometry of the under-

lying 3D scene. We refer the interested reader to [3] for

a more exhaustive treatment of this model.

To our belief, the simplicity of this model also makes

its strength: measuring the similarity of images can be

achieved by solving convex problems with a structure

amenable to efficient numerical algorithms. Using re-

alistic models would most probably lead to hard non-

convex problems with no guaranteed complexity.

5.6 Stability issues

The stability of the topographic maps to digitization

(blur and sampling) has been studied and proved in [3].

The proposed method is however not stable to noise

on the reference image u1. Indeed, the noise creates spu-

rious level-lines which can be amplified by the projec-

tion procedure. This effect is illustrated in Fig. 6. In this

experiment, we compare the two images in Fig. 6a and

in Fig. 6e. The image in Fig. 6e corresponds to u1 and

contains indiscernible level-sets in the background indi-

cated with a red arrow. The projection procedure yields

the image in Fig. 6d. As can be seen there, a significant

amplification of the level sets took place, creating an

unnatural mark on the image.

Mitigating this effect might be performed by denois-

ing the reference image u1. The simplest way to do it is

probably to quantize the image, which also presents the

interest of speeding-up the algorithms by reducing the

graphs sizes. A better option is to use more advanced

denoisers for the reference image u1.

In our numerical experiments, we simply used im-

ages quantized on 255 levels.

6 Numerical results

6.1 Image comparison and change detection

In order to assess the relevance of the proposed ap-

proach for image comparison and change detection, we

took pictures of two scenes - denoted F and G - under

different lighting conditions (window shutter closed or

open). We then evaluated u?glo, u
?
loc1 and u?loc2 as well as

their differences with u0 for the same scenes under dif-

ferent illuminations, or different scenes under a similar

illumination. The results are displayed in Fig. 5 and 6.

As can be seen in these experiments, the SNR between

the two pairs of images is low (below 12dB), due to the

change of illumination and to the change of scene.

As expected from the inclusion of models reported

in Theorem 3, we have SNR ≤ SNRglo ≤ SNRloc1 ≤
SNRloc2. The three algorithms are capable of trans-

forming the gray-levels of u1 so that they match those

of u0 quite well. An important difference between the

models is the area of the constant zones: the image u?glo
for instance has very large areas with constant gray val-

ues while the areas decrease for u?loc1 and even more for

u?loc2. This is once again an effect reflecting the inclusion

of models from Theorem 3.

It is quite instructive to look at the difference im-

ages, especially for the two different scenes from Fig.

6. What is seen there is that the algorithms tend to

outline the objects in the picture u0 which are not in

u1: from one scene to the next, the black doll, the di-

nosaur tail and the white doll’s head moved and this is

exactly what is outlined in the difference, especially in

the models u?loc2 and u?loc1. In Fig. 6i, 6k and 6j, we also

displayed the other possible difference, which consists

in projecting u1 onto a set of images defined through

u0. It is interesting to see that the algorithm outlines

the other changes: the objects in u1 which are not in

u0. This experiment shows the asymmetry of the model

enunciated in Section 5.4.

In the differences from Fig. 5, the scenes are iden-

tical and the residuals therefore outline the types of

illumination changes which are not captured by the pro-

posed models. It is quite clear that some of the specu-

larities and shadows are still visible. For instance, the

background in the scence is the base plate of a metallic

rack, which is specular and slightly curved (i.e. the per-

ception of gray-values depends on the position of the

observer with respect to the light source). This part of

the image is partly detected as a difference.

6.2 A large panel of illumination changes

In this section, we evaluate the different signal-to-noise

ratio between all pairs of images in Fig. 7. The results

are displayed in Tables 2, 3, 4 and 5. As can be seen

in these tables, the SNR between images corresponding

to identical scenes is higher than that of images cor-

responding to different scenes, for all notions of SNRs,

except the usual one which seems less discriminative.

We can see the different measures of similarity as

clustering algorithms: they map pairs of scenes to R.

A good algorithm should be able to cluster identical

scenes to similar parts of the real line and different

scenes to another location. To make this observation

quantitative, we can compute the similarity measure

for each pair (u0, u1). In this section, we will use the
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(a) Reference u0 (b) Global contrast u?glo
SNRglo(u0, u1)=18.9dB

(c) Local contrast u?loc1
SNRloc1(u0, u1)=22.0dB

(d) Local contrast u?loc2
SNRloc2(u0, u1)=27.3dB

(e) Illumination change u1
SNR(u0, u1)=11.4dB

(f) Difference u0 − u?glo (g) Difference u0 − u?loc1 (h) Difference u0 − u?loc2

Fig. 5: Comparing the different algorithms for identical scenes under different illuminations.

symmetric relative mean square error defined by:

RMSE(u1, u0)

:= max

(
‖u?(u1)− u0‖22

‖u0‖22
,
‖u?(u0)− u1‖22

‖u1‖22

)
,

where for i ∈ {0, 1}

u?(ui) = argmin
u∈U(ui)

1

2
‖u− u1−i‖22

and U(ui) is any of the sets described previously, de-

fined from an image ui. We expect the RMSE to be close

to 0 when u1 and u0 come from the same scene and to

be larger when they come from different scenes. Using

all the pairs, we can construct two discrete probability

distributions L1 and L2 corresponding to the RMSE

of identical scenes and of different scenes respectively.

After computing their means µ1 and µ2 and variance

σ2
1 and σ2

2 , we can compare their ability to cluster the

pairs of identical and different scenes by computing the

ratio

z =
|µ1 − µ2|√
σ2
1 + σ2

2

.

Assuming that the distributions are Gaussian, this ra-

tio can be interpreted as a z-score which measures how

well the two distributions are separated relative to their

standard deviation. The higher the ratio, the better. For

instance, a ratio of order 3 indicates that a test can be

built that will fail for less than 3 out of 1000 pairs of im-

ages. With a ratio of 2, the test will fail about 5 percent

of the time. Table 1 shows the different results. As can

be seen from this table and for the set of images used to

RMSE SSIM RMSEglo RMSEloc1 RMSEloc2

1.86 1.63 2.89 3.27 3.00

Table 1: z-scores of the different measures to discrimi-

nate whether pairs of images come from similar or dif-

ferent scenes under different illuminations.

construct the test, the best algorithm is SNRloc1 fol-

lowed by SNRloc2, SNRglo, SNR and SSIM . Those

results are very preliminary, subject to statistical issues

and more extensive tests should be pursued. Still, this

preliminary comparison shows that the proposed mea-

sures of similarity are quite promising.
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F1 F2 F3 F4 F5 G1 G2 G3 G4 G5

F1 Inf 12.70 10.88 10.84 16.81 9.97 9.90 9.91 8.61 8.69
F2 11.26 Inf 19.24 14.72 9.91 8.07 8.61 8.44 9.99 8.73
F3 9.69 19.49 Inf 12.44 8.81 7.23 7.85 7.72 9.35 7.72
F4 8.59 13.92 11.38 Inf 8.79 8.52 8.88 8.56 10.81 10.68
F5 16.96 11.50 10.16 11.19 Inf 10.56 10.46 10.52 8.86 8.82

G1 9.18 8.72 7.63 9.97 9.62 Inf 24.55 23.99 13.54 14.32
G2 9.05 9.20 8.19 10.28 9.46 24.49 Inf 32.08 15.35 14.36
G3 9.22 9.19 8.22 10.12 9.68 24.09 32.24 Inf 15.04 13.84
G4 6.80 9.62 8.73 11.24 6.90 12.52 14.39 13.92 Inf 14.20
G5 6.51 7.99 6.74 10.76 6.50 12.94 13.04 12.36 13.84 Inf

Table 2: Standard SNRs between all pairs.

F1 F2 F3 F4 F5 G1 G2 G3 G4 G5

F1 Inf 18.11 14.60 16.05 17.24 11.65 11.21 11.14 10.26 12.47
F2 18.88 Inf 23.91 18.47 15.52 11.51 11.32 11.26 11.00 12.79
F3 17.05 25.54 Inf 18.45 14.74 11.56 11.40 11.33 11.12 12.87
F4 14.94 17.38 16.83 Inf 18.04 11.98 11.81 11.75 11.60 13.17
F5 17.14 15.01 13.03 18.82 Inf 12.24 11.75 11.69 10.64 12.79

G1 10.54 9.49 8.57 11.44 11.21 Inf 29.56 29.20 18.08 20.20
G2 10.58 9.68 8.83 11.59 11.24 29.34 Inf 36.34 19.61 21.07
G3 10.58 9.68 8.82 11.60 11.24 28.81 36.28 Inf 19.76 21.12
G4 10.41 10.34 9.71 12.46 10.97 19.51 21.59 21.63 Inf 21.49
G5 10.06 9.48 8.69 11.42 10.58 18.28 19.30 19.30 19.03 Inf

Table 3: SNRglo between all pairs

F1 F2 F3 F4 F5 G1 G2 G3 G4 G5

F1 Inf 20.72 17.27 18.39 19.36 13.56 13.19 13.13 12.38 14.19
F2 22.00 Inf 26.06 20.38 17.45 13.16 12.99 12.95 12.85 14.33
F3 19.94 27.93 Inf 20.09 16.62 13.07 12.94 12.89 12.82 14.32
F4 17.37 19.85 19.22 Inf 21.11 13.78 13.58 13.54 13.49 14.90
F5 19.83 17.99 15.99 21.49 Inf 14.29 13.83 13.77 12.86 14.59

G1 12.80 11.86 10.90 13.89 13.53 Inf 31.99 31.04 20.30 22.20
G2 12.79 12.01 11.14 13.92 13.53 32.32 Inf 37.78 21.39 23.33
G3 12.75 12.07 11.24 14.01 13.49 31.17 37.65 Inf 21.90 23.45
G4 12.03 11.92 11.19 14.15 12.68 22.42 24.39 24.61 Inf 25.23
G5 11.80 11.37 10.54 13.47 12.37 20.52 21.69 21.73 21.84 Inf

Table 4: SNRloc1 between all pairs

F1 F2 F3 F4 F5 G1 G2 G3 G4 G5

F1 Inf 26.03 21.69 23.50 24.64 17.06 16.62 16.53 15.67 17.51
F2 27.67 Inf 38.62 26.15 22.82 17.15 17.08 17.05 17.01 18.11
F3 27.07 43.07 Inf 25.77 22.27 17.02 16.94 16.90 16.83 18.04
F4 22.80 25.91 26.25 Inf 27.45 18.11 17.99 18.00 17.73 18.84
F5 25.06 23.24 20.64 26.08 Inf 17.65 17.15 17.07 16.08 17.96

G1 16.49 15.02 13.71 17.04 16.95 Inf 41.90 39.20 24.91 29.21
G2 16.83 15.79 14.57 17.46 17.42 41.11 Inf 44.36 24.90 30.40
G3 16.47 15.75 14.65 17.52 16.99 38.70 47.12 Inf 26.51 31.18
G4 15.44 15.41 14.68 17.63 15.92 28.62 32.78 33.05 Inf 33.71
G5 15.16 14.49 13.36 16.71 15.55 27.52 30.72 30.77 28.68 Inf

Table 5: SNRloc2 between all pairs
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(a) Reference u0 (b) Global contrast u?glo
SNRglo(u0, u1)=10.6dB

(c) Local contrast u?loc1
SNRloc1(u0, u1)=12.8dB

(d) Local contrast u?loc2
SNRloc2(u0, u1)=16.2dB

(e) Scene change u1
SNR(u0, u1)=9.3dB

(f) Difference u0 − u?glo (g) Difference u0 − u?loc1 (h) Difference u0 − u?loc2

(i) Other global difference (j) Other local 1 difference (k) Other local 2 difference

Fig. 6: Comparing the different algorithms for different scenes under a similar illumination.

(a) F1 (b) F2 (c) F3 (d) F4 (e) F5

(f) G1 (g) G2 (h) G3 (i) G4 (j) G5

Fig. 7: Different images used for comparison

A Proofs of convergence of the first order

algorithm

We first prove Proposition 1.

Proof We only sketch the proof. The idea is to use Fenchel-
Rockafellar duality for convex optimization:

min
Aα≥0

1

2
〈W (α− β), α− β〉

= min
α∈Rm

sup
λ≤0

1

2
〈W (α− β), α− β〉+ 〈Aα, λ〉

= sup
λ≤0

min
α∈Rm

1

2
〈W (α− β), α− β〉+ 〈Aα, λ〉.

The primal-dual relationship α(λ) is obtained by finding the
minimizer of the inner-problem in the last equation. The dual
problem is found by replacing α by α(λ) in the inner-problem.
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The function D is obviously differentiable with ∇D(λ) =
−AW−1ATλ+Aβ. Therefore, ∀(λ1, λ2), we get:

‖∇D(λ1)−∇D(λ2)‖2 = ‖AW−1AT (λ1 − λ2)‖2
≤ λmax(AW−1AT )‖λ1 − λ2‖2.

The inequality (30) is a direct consequence of a little
known result about the Fenchel-Rockafellar dual of problems
involving a strongly convex function. We refer the reader to
Lemma D.1 in [44] for more details, or to [7] for a slightly
improved bound in the case of `2 metrics.

Now let us prove Proposition 2.

Proof Notice that λmax(AW−1AT ) = σ2
max(AW−1/2), where

σmax stands for the largest singular value. Moreover

‖AW−1/2α‖22 =
m∑
k=1

(
αi(k)
√
wi(k)

−
αj(k)
√
wj(k)

)2

≤
m∑
k=1

2

(
α2
i(k)

wi(k)

+
α2
j(k)

wj(k)

)

= 4
m∑
k=1

α2
i(k)

wi(k)

= 4

p∑
i=1

ni
α2
i

wi
,

where ni denotes the number of edges starting from vertex i

(the outdegree). To conclude, notice that each pixel in region
∆j has at most cmax neighbors. Therefore ni ≤ wicmax and
we finally get:

‖AW−1/2α‖22 ≤ 4cmax

p∑
i=1

α2
i = 4cmax‖α‖22. (40)

Finally, we prove Proposition 3 below.

Proof Standard convergence results [37] state that:

D(λ(k))−D(λ?) ≤
4cmax‖λ(0) − λ∗‖22

k2
.

Combining this result with inequality (30) directly yields (31).
To obtain the bound (32), first remark that each iteration

of Algorithm 1 requires two matrix-vector products with A
and AT of complexity O(m). The final result is then a direct
consequence of the bound (31) and of the Proposition 2.

B Proofs of the complexity results

In this paragraph, we analyze the theoretical efficiency of
Algorithm 1. We consider the special case W = Id for the
ease of exposition. In practice, controlling the absolute error
‖α(k) − α?‖2 is probably less relevant than the relative er-

ror
‖α(k)−α?‖2
‖α(0)−α?‖2

. This motivates setting ε = η‖α(0) − α?‖2 in

equation (32), where η ∈ [0, 1) is a parameter describing the
relative precision of the solution. Setting λ(0) = 0 and notic-
ing that:

‖α(0) − α?‖2 = ‖β − α?‖2
= ‖ATλ?‖2,

the complexity in terms of η becomes:

O

(
m

η

‖λ?‖2
‖ATλ?‖2

)
. (41)

Example of a hard problem An example of a hard graph (a
simple line graph) is provided in Figure 8. For this graph, the
Algorithm 1 can be interpreted as a diffusion process, which
is known to be extremely slow. In particular, Nesterov shows
that diffusions are the worst case problems for the first order
methods in [37, p.59].

Proposition 5 Consider a simple line graph as depicted in Fig-

ure 8, with p even and W = Id. Set

βi =

{
1 if i ≤ p/2,
−1 otherwise.

(42)

Then the primal-dual solution (α?, λ?) of the isotonic regression
problem (28) is given by α? = 0 and

λ?k =

{
−k if 1 ≤ k ≤ p/2,
−n+ k if p/2 + 1 ≤ k ≤ p. (43)

This implies that

‖λ?‖2
‖ATλ?‖2

∼ m. (44)

Proof For this simple graph, m = p − 1. To check that (43)
is a solution, it suffices to verify the Karush-Kuhn-Tucker
conditions:

ATλ? = W (β − α?),
Aα? ≥ 0,

λ? ≤ 0,

λ?i = 0 if (Aα?)i > 0.

This is done by direct inspection, using the fact that for this
graph:

(ATλ)i =

−λ1 if i = 1
−λi + λi−1 if 2 ≤ i ≤ p− 1
λp−1 if i = p.

(45)

The relationship (44) is due to the fact that the sum of squares∑m
k=1 k

2 = m(m + 1)(2m + 1)/6 ∼ m3 so that ‖λ?‖22 ∼ m3

and ‖ATλ?‖22 = ‖β‖22 = m.

1 2 3 n-2 n-1 n

Fig. 8: Worst case graph

Example of a nice problem In order to rehabilitate our

approach, let us show that the ratio ‖λ?‖2
‖AT λ?‖2

can be bounded

independently of m for “nice” graphs.

Proposition 6 For any λ ≤ 0 and for the graph depicted in
Figure 10, we have:

1

2
≤
‖λ?‖2
‖ATλ?‖2

≤
1
√

2
. (46)

Proof For this graph, we get:

(ATλ)i =



−λ1
λ1 + λ2
−λ2 − λ3

...
λn−2 + λn−1

−λn−1


. (47)
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0 20 40 60 80 100
−1

−0.5

0

0.5

1

0 20 40 60 80 100

−40

−20

0

Fig. 9: First 20000 iterations of the primal-dual pair

(α(k), λ(k)). Top: β is displayed in red while α(k) varies

from green to blue with iterations. Bottom: λ(k) varies

from green to blue with iterations. A new curve is dis-

played every 1000 iterations. As can be seen, the con-

vergence is very slow.

Therefore:

‖ATλ‖22 = λ21 + λ2n−1 +
n−2∑
k=1

(λk + λk+1)2

= 2
n−1∑
k=1

λ2k + 2
n−2∑
k=1

λkλk+1,

and

2‖λ‖22 ≤ ‖ATλ‖22 ≤ 4‖λ‖22. (48)

1 2 3 n-2 n-1 n

Fig. 10: A nice graph

C Proof of local mean preservation

We prove Theorem 2 below.

Proof The Karush-Kuhn-Tucker optimality conditions read:

wi(α
?
i − βi) + (ATλ)i = 0 ∀i (49)

Aα ≥ 0 (50)

λ ≤ 0 (51)

λi,j(Aα
?)i,j = 0 ∀(i, j) ∈ E, (52)

with (ATλ)i =
∑
j,(i,j)∈E λi,j −

∑
j,(j,i)∈E λi,j . Hence we get:∑

i∈Bk

(ATλ)i =
∑
i∈Bk

∑
j,(i,j)∈E

λi,j −
∑

j,(j,i)∈E

λi,j = 0.

To obtain the last equality, observe that the Lagrange mul-
tipliers λi,j can be separated into those joining Bk from the
exterior and those linking two edges within Bk. The first ones
vanish thanks to (52) and to the assumption that (Aα?)i,j 6=
0. The other ones cancel since the neighborhood is symmet-
ric. To conclude the proof, it suffices to sum the equation (49)
over Bk.

D Proof of the models inclusion

To prove Theorem 3, we first need the following preparatory
lemma.

Lemma 2 (Directed paths in the tree of shapes ) Let u1
denote an image and (V,E) denote the graph associated to its

tree of shapes (ωi)i∈I . Let x and y be adjacent points x
N4∼ y and

ωi (resp. ωj) denote the smallest shape containing x (resp. y).
Then there exists a path (i0 = i, i1, . . . , il−1, il = j) in E

linking ωi to ωj . In addition sign(sik ) = sign(u1(y) − u1(x))
for 1 ≤ k ≤ l.

Proof We have x ∈ ∂ωi since ωi is the smallest containing x.
Otherwise, there would exist a descendant (which would be
smaller by definition of the tree) that contains x. Similarly,
y ∈ ∂ωj .

Second, we have ωi ⊂ ωj or ωj ⊂ ωi, but ωi ∩ ωj = ∅ is
not possible. If it were the case, then ωi and ωj would be
shapes on different branches of the tree. This is impossible
since elements on different branches are disconnected.

Note that u1(x) 6= u1(y), otherwise they would be in the
same shape. In what follows, we assume that ωi ⊂ ωj and that
u1(y) > u1(x). The 3 other cases can be treated similarly. We
let (i0 = i, i1, . . . , il−1, il = j) denote the path in E linking ωi
to ωj . We claim that along this path (sik )1≤k≤l is constant
and equal to 1. There is necessarily one sign sik = 1, other-
wise this would contradict the hypothesis u1(y) > u1(x), so
that the result holds when l = 1. When l > 1, let us assume
that there exists one sign equal to −1. Then, there exists two
consecutive indexes, say ik0

and ik0+1, with 1 ≤ k0 ≤ l such
that sik0

= −1 and sik0+1
= 1 (or the reverse). This implies

that ωik0
is a shape from the min-tree and that ωik0+1

is a

shape from the max-tree (see [22] or the introduction of [30]).
Therefore, ωik0+1

is a cavity of ωik0
, so that ωj is not adjacent

to ωi, contradicting x
N4∼ y.

We are now ready to prove Theorem 3.

Proof We first prove the inclusion Uglo ⊆ Uloc1. Assume that
u ∈ Uglo. Then for all (x, y) ∈ Ω2, (u(x) − u(y)) · (u1(x) −
u1(y)) ≥ 0. Therefore, the constraint Aα ≥ 0 is verified since
it describes differences of gray values in adjacent level-lines.
In addition u1(x) = u1(y)⇒ u(x) = u(y). Hence, the constant
regions of u1 are preserved.

We now prove the inclusion Uloc1 ⊆ Uloc2. The property

[x
N4∼ y and u1(x) = u1(y)] ⇒ [u(x) = u(y)] is obvious since

it implies that x and y belong to the level line ∂ωi. Let u ∈
Uloc1 = {Rα,Aα ≥ 0} = {Lγ, γ ≥ 0}. By Lemma 2, we deduce

that x
N4∼ y implies that (u(x) − u(y))(u1(x) − u1(y)) ≥ 0.

For instance assume that u1(y) > u1(x). Then u(y) = u(x) +∑
1≤k≤l γik with γik ≥ 0, so that u(y)− u(x) ≥ 0.

To finish, note that if u1 is a very simple image such as
the one depicted in Fig. 11, Uglo = Uloc1 = Uloc2, explaining
why the inclusion of sets is not strict in general.
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