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Convergence and Fluctuations
of Regularized Tyler Estimators

Abla Kammoun, Romain Couillet, Frédéric Pascal, Mohamed-Slim Alouini

Abstract—This article studies the behavior of regularized Tyler
estimators (RTEs) of scatter matrices. The key advantages of
these estimators are twofold. First, they guarantee by construc-
tion a good conditioning of the estimate and second, being a
derivative of robust Tyler estimators, they inherit their robustness
properties, notably their resilience to the presence of outliers.
Nevertheless, one major problem that poses the use of RTEs in
practice is represented by the question of setting the regulariza-
tion parameter ρ. While a high value of ρ is likely to push all
the eigenvalues away from zero, it comes at the cost of a larger
bias with respect to the population covariance matrix. A deep
understanding of the statistics of RTEs is essential to come up
with appropriate choices for the regularization parameter. This is
not an easy task and might be out of reach, unless one considers
asymptotic regimes wherein the number of observations n and/or
their size N increase together. First asymptotic results have
recently been obtained under the assumption that N and n are
large and commensurable. Interestingly, no results concerning the
regime of n going to infinity with N fixed exist, even though the
investigation of this assumption has usually predated the analysis
of the most difficult N and n large case. This motivates our
work. In particular, we prove in the present paper that the RTEs
converge to a deterministic matrix when n → ∞ with N fixed,
which is expressed as a function of the theoretical covariance
matrix. We also derive the fluctuations of the RTEs around
this deterministic matrix and establish that these fluctuations
converge in distribution to a multivariate Gaussian distribution
with zero mean and a covariance depending on the population
covariance and the parameter ρ.

I. INTRODUCTION

The estimation of covariance matrices is at the heart of
many applications in signal processing and wireless commu-
nications. The frequently used estimator is the well-known
sample covariance matrix (SCM). Its popularity owes to its
low complexity and in general to a good understanding of
its behavior. However, the use of the SCM in practice is
hurdled by its poor performance when samples contain outliers
or have an impulsive nature. This is especially the case
of radar detection applications in which the noise is often
modeled by heavy-tailed distributions [1]–[4]. One of the
reasons why the SCM performs poorly in such scenarios is
that, as opposed to the case of Gaussian observations, the
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SCM is not the maximum likelihood estimator (MLE) of the
covariance matrix. This is for instance the case of complex
elliptical distributions, originally introduced by Kelker [5] and
widely used in radar applications, for which the MLE takes a
strikingly different form.

In order to achieve better robustness against outliers, a class
of covariance estimators termed robust estimators of scatter
have been proposed by Huber, Hampel and Maronna [6]–[8],
and extended more recently to the complex case [9]–[11].
This class of estimators can be viewed as a generalization
of MLEs, in that they are derived from the optimization of a
meaningful cost function [12], [13]. Aside from robustness to
the presence of outliers, a second feature whose importance
should not be underestimated, is the conditioning of the
covariance matrix estimate. This feature becomes all the more
central when the quantity of interest coincides with the inverse
of the population covariance matrix. In order to guarantee an
acceptable conditioning, regularized robust-estimators, which
find their roots in the diagonal loading technique due to
Abramovich and Carlson [14], [15], were proposed in [12].
The idea is to force by construction all the eigenvalues of
the robust-scatter estimator to be greater than a regularization
coefficient ρ.

The most popular regularized estimators that are today re-
ceiving increasing interest, are the regularized Tyler estimators
(RTE), which correspond to regularized versions of the robust
Tyler estimator [16]. In addition to achieving the desired
robustness property, RTEs present the advantage of being well-
suited to scenarios where the number of observations is insuf-
ficient or the population covariance matrix is ill-conditioned,
while their non-regularized counterparts are ill-conditioned
or even undefined if the number of observations n is less
than their sizes N . Motivated by these interesting features,
several works have recently considered the use of RTEs in
radar detection applications [12], [17]–[20]. While existence
and uniqueness of the robust-scatter estimator seem to be
sufficiently studied [12], [18], the impact of the regularization
parameter on the behavior of the RTE has remained less
understood. Answering this question is essential in order to
come up with appropriate designs of the RTE in practice. It
poses, however, major technical challenges, mainly because it
necessitates a profound analysis of the behavior of the RTE
estimator, which is far from being an easy task. As a matter
of fact, the main difficulty towards studying the behavior of
the RTE fundamentally lies in its non-linear relation to the
observations, thus rendering the analysis for fixed n and N
likely out of reach. In light of this observation, recent works
have considered asymptotic regimes where n and/or N are
allowed to grow to infinity. Two regimes can be distinguished:
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the regime of fixed N with n growing to infinity and the
regime of n and N growing large simultaneously. While the
former regime, coined the large-n regime, is standard in that
it was by far the most considered in the literature, the second
one, which we will refer to as large-n,N regime, is very
recent and is particularly driven by the recent advances in
the spectral analysis of large dimensional random matrices.
Interestingly, contrary to what one would imagine, very little
on the behavior of RTE seems to be known in the standard
regime, whereas very recent results regarding the behavior of
RTE for the large-n,N regime have recently been obtained in
[20], [21]. One major advantage of the large-n,N regime is
that, although requiring the use of advanced tools from random
matrix theory, it often leads to less involved results that let
themselves to simple interpretation. This interesting feature
fundamentally inheres in the double averaging effect that leads
to more compact results in which only prevailing quantities
remain. However, when N is not so large, the same averaging
effect is no longer valid and thus cannot be leveraged. A priori,
assuming that N is fixed entails major changes on the behavior
of RTEs that have not thus far been grasped. Understanding
what really happens in the large-n regime, besides its own
theoretical interest, should lead to alternative results that might
be more accurate for not so large-N scenarios. A second
motivation behind working under the large-n regime is that
covariance matrix estimators usually converge in this case to
deterministic matrices, which opens up possibilities for easier
handling of the RTE. Encouraged by these interesting practical
and theoretical aspects, we study in this paper the asymptotic
behavior of the RTE in the large-n regime. One of our major
findings is that our results allowing derivation of central limit
theorems (CLT) of functionals with kernel the robust scatter
estimator can be more accurate than those of the large-n,N
regime even for relatively small values of n. This becomes
all the more interesting given that apart from the specific case
of quadratic forms, derivation of CLTs under the large-n,N
regime can be quite involved.
The remainder of the paper is organized as follows. In section
II, we prove that the RTE converges to a deterministic ma-
trix which depends on the theoretical covariance matrix and
the regularization parameter before presenting its fluctuations
around this asymptotic limit in section III. Numerical results
are finally provided in order to support the accuracy of the
derived results.

Notation. In this paper, the following notations are used.
Vectors are defined as column vectors and designated with
bold lower case, while matrices are given in bold upper
case. The norm notation ‖.‖ refers to the spectral norm for
matrices and Euclidean norm for vectors while the norm
‖.‖Fro refers to the Frobenius norm of matrices. Notations
(.)T (.)∗, (.) denotes respectively transpose, Hermitian (i.e.
complex conjugate transpose) and pointwise conjugate. Be-
sides, IN denotes the N×N identity matrix, for a matrix
A, λmin(A) and λmax(A) denote respectively the smallest
and largest eigenvalues of A, while notation vec(A) refers
to the vector obtained by stacking the columns of A. For
A, B two positive semi-definite matrices, A � B means
that B−A is positive semi-definite. Xn = op(1) implies the

convergence in probability to zero of Xn as n goes to infinity
and Xn = Op(1) implies that Xn is bounded in probability.
The arrow “ a.s.−→” designates almost sure convergence while
the arrow“ D−→” refers to convergence in distribution.

II. CONVERGENCE OF THE REGULARIZED M-ESTIMATOR
OF SCATTER MATRIX

Consider x1, · · · ,xn, n observations of size N defined as:

xi = Σ
1
2

Nwi,

where wi ∈ CN are Gaussian zero-mean random vectors with
covariance IN and ΣN � 0 is the population covariance
matrix. The regularized robust scatter estimator that will be
considered in this work is that defined in [18] as the unique
solution ĈN (ρ) to:

ĈN (ρ) = (1−ρ)
1

n

n∑
i=1

xix
∗
i

1
N x∗i Ĉ

−1
N (ρ)xi

+ρIN . (1)

with ρ ∈
(
max(0, 1− n

N ), 1
]
. Such an estimator can be thought

of as a hybrid robust-shrinkage estimator reminding Tyler’s M-
estimator of scale [16] and Ledoit-Wolf’s shrinkage estimator
[22]. It will be coined thus Regularized-Tyler estimator (RTE),
and defines a class of regularized-robust scatter estimators
indexed by the regularization parameter ρ. When n > N ,
by varying ρ from 0 to 1, one can move from the unbiased
Tyler-estimator [23] to the identity matrix (ρ = 1) which
corresponds to a trivial estimate of the unknown covariance
matrix ΣN . Finally, it is worth mentioning that other variants
of the RTE estimator have recently been proposed [13], [17].
We can cite for instance the RTE estimator of Chen et al [17]
which is more involved and will thus not be considered in this
work 1.

A. Review of the results obtained in the large-n,N regime

Letting cN = N
n , the large-n,N regime will refer in the

sequel to the one where n→∞ and N →∞ with cN → c ∈
(0,∞).

As mentioned earlier, unless considering particular assump-
tions on ΣN , the RTE cannot be proven to converge (in
any usual matrix norm) to some deterministic matrix in the
large-n,N regime. Failing that, the approach pursued in [20]
consists in determining a random equivalent for the RTE, that
corresponds to a standard matrix model. This finding is of
utmost importance, since it allows one to replace the RTE,
whose direct analysis is overly difficult, by another random
object, for which an important load of results is available.
The meaning of the equivalence between the RTE and the
new object will be specified below.

1Another concurrent RTE is that of Chen {et al [17] which is given as the
unique solution of

ČN (ρ) = B̌N (ρ)
1

N
tr B̌N (ρ)

where

B̌N (ρ) = (1−ρ)
1

n

n∑
i=1

xix
∗
i

1
N
x∗
i ČN (ρ)−1xi

+ρIN .
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Prior to presenting the results of [20], we shall, for the
reader convenience, gather all the observations’ properties in
the following assumption:

Assumption A-1. For i ∈ {1, · · · , n}, xi = Σ
1
2

Nwi, with:
• w1, · · · ,wn are N×1 independent Gaussian random

vectors with zero mean and covariance IN ,
• ΣN ∈ CN×N � 0 is such that 1

N tr ΣN = 1.

Note that our work is also valid for observations drawn from
elliptical distributions [9] for which the use of robust scatter
estimators can be thought of as more relevant. This is because
such observations can be written as the product of a scalar
and a Gaussian random vector [9]. The scalar has no impact
on the RTE estimators due to their invariance to observations
scaling.

It is also worth noticing that the normalization 1
N tr ΣN = 1

is considered for ease of exposition and is not limiting since
the RTE is invariant to any scaling of ΣN . Denote by ŜN (ρ)
the matrix given by:

ŜN (ρ) =
1

γN (ρ)

1−ρ
1−(1−ρ)cN

1

n

n∑
i=1

wiw
∗
i +ρIN ,

where γN (ρ) is the unique positive solution to:

1 =
1

N
tr ΣN (ργN (ρ)+(1−ρ)ΣN )

−1

then ŜN (ρ) is equivalent to the RTE ĈN (ρ) in the sense of
the following theorem,

Theorem 1. For any κ > 0 small, define Rκ ,[
κ+max(0, 1−c−1), 1

]
. Then, as N,n → ∞ with N

n → c ∈
(0,∞) and assuming lim sup ‖ΣN‖ <∞, we have:

sup
ρ∈Rκ

∥∥∥ĈN (ρ)−ŜN

∥∥∥ a.s.−→ 0.

B. Convergence of the RTE in the large-n regime

In this section, we will consider the regime wherein N
is fixed and n tends to infinity. An illustrative tool that is
frequently used to handle this regime is the strong law of
large numbers (SLLN) which suggests replacing the average
of independent and identically distributed random variables by
their expected value. This result should particularly serve to
treat the term

1

n

n∑
i=1

xix
∗
i

x∗i Ĉ
−1
N (ρ)xi

in the expression of the RTE. Nevertheless, because of the
dependence of ĈN (ρ) on the observations xi, the SLLN
cannot be directly applied to handle the above quantity. As
we expect ĈN (ρ) to converge to some deterministic matrix,
say Σ0(ρ), it is sensible to substitute 1

n

∑n
i=1

xix
∗
i

x∗i Ĉ
−1
N (ρ)xi

by
1
n

∑n
i=1

xix
∗
i

x∗iΣ
−1
0 (ρ)xi

. The latter quantity is in turn equivalent

to E
[

xx∗

x∗Σ−1
0 (ρ)x

]
from the SLLN where the expectation is

taken over the distribution of the random vectors xi. Based

on these heuristic arguments, a plausible guess is that ĈN (ρ)
converges to Σ0(ρ), the solution to the following equation:

Σ0(ρ) = N(1−ρ)E
[

xx∗

x∗Σ−10 (ρ)x

]
+ρIN . (2)

The main goal of this section is to establish the convergence
of ĈN (ρ) to Σ0(ρ). We will assume that Σ0(ρ) exists for
each ρ ∈ (0, 1]. The existence and uniqueness of Σ0(ρ) will
be discussed later on in this section. Similar to the large-
n,N regime, we need to introduce a random equivalent for
ĈN (ρ) that is easier to handle. Naturally, an intuitive random
equivalent is obtained by replacing, in the right-hand side of
(1), ĈN (ρ) by Σ0(ρ), thus yielding:

Σ̃(ρ) = N(1−ρ)
1

n

n∑
i=1

xix
∗
i

x∗iΣ
−1
0 (ρ)xi

+ρIN . (3)

Unlike ĈN (ρ), Σ̃(ρ) is more tractable, being an explicit
function of the observations’ vectors. By the SLLN, Σ̃(ρ) is
an unbiased estimate of Σ0(ρ) that satisfies:

Σ0(ρ) = Σ̃(ρ)+εn(ρ),

where εn(ρ) is an N×N matrix whose elements converge
almost surely to zero and are bounded in probability at the
rate 1

n , i.e,

[εn(ρ)]i,j = Op
(

1

n

)
.

For the above convergence to hold uniformly in ρ, one needs
to check that the first absolute second moment of the entries
of xx∗

x∗Σ−1
0 (ρ)x

is uniformly bounded in ρ. To this end we shall
additionally assume that:

Assumption A-2.
Matrix ΣN is non-singular, i.e., the smallest eigenvalue of
ΣN , λmin(ΣN ) satisfies:

λmin(ΣN ) > 0.

Under Assumption 2, the spectral norm of Σ0(ρ) can be
bounded as:

Lemma 2. Let Σ0 be the solution to (2), whenever it exists.
Then,

sup
ρ∈[κ,1]

‖Σ0(ρ)‖ ≤ ‖ΣN‖
λmin(ΣN )

where κ > 0 is some positive scalar.

Proof: See Appendix A
Equipped with the bound provided by Lemma 2, we can

claim that:

sup
ρ∈[κ,1]

∣∣∣[εn(ρ)]i,j

∣∣∣ = Op
(

1

n

)
or equivalently:

sup
ρ∈[κ,1]

∥∥∥Σ̃(ρ)−Σ0(ρ)
∥∥∥ = Op

(
1

n

)
.
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Characterizing the rate of convergence of Σ̃(ρ) to Σ0(ρ) is of
fundamental importance and would later help in the derivation
of the second-order statistics for Σ̃(ρ) and then for ĈN (ρ).

Before stating our first main result, we would like to
particularly stress the fact that Assumption 2 is not limiting. To
see that, consider ΣN = UΛU∗ the eigenvalue decomposition
of ΣN wherein the diagonal elements of Λ, λ1, · · · , λN cor-
respond to the eigenvalues of ΣN arranged in the decreasing
order, i.e., λ1 ≥ λ2 · · · ≥ λN . Denoting by r the rank of ΣN ,
then, λr+1 = · · · = λN = 0. Write U as U = [Ur,UN−r],
Ur ∈ CN×r. Then, it is easy to see that:

ĈN (ρ)UN−r = ρUN−r

while:

U∗rĈN (ρ)Ur = (1−ρ)
1

n

n∑
i=1

Λr
1
2 w̃iw̃

∗
iΛ

1
2
r

1
N w̃∗iΛ

1
2
r U∗rĈ

−1
N (ρ)UrΛ

1
2
r w̃i

+ρIN ,

(4)
where w̃i = U∗rxi ∈ Cr is a standard Gaussian vector.

Since
(
U∗rĈN (ρ)Ur

)−1
= U∗rĈ

−1
N (ρ)Ur, instead of using

ĈN (ρ), it thus suffices to work with U∗rĈN (ρ)Ur, for which
Assumption 2 can be used.

The following theorem establishes the convergence of
ĈN (ρ) to Σ0(ρ), the hypothetical solution to (2),

Theorem 3. Assume that there exists a unique solution Σ0(ρ)
to (2). Let κ > 0 be some small positive real scalar. Then,
assuming that Assumptions 1 and 2 hold true, one has under
the large-n regime:

sup
ρ∈[κ,1]

∥∥∥ĈN (ρ)−Σ0(ρ)
∥∥∥ a.s.−→ 0.

Moreover,

sup
ρ∈[κ,1]

∥∥∥ĈN (ρ)−Σ0(ρ)
∥∥∥ = Op

(
1

n

)
.

Proof: See Appendix B
In Theorem 3, we establish the convergence of ĈN (ρ)

to some limiting matrix Σ0(ρ) that solves the fixed point
equation (2). While (2) seems to fully characterize Σ0(ρ), it
does not clearly unveil its relationship with the observations’
covariance matrix ΣN . The major intricacy stems from the
expectation operator in the term E

[
xx∗

x∗Σ−1
0 (ρ)x

]
. A close look

to this quantity reveals that it can be further developed by
leveraging some interesting features of Gaussian distributed
vectors. Note first that (2) is also equivalent to:

N(1−ρ)E

[
ww∗

w∗Σ
1
2

NΣ−10 (ρ)Σ
1
2

Nw

]
+ρΣ−1N = Σ

− 1
2

N Σ0(ρ)Σ
− 1

2

N ,

(5)
where w ∼ CN (0, IN ). Let Σ

1
2

NΣ−10 (ρ)Σ
1
2

N = VDV∗ be an
eigenvalue decomposition of Σ

1
2

NΣ−10 (ρ)Σ
1
2

N , where D is a
diagonal matrix with diagonal elements d1, d2, · · · , dN . Notice
that, of course the di’s depend on ρ. However, for simplicity
purposes, the notation with (ρ) is omitted. Since the Gaussian

distribution is invariant under unitary transformation, (5) is
also equivalent to:

N(1−ρ)E
[

ww∗

w∗Dw

]
+ρV∗Σ−1N V = D−1. (6)

It is not difficult to see that the off-diagonal elements of
E
[

ww∗

w∗Dw

]
are equal to zero. In effect for i 6= j, writing

wi as rie
θi with ri Rayleigh distributed and θi indepen-

dent of ri and uniformly distributed over [−π, π], one has

E
[[

ww∗

w∗Dw

]
i,j

]
= E

[
rir
∗
j e
(θi−θj)∑N

i=1 di|ri|2

]
which can be shown

to be zero by taking the expectation over the difference of
phase θi−θj . Therefore, E

[
ww∗

w∗Dw

]
is diagonal, with diagonal

elements (αi)i=1,··· ,N given by:

αi(D) = E
[
|wi|2

w∗Dw

]
.

Hence, V∗Σ−1N V is also diagonal, thus implying that ΣN and
Σ0(ρ) share the same eigenvector matrix U. In order to prove
the existence of Σ0(ρ), it suffices to check that d1, · · · , dN
are solutions to the following equation:

N(1−ρ)αi(D)+
ρ

λi
=

1

di
. (7)

To this end, consider

h : RN+ → RN+

(x1, · · · , xN ) 7→ N(1−ρ)

(
E

[
|w1|2∑N

j=1
1
xj
|wj |2

]
+
ρ

λ1
, · · · ,

E

[
|wN |2∑N

j=1
1
xj
|wj |2

]
+

ρ

λN

)
.

Proving that d1, · · · , dN are the unique solutions of (7) is
equivalent to showing that:

x = h (x1, · · · , xN ) (8)

admits a unique positive solution. For this, we show that h
satisfies the following properties:
• Nonnegativity: For each x1, · · · , xN ≥ 0, vector
h(x1, · · · , xN )has positive elements.

• Monotonicity: For each x1 ≥ x
′

1, · · · , xN ≥ x
′

N ,
h(x1, · · · , xN ) ≥ h(x

′

1, · · · , x
′

N ) where ≥ holds
element-wise.

• Scalability: For each α > 1, αh(x1, · · · , xN ) >
h(αx1, · · · , αxN ).

The first item is trivial. The second one follows from the fact
that h is an increasing function of each xi. As for the last
item, it follows by noticing that as ρ > 0,

E

[
|wi|2∑N

j=1
1
αxj
|wj |2

]
+
ρ

λj
< α

(
E

[
|wi|2∑N

j=1
1
xj
|wj |2

]
+
ρ

λj

)
According to [24], h is a standard interference function,
and if there exists q1, · · · , qN such that q > h(q1, · · · , qN )
where > holds element-wise, then there is a unique x∞ =
(x1,∞, · · · , xN,∞) such that:

x∞ = h(x1,∞, · · · , xN,∞).
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Moreover, x∞ = limt→∞ x(t) with x(0) > 0 arbitrary and for
t ≥ 0, x(t+1) = h(x

(t)
1 , · · · , x(t)N ). To prove the feasibility con-

dition, take q = (q, · · · , q). Then, h(q, · · · , q) = (1−ρ)q+ ρ
λi

.
Setting q ≥ 1

λmin
, we get that h(q, · · · , q) < q, thereby

establishing the desired inequality.
The interest of the framework of Yates [24] is that in addi-

tion to being a useful tool for proving existence and uniqueness
of the fixed-point of a standard interference function, it shows
that the solution can be numerically approximated by com-
puting iteratively x(t+1) = h(xt1, · · · , xtN ). However, in order
to implement this algorithm, one needs to further develop the
terms αi(D). This is in particular the goal of the following
lemma, the proof of which is deferred to Appendix C.

Lemma 4. Let w = [w1, · · · , wN ]
T be a standard complex

Gaussian vector and D = (d1, · · · , dN ) be a diagonal matrix
with positive diagonal elements. Consider α1, · · · , αN , the set
of scalars given by:

αi(D) = E

[
|wi|2∑N

i=1 di|wi|2

]
.

Then

αi(D) =
1

2NN

1

di
∏N
j=1 dj

×F (N)
D

N, 1, · · · , 2
↑
i-th

position

,1, · · ·, 1, N+1,
d1− 1

2

d1
, · · · ,

dN− 1
2

dN

 ,

where F (N)
D is the Lauricella’s type D hypergeometric func-

tion. 2

Equipped with the result of Lemma 4, we will now show
how one can in practice approximate Σ0(ρ). First, one needs
to approximate the solution of (8). Let d0 =

[
d
(0)
1 , · · · , d(0)N

]T

be an arbitrary vector with positive elements. We set d(t) =[
d
(t)
1 , · · · , d(t)N

]
as:

d
(t+1)
i =

1
ρ
λi

+N(1−ρ)αi(diag(d(t)))

where the expression of αi(diag(d(t))) is given by Lemma
4. As t → ∞, d(t) tends to d, the vector of eigenval-
ues of Σ

1
2

NΣ−10 (ρ)Σ
1
2

N which is the solution of (8). Since
ΣN and Σ0(ρ) share the same eigenvectors, the eigenvalues
s1,∞, · · · , sN,∞ of Σ0(ρ) are given by si,∞ = λi

di
. The matrix

Σ0(ρ) is finally given by:

Σ0(ρ) = Udiag([s1,∞, · · · , sN,∞])U∗.

While the above characterization of Σ0(ρ) seems to provide
few insights in most cases, it shows that except for the

2The evaluation of the Lauricella’s type D hypergeometric function is
performed numerically using its integral representation

F
(N)
D (a, b1, · · · , bn, c;x1, · · · , xn)

=
Γ(c)

Γ(a)Γ(a−c)

∫ 1

0
ta−1(1−t)c−a−1

n∏
i=1

(1−xit)−bidt. <c > <a > 0.

particular case of ΣN = IN , the RTE ĈN (ρ) is biased for
ρ ∈ [κ, 1) in that:

Σ0(ρ) 6= ΣN .

To see that, notice that Σ0(ρ) = ΣN implies that D = IN .
Replacing D by the identity matrix in (5) and using the fact
that E

[
ww∗

w∗w

]
= 1

N IN shows that only ΣN = IN satisfies a
null bias. Hence, it appears that improving the conditioning of
the RTE by using a non-zero regularization coefficient comes
in general at the cost of a higher bias.

III. SECOND ORDER STATISTICS IN THE LARGE-n REGIME

The previous section establishes the convergence of the RTE
to the limiting deterministic matrix Σ0(ρ). In the following,
for readability purposes, Σ0(ρ) will be simply replaced by
Σ0. The convergence holds in the almost sure sense, and
can help infer the asymptotic limit of any functional of the
RTE. More formally, for any functional f continuous around
Σ0, f(ĈN ) converges almost surely to f(Σ0). While this
result can be used to understand the convergence of inference
methods using RTEs, it becomes of little help when one is
required to deeply understand their fluctuations, a prerequisite
that essentially arises in many detection applications. This
motivates the present section which aims at establishing a
Central Limit Theorem (CLT) for the RTE.

It is worth noticing that the scope of applicability of the
results obtained in the large-n regime is much wider than
that of the n,N large regime. As a matter of fact, using the
Delta Method [25], our result can help obtain the CLT for any
continuous functional of the RTE. We deeply believe that this
can facilitate the design of inference methods using RTEs.

Although treatments of both regimes seem to take different
directions, they have thus far presented the common denom-
inator of relying on an intermediate random equivalent for
ĈN (ρ), be it Σ̃(ρ) or ŜN (ρ) (See Theorem 1). It is thus easy
to convince oneself that in order to derive the CLT for ĈN (ρ),
a CLT for Σ̃(ρ) is required.

We denote in the sequel by δ and δ̃ the quantities: δ =
vec(ĈN (ρ))−vec(Σ0) and δ̃ = vec(Σ̃(ρ))−vec(Σ0) and
consider the derivation of the CLT for vectors δ and then
for δ̃. We will particularly prove that δ and δ̃ behave in
the large-n regime as Gaussian random variables that can
be fully characterized by their covariance matrices E [δδ∗]

and E[δ̃δ̃
∗
]. Starting with the observation that in many signal

processing applications, the focus might be put on the second-
order statistics of the real and imaginary parts of δ and δ̃,
we additionally provide expressions for the pseudo-covariance
matrices E [δδT] and E[δ̃δ̃

T
] of δ and δ̃ which, coupled

with that of covariance matrices, suffice to fully characterize
fluctuations of the vectors [<δT,=δT]

T and [<δ̃
T
,=δ̃

T
]T.

We will start by handling the fluctuations of δ̃. To this end,
we need first to work out the expression of Σ̃(ρ). Recall that
Σ̃(ρ) is given by:

Σ̃(ρ) =
N(1−ρ)

n

n∑
i=1

xix
∗
i

x∗iΣ
−1
0 xi

+ρIN .
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Therefore,

Σ
− 1

2
0 Σ̃(ρ)Σ

− 1
2

0 −IN =
N(1−ρ)

n

n∑
i=1

Σ
− 1

2
0 Σ

1
2

Nwiw
∗
iΣ

1
2

NΣ
− 1

2
0

w∗iΣ
1
2

NΣ−10 Σ
1
2

Nwi

+ρΣ−10 −IN

Using the eigenvalue decomposition of Σ
1
2

NΣ−10 Σ
1
2

N =
UDU∗ and denoting w̃i = U∗wi, we thus obtain:

U∗Σ
− 1

2
0 Σ̃(ρ)Σ

− 1
2

0 U−IN =
N(1−ρ)

n

n∑
i=1

D
1
2 w̃iw̃

∗
iD

1
2

w̃∗iDw̃i

+ρU∗Σ−10 U−IN .

From the characterization of Σ0 provided in the previous
section, we can easily check that:

N(1−ρ)E

[
D

1
2 w̃w̃∗D

1
2

w̃∗Dw̃

]
= IN−ρU∗Σ−10 U

Therefore,

U∗Σ
− 1

2
0 Σ̃(ρ)Σ

− 1
2

0 U−IN (9)

=
N(1−ρ)

n

n∑
i=1

[
D

1
2 w̃iw̃

∗
iD

1
2

w̃∗iDw̃i
−E

[
D

1
2 w̃w̃∗D

1
2

w̃∗Dw̃

]]
.

(10)

From (10), it appears that the asymptotic distribution of
[<δ̃

T
,=δ̃

T
]T is Gaussian and thus can be fully characterized

by its asymptotic covariance and pseudo-covariance matrices.
Using (10), it is easy to show that we need for that the pseudo-
covariance and covariance matrices of:

1

n

n∑
i=1

vec(w̃iw̃
∗
i )

w̃∗iDw̃i
−E

[
vec(w̃w̃∗)

w̃∗Dw̃

]
.

These quantities involve the following set of scalars,

βi,j = E

[
|wi|2|wj |2

(w∗Dw)
2

]
i, j = 1, · · · , N

for which closed-form expressions need to be derived. This is
the objective of the following technical lemma, which is of
independent interest:

Lemma 5. Let w = [w1, · · · , wN ]
T be a standard complex

Gaussian vector and D = diag(d1, · · · , dN ) be a diagonal
matrix with positive diagonal elements. Consider βi,j as
above. Then βi,j are given for i = j and i 6= j by the
expressions in (11), (12) and (13) at the top of next page.

With this result at hand, the next Lemma follows immedi-
ately:

Lemma 6. Let D be N×N diagonal matrix with positive
diagonal elements. Consider w̃1, · · · , w̃n n independent com-
plex Gaussian random vectors with zero-mean and covariance
IN . Then,

√
n
(

1
n

∑n
i=1

vec(w̃iw̃
∗
i )

w̃∗iDw̃i
−E

[
vec(w̃w̃∗)

w̃∗Dw̃

])
converges

to a multivariate Gaussian distribution with covariance B(D)
and pseudo-covariance G(D) given by:

B(D) = B̃(D)−vec(Ξ)vec(Ξ)T (14)

G(D) = G̃(D)−vec(Ξ)vec(Ξ)T (15)

where

B̃(D) = E
[

vec(w̃w̃∗) (vec(w̃w̃∗)))
∗

(w̃∗Dw̃)2

]
G̃(D) = E

[
vec(w̃w̃∗) (vec(w̃w̃∗)))

T

(w̃∗Dw̃)2

]
Ξ(D) = diag (α1(D), · · · , αN (D))

Furthermore, B̃ and G̃ are composed of N2 block of N×

N matrices, i.e, B̃(D) =

 B̃1,1 · · · B̃1,N

. . .
B̃N,1 · · · B̃N,N

, G̃(D) =

G̃1,1 · · · G̃1,N

. . .
G̃N,1 · · · G̃N,N

 where:

B̃i,i = diag (βi,1 · · · , βi,N )[
B̃i,j

]
k,`

= 1{k=i,`=j}βi,j , i 6= j[
G̃i,i

]
k,`

= 1{k=i,`=j}βi,i[
G̃i,j

]
k,`

= 1{k=i,`=j}βi,j+1{k=j,`=i}βi,j , i 6= j.

As we shall see next, it can be useful to rewrite matrices
G and B using the canonical basis of the space of N×N
matrices. Denote by Ei,j the N×N matrix of all zeros except
for 1 at position (i, j). Then, matrices B and G write:

B =

N∑
i,j=1
i 6=j

(βi,j−αiαj) (Ei,j⊗Ei,j)−
N∑
i=1

α2
i (Ei,i⊗Ei,i)

+

N∑
i=1

N∑
j=1

βi,j (Ei,i⊗Ej,j)

G =

N∑
i,j=1
i6=j

(βi,j−αiαj) (Ei,j⊗Ei,j)+

N∑
i,j=1
i 6=j

βi,j
(
Ei,j⊗ET

i,j

)

+

N∑
i=1

(βi,i−α2
i ) (Ei,i⊗Ei,i) .

In particular, in the specific case of D = IN , occuring if
ΣN = IN or ρ = 0, matrices B and G become:

B =
1

N(N+1)
IN2− 1

N2(N+1)
vec(IN ) (vec(IN ))

T

G =
1

N(N+1)
K− 1

N2(N+1)
vec(IN ) (vec(IN ))

T
.

where K denotes the commutation matrix.
Equipped with Lemma 6, we are now in position to state

the CLT for Σ̃(ρ), whose proof is omitted being a direct
consequence of Lemma 6:

Theorem 7. Let Σ̃(ρ) be given by (3) wherein observations
x1, · · · ,xn are drawn according to Assumption 1. Consider
ΣN = UΛNU∗ the eigenvalue decomposition of ΣN . Denote
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βi,i =
1

2N−1N(N+1)

1

d2i
∏N
k=1 dk

FND

N, 1 · · · , 1, 3
↑
i-th

position

, 1, · · · , 1, N+2,
d1− 1

2

d1
, · · · ,

dN− 1
2

dN

 (11)

βi,j =
1

2NN(N+1)

1

didj
∏N
k=1 dk

FND

N, 1 · · · , 1, 2
↑
i-th

position

, 1, · · · , 1, 2
↑
j-th

position

, 1 · · · , 1, N+2,
d1− 1

2

d1
, · · · ,

dN− 1
2

dN

 , i < j

(12)
βi,j = βj,i, i > j (13)

by D the diagonal matrix whose diagonal elements are solu-
tions to the system of equations (7). Then, in the asymptotic
large-n regime,

√
nδ̃ =

√
n
(

vec(Σ̃(ρ))−vec(Σ0)
)

behaves
as a zero-mean Gaussian distributed vector with covariance:

M̃1 = N2(1−ρ)2
(
UΛ

1
2

N⊗UΛ
1
2

N

)
B(D)

(
Λ

1
2

NUT⊗Λ
1
2

NU∗
)

and pseudo-covariance:

M̃2 = N2(1−ρ)2
(
UΛ

1
2

N⊗UΛ
1
2

N

)
G(D)

(
Λ

1
2

NU∗⊗Λ
1
2

NUT
)
.

where B(D) and G(D) are given by (14) and (15) of
Lemma 6.

In the same way as above, we discuss the results of
Theorem 7 when D = IN . We can prove that in this case
matrices M̃1 and M̃2 write as:

M̃1 =
N(1−ρ)2

N+1

(
ΣT
N⊗ΣN

)
− (1−ρ)2

N+1
vec(ΣN )vec(ΣN )H

M̃2 =
(1−ρ)2

N+1
[NK (ΣN⊗ΣT

N )−vec(ΣN )vec(ΣN )T]

Now that the fluctuations of Σ̃(ρ) have been determined,
we are in position to derive the asymptotic distribution of
vec(ĈN (ρ)). The very recent results in [20] establishing
equality between the fluctuations of the bilinear-forms of
ĈN (ρ) and those of its random equivalent ŜN (ρ) in the large-
n,N regime might lead us to expect similar results to hold in
the large-n regime. As we will show in the following theorem,
contrary to these first intuitions, the asymptotic distribution of
vec(Σ̃(ρ)) is different from that of vec(ĈN (ρ)), even though
it plays a central role in facilitating its analytical derivation.

Theorem 8. Under the same setting of Theorem 7, define F̃
the N2×N2 matrix:

F̃ = N(1−ρ)
(
UD

1
2⊗UD

1
2

)
B̃(D)

(
D

1
2 UT⊗D

1
2 U∗

)
with B̃(D) defined in Lemma 6. Consider ĈN (ρ) the robust
scatter estimator in (1). Then, in the large-n asymptotic
regime,

√
nδ =

√
n
(

vec(ĈN (ρ))−vec(Σ0)
)

behaves as a
zero-mean Gaussian-distributed vector with covariance:

M1 =

((
Σ

1
2
0

)T

⊗Σ
1
2
0

)
(IN2−F̃)−1

((
Σ
− 1

2
0

)T

⊗Σ
− 1

2
0

)
M̃1

×
((

Σ
− 1

2
0

)T

⊗Σ
− 1

2
0

)
(IN2−F̃)−1

((
Σ

1
2
0

)T

⊗Σ
1
2
0

)

and pseudo-covariance:

M2 =

((
Σ

1
2
0

)T

⊗Σ
1
2
0

)
(IN2−F̃)−1

((
Σ
− 1

2
0

)T

⊗Σ
− 1

2
0

)
M̃2

×
(

Σ
− 1

2
0 ⊗

(
Σ
− 1

2
0

)T
)

(IN2−F̃T)−1
(

Σ
1
2
0 ⊗
(
Σ

1
2
0

)T
)
.

Proof: The proof is deferred to Appendix E
If D = IN , the expressions for M1 and M2 reduce to:

M1 =
N(1−ρ)2(N+1)

(N+ρ)2

[
(ΣT

N⊗ΣN )− 1

N
vec(ΣN )vec(ΣN )H

]
M2 =

N(1−ρ)2(N+1)

(N+ρ)2

[
(ΣT

N⊗ΣN ) K− 1

N
vec(ΣN )vec(ΣN )T

]
Note that the covariance and pseudo-covariance corresponding
to the Tyler estimator derived in [23] can be retrieved by
setting ρ to 0.

IV. NUMERICAL RESULTS

In all our simulations, we consider the case where
x1, · · · ,xn are independent zero-mean Gaussian random vec-
tors with covariance matrix ΣN of Toeplitz form:

[CN ]i,j =

{
bj−i i ≤ j(
bi−j

)∗
i > j

, |b| ∈ (0, 1) , (16)

A. Which regime is expected to be more accurate

In order to study the behavior of RTE, assumptions letting
the number of observations and/or their sizes increase to
infinity are essential for tractability. The behavior of RTE
is studied under both concurrent asymptotic regimes, namely
the large-n regime, which underlies all the derivations of
this paper, and the n,N -large regime recently considered in
[20]. Given that the scope of the results derived in the large-
n,N regime, has thus far been limited to the handling of
bilinear forms, practitioners might wonder to know whether,
for their specific scenario, further investigation of this regime
would produce more accurate results. In this first experiment,
we attempt to answer to this open question by noticing that
both regimes have the common denominator of producing
random matrices that act as equivalents to the robust-scatter
estimator. The accuracy of each regime is thus evaluated by
measuring the closeness of the robust-scatter estimator to its
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Fig. 1. Accuracy of the random equivalent when N = 4

1 2 4 8 16 32

0.001

0.01

0.1

1

10

n
N

E n
,E
n
,N

En
En,N

Fig. 2. Accuracy of the random equivalent when N = 16

random equivalent proposed by each regime. This closeness
is measured using the following metrics:

En ,
1

N
E
∥∥∥Ĉ(ρ)−Σ̃(ρ)

∥∥∥2
Fro

and

En,N ,
1

N
E
∥∥∥Ĉ(ρ)−ŜN (ρ)

∥∥∥2
Fro

.

Figures 1, 2 and 3 represent these metrics with respect to
the ratio n

N when N = 4, 16, 32, b = 0.7 and ρ set to
0.5. The region over which the use of the large-n regime is
recommended corresponds to the values of n

N for which the
En curve is below the En,N one.

From these figures, it appears that, as N increases, the
region over which results derived under the large-n regime
are more accurate, corresponds to larger values of the ratio
n
N .

1 2 4 8 16 32

0.001

0.01

0.1

1

10

n
N

E n
,E
n
,N

En
En,N

Fig. 3. Accuracy of the random equivalent when N = 32

B. Asymptotic bias

In this section, we assess the bias of the RTE with respect to
the population covariance matrix. Since in many applications
in radar detection, we only need to estimate the covariance
matrix up to a scale factor, we define the bias as:

Bias =
1

N

∥∥∥∥∥∥E
 N

tr
(
Σ−1N ĈN

)Σ−1N ĈN

−IN

∥∥∥∥∥∥
2

Fro

.

Since N

tr(Σ−1
N ĈN)

Σ−1N ĈN has a bounded spectral norm, the
dominated convergence theorem implies that:

Bias −−−−−→
n→+∞

1

N

∥∥∥∥∥
[

N

tr
(
Σ−1N Σ0

)Σ−1N Σ0

]
−IN

∥∥∥∥∥
2

Fro

.

Figure 4 displays the asymptotic and empirical bias with
respect to the Toeplitz coefficient b and for ρ = 0.2, 0.5, 0.9.
We note that the bias is an increasing function of b. This is
expected since for small values of b, the covariance matrix
becomes close to the identity matrix. The RTE, viewed as a
shrunk version of the Tyler to the identity matrix will thus
produce small values of bias.

C. Central Limit Theorem

The central limit theorem provided in this paper can help de-
termine fluctuations of any continuous functional of vec(ĈN ).
As an application, we consider in this section the quadratic
form of type 1

N p∗Ĉ−1N (ρ)p with ‖p‖ = 1 (used for instance
for detection in array processing problems [26]), for which the
large-n and the large-n,N regimes predict different kind of
fluctuations. As a matter of fact, applying the Delta Method
[25], one can easily prove that under the large-n,

Tn ,

√
n
(

1
N p∗Ĉ−1N (ρ)p− 1

N p∗Σ−10 (ρ)p
)

1
N

√
aTMa

D−→ N (0, 1).
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Fig. 4. Analysis of the bias for n = 1000 and N = 2 with respect to b and
for different values of ρ.

where a = [aT
r aT

i]
T with

ar = <
((

(Σ−10 )
)T

p⊗Σ−10 p
)

ai = =
((

(Σ−10 )
)T

p⊗Σ−10 p
)

and M = 1
2

[
<M1+<M2 −=(M1)+=(M2)
=(M1)+=(M2) <M1−<M2

]
.

On the other hand, using results from [20], one can prove
that under the large-n,N regime,

√
n
N p∗Ĉ−1N (ρ)p satisfies:

Tn,N ,
√

n

σ2
N

(
1

N
p∗Ĉ−1N (ρ)p− 1

N
p∗QN (ρ)p

)
D−→ N (0, 1)

where:

σ2
N =

m(−ρ)2(1−ρ)2
(

1
N p∗ΣNQ2

Np
)2

ρ2(1−cm(−ρ)2(1−ρ)2 1
NΣ2

NQ2
N (ρ))

with ρ, m(−ρ) and Q(ρ) have the same expressions as in
[20] when CN in [20] is replaced by ΣN . A natural question
that arises is which of the two competing results is the most
reliable for a particular set of values N and n. To answer
this question, we plot in Figures 5, 6 and 7 the Kolmogorov-
Smirnov distance between the standard normal distribution and
the empirical distribution function of Tn and that of Tn,N ,
obtained over 100 000 realizations versus the ratio n

N when
b = 0.7, ρ = 0.5,p = [1, · · · , 1] and for N = 4, 16, 32. We
note that for values of N up to 16, results derived under the
large-n regime are more accurate for a large range of n while
the use of the results from the large-n,N regime seems to be
recommended for N = 32.

V. CONCLUSIONS

This paper addresses the study of the statistics of the RTE
under the classical large−n regime in which the observations’
dimension is fixed while their number tends to infinity. It
is worth noticing that despite the popularity of the RTE,
characterizing its statistical properties has remained unclear
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Fig. 5. Analysis of the accuracy of the CLT results for N = 4
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Fig. 7. Analysis of the accuracy of the CLT results for N = 32



10

until the work in [20] shedding light on its behavior when the
large-n,N regime is considered (the number of observations
n and their size N growing simultaneously to infinity.).
Interestingly, no results were provided for the standard large-n
regime in which N is fixed while n goes to infinity. This has
motivated our work. In particular, we established in the present
work that the RTE converges, under the large-n regime, to a
deterministic matrix which differs as expected from the true
population covariance matrix. An important feature of this
results is that it allows for the computation of the asymptotic
bias incurred by the use of the RTE. Additionally, we analyzed
the fluctuations of the RTE around its limit and proved that
they converge to a multivariate Gaussian distribution with
zero mean and a covariance matrix depending on the true
population covariance matrix and the regularization parameter.
Interestingly, simulations have shown the superiority, for a
wide range of N and n, of the accuracy of the second-order
results associated with quadratic forms of the robust scatter
estimator, derived in the large-n regime, over those obtained
in the large−n,N regime. This opens up possibilities of using
our results in order to get a more refined analysis of RTE based
estimators.

APPENDIX A
PROOF OF LEMMA 2

In the following appendices, for readability purposes, the
notation Σ0(ρ) (resp. Σ̃(ρ)) is simply replaced by Σ0 (resp.
Σ̃). Of course, the dependence of Σ0 to ρ is not omitted.

Multiplying both sides of (2) by Σ−1N , we show that Σ0

satisfies:

(1−ρ)E

[
ww∗

1
Nw∗Σ

1
2

NΣ−10 Σ
1
2

Nw

]
+ρΣ−1N = Σ

− 1
2

N Σ0Σ
− 1

2

N ,

where w is zero-mean distributed with covariance matrix IN .
Define A = Σ

− 1
2

N Σ0Σ
− 1

2

N . Then,

A = (1−ρ)E
[

ww∗

1
Nw∗A−1w

]
+ρΣ−1

which yields the following bound for ‖A‖,

‖A‖ ≤ (1−ρ)‖A‖+ ρ

λmin(ΣN )
.

Hence,

‖A‖ ≤ 1

λmin(ΣN )
. (17)

Now, ‖A‖ can be lower-bounded by:

‖A‖ = max
‖x‖=1

x∗Σ
− 1

2

N Σ0Σ
− 1

2

N x

(a)

≥ ‖Σ0‖ max
‖x‖=1

x∗Σ
− 1

2

N uu∗Σ
− 1

2

N x

≥ ‖Σ0‖u∗Σ
− 1

2

N uu∗Σ
− 1

2

N u

≥ ‖Σ0‖
‖ΣN‖

, (18)

where in (a) u is the eigenvector corresponding to the max-
imum eigenvalue of Σ0. Combining (17) and (18), we thus
obtain:

‖Σ0‖ ≤
‖ΣN‖

λmin(ΣN )
.

APPENDIX B
PROOF OF THEOREM 3

The proof is based on controlling the random elements di(ρ)
given by:

di(ρ) =
x∗i Ĉ

−1
N (ρ)xi−x∗iΣ

−1
0 xi√

x∗iΣ
−1
0 xi

√
x∗i Ĉ

−1
N (ρ)xi

.

Recall that, by the SLLN, under the large-n regime, Σ0

satisfies:

Σ0 = N(1−ρ)
1

n

n∑
i=1

xix
∗
i

x∗iΣ
−1
0 xi

+ρIN+εn(ρ),

where εn is a N×N matrix whose elements converge almost
surely to zero and satisfy [εn(ρ)]i,j = Op( 1

n ).
In the sequel, we prove that for any κ > 0,

sup
ρ∈[κ,1]

max
1≤i≤n

|di(ρ)| a.s.−→ 0.

For that, we need to work out the differences x∗i Ĉ
−1
N (ρ)xi−

x∗iΣ
−1
0 xi for i = 1, · · · , n. Using the resolvent identity A−1−

B−1 = A−1 (B−A) B−1 for any N×N invertible matrices,
we obtain:

x∗j Ĉ
−1
N (ρ)xj−x∗jΣ

−1
0 xj

= x∗j Ĉ
−1
N

1−ρ
n

n∑
i=1

xix
∗
i

(
1
N x∗iΣ

−1
0 xi− 1

N x∗i Ĉ
−1
N (ρ)xi

)
1
N x∗iΣ

−1
0 xi

1
N x∗i Ĉ

−1
N (ρ)xi

+εn

]
Σ−10 xj

=
1−ρ
n

n∑
i=1

−x∗j Ĉ
−1
N (ρ)xix

∗
iΣ
−1
0 xjdi(ρ)√

1
N x∗i Ĉ

−1
N (ρ)xi

1
N x∗iΣ

−1
0 xi

+x∗j Ĉ
−1
N (ρ)εnΣ−10 xj .

Hence,

dj(ρ) =

1−ρ
n

∑n
i=1

−x∗j Ĉ
−1
N (ρ)xix

∗
iΣ
−1
0 xjdi(ρ)√

1
N x∗iΣ

−1
0 xi

1
N x∗i Ĉ

−1
N (ρ)xi√

x∗j Ĉ
−1
N (ρ)xjx∗jΣ

−1
0 xj

+
x∗j Ĉ

−1
N (ρ)εnΣ−10 xj√

x∗j Ĉ
−1
N (ρ)xjx∗jΣ

−1
0 xj

.

Let dmax(ρ) = max1≤j≤n |dj(ρ)|. By the Cauchy-Schwartz
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inequality, we thus obtain:

dmax(ρ) ≤ dmax(ρ)√
x∗j Ĉ

−1
N (ρ)xjx∗jΣ

−1
0 xj

×

√√√√1−ρ
n

n∑
i=1

x∗j Ĉ
−1
N (ρ)xix∗i Ĉ

−1
N (ρ)xj

1
N x∗i Ĉ

−1
N (ρ)xi

×

√√√√1−ρ
n

n∑
i=1

x∗jΣ
−1
0 xix∗iΣ

−1
0 xj

1
N x∗iΣ

−1
0 xi

+‖Ĉ−
1
2

N (ρ)εnΣ
− 1

2
0 ‖.

Therefore,

dmax(ρ) ≤ dmax(ρ)√
x∗j Ĉ

−1
N (ρ)xjx∗jΣ

−1
0 xj

×
√

x∗j Ĉ
− 1

2

N

(
IN−ρĈ−1N (ρ)

)
Ĉ
− 1

2

N xj

×
√

x∗jΣ
− 1

2
0

(
IN−ρΣ−10

)
Σ
− 1

2
0 xj−x∗jΣ

−1
0 εnΣ−10 xj

+‖Ĉ−
1
2

N (ρ)εnΣ
− 1

2
0 ‖.

Using the relation |x∗Ay| ≤ ‖x‖‖A‖‖y‖, we thus obtain:

dmax(ρ) ≤ dmax(ρ)

√
‖IN−ρĈ−1N (ρ)‖(

‖IN−ρΣ−10 ‖−
x∗jΣ

−1
0 εnΣ−10 xj

x∗jΣ
−1
0 xj

) 1
2

+‖Ĉ−
1
2

N (ρ)εnΣ
− 1

2
0 ‖.

Since supρ∈[κ,1) ‖Ĉ
− 1

2

N εn(ρ)Σ
− 1

2
0 ‖ ≤ 1

κ supρ∈[κ,1) ‖εn(ρ)‖
and using the fact that ‖IN−ρĈ−1N (ρ)‖ ≤ 1, we get:

dmax(ρ) ≤ dmax(ρ)

(√
‖IN−ρΣ−10 ‖

+

√
‖Σ−

1
2

0 εnΣ
− 1

2
0 ‖

)
+

1

κ
‖εn‖.

Again, as ‖Σ−
1
2

0 εnΣ
− 1

2
0 ‖ ≤

‖εn‖
κ , we have:

dmax(ρ)

(
1−
√
‖IN−ρΣ−10 ‖−

√
1

κ
‖εn‖

)
≤ 1

κ
‖εn‖.

From Lemma 2, ‖Σ0‖ ≤ ‖ΣN‖
λmin(ΣN ) . Therefore, for n large

enough (say large enough for the left-hand parenthesis to be
greater than zero),

dmax(ρ) ≤
1
κ‖εn‖

1−
√

1−ρλmin(ΣN )
‖ΣN‖ −

√
1
κ‖εn‖

.

Taking the supremum over ρ ∈ [κ, 1), we finally obtain:

sup
ρ∈[κ,1)

dmax(ρ) ≤
1
κ‖εn‖

1−
√

1−κλmin(ΣN )
‖ΣN‖ −

√
1
κ‖εn‖

.

thereby showing that dmax(ρ)
a.s.−→ 0 and dmax(ρ) = Op

(
1
n

)
Now, that the control of dmax(ρ) is performed, we are in

position to handle the difference ĈN (ρ)−Σ0. We have:

ĈN (ρ)−Σ0 =
1−ρ
n

n∑
i=1

xix
∗
i

(
x∗iΣ

−1
0 xi−x∗i Ĉ

−1
N (ρ)xi

)
x∗i Ĉ

−1
N (ρ)xi

1
N x∗iΣ

−1
0 xi

−εn(ρ)

=
1−ρ
n

n∑
i=1

−xix
∗
i di(ρ)√

1
N x∗i Ĉ

−1
N (ρ)xi

√
1
N x∗iΣ

−1
0 xi

−εn(ρ).

Therefore,

‖ĈN (ρ)−Σ0‖

≤ dmax(ρ)

∥∥∥∥∥∥∥
1−ρ
n

n∑
i=1

xix
∗
i√

1
N x∗i Ĉ

−1
N (ρ)xi

√
1
N x∗iΣ

−1
0 xi

∥∥∥∥∥∥∥
+‖εn(ρ)‖ .

By the Cauchy-Schwartz inequality, we get:

‖ĈN (ρ)−Σ0‖ ≤ dmax(ρ)

∥∥∥∥∥1−ρ
n

n∑
i=1

xix
∗
i

1
N x∗i Ĉ

−1
N (ρ)xi

∥∥∥∥∥
1
2

×

∥∥∥∥∥1−ρ
n

n∑
i=1

xix
∗
i

1
N x∗iΣ

−1
0 xi

∥∥∥∥∥
1
2

+‖εn(ρ)‖

or equivalently:

‖ĈN (ρ)−Σ0‖ ≤ dmax(ρ)
∥∥∥ĈN−ρIN

∥∥∥ 1
2 ‖Σ0−ρIN−εn‖

1
2

+‖εn(ρ)‖ .

Since dmax(ρ)
a.s.−→ 0, to conclude, we need to check that the

spectral norm of ĈN is almost surely bounded. The proof
is almost the same as that proposed in Lemma 2 to control
the spectral norm of Σ0 with the slight difference that the
expectation operator is replaced by the empirical average,
and using additionally the fact that 1

n

∑n
i=1

wiw
∗
i

w∗iwi

a.s.−→ 1
N IN .

Details are thus omitted.

APPENDIX C
PROOF OF LEMMA 4

The proof of Lemma 4 is based on the same technique
as in [27]. Using the relation 1

α =
∫ +∞
0

e−αtdt, we write
E
[
|wi|2

w∗Dw

]
as:

E
[
|wi|2

w∗Dw

]
= E

[
|wi|2

∫ +∞

0

e−t(di|wi|
2+

∑N
j=1,j 6=i |wj |

2dj)
]

=

∫ +∞

0

∫ +∞

0

1

2N
e−tdiuu exp(−u/2)

∫ +∞

0

· · ·
∫ +∞

0

×exp

−t ∑
j=1,j 6=i

ujdj

 N∏
j=1,j 6=i

e−uj/2du1 · · · duN−1dudt

=

∫ ∞
0

1

2N
1

( 1
2 +tdi)

N∏
j=1

1
1
2 +tdj

dt.
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Conducting the change of variable t = 1
v−1, we eventually

obtain:

E
[
|wi|2

w∗Dw

]
=

∫ 1

0

1

2N
vN−1

di
∏N
j=1 dj(1−v

di− 1
2

di
)

N∏
j=1

1

1−v dj−
1
2

dj

dv.

We finally end the proof by using the integral representation
of the Lauricella’s type D hypergeometric function.

APPENDIX D
PROOF OF LEMMA 5

Again the proof of the results in Lemma 5 follows the same
lines as in Appendix C. We will only detail the derivations
for the expressions of βi,i, i = 1, · · · , N . The same kind of
calculations can be used to derive that of βi,j , i 6= j. Using
the relation 1

α2 =
∫∞
0
te−αtdt, we write βi,i = E

[
|wi|4

(w∗Dw)2

]
as:

βi,i = E
[
|wi|4

∫ ∞
0

te−t|w|
2
i+

∑
j=1,j 6=i |wj |

2dj

]
=

∫ ∞
0

∫ ∞
0

t

2N
u2e−tdiuu exp(−u/2)

∫ ∞
0

· · ·
∫ ∞
0

×exp

−t N∑
j=1,j 6=i

ujdj

 N∏
j=1,j 6=i

e−uj/2du1 · · · duN−1dudt

=
1

2N−1

∫ ∞
0

t(
1
2 +tdi

)2 N∏
k=1

1
1
2 +tdk

dt.

Conducting the change of variable t = 1
v−1, we obtain:

βi,i =
1

2N−1

∫ 1

0

(1−v)vN−1dv

d2i
∏N
k=1 dk

(
1− v(di− 1

2 )

di

)2∏N
k=1(

v( 1
2−dk)
dk

+1)
.

APPENDIX E
PROOF OF THEOREM 8

Our approach is based on a perturbation analysis of
vec(ĈN (ρ)) in the vicinity of the asymptotic limit Σ0 coupled
with the use of the Slutsky Theorem [25] which allows us to
discard terms converging to zero in probability.

Set ∆ = Σ
− 1

2
0

(
ĈN (ρ)−Σ0

)
Σ
− 1

2
0 . Then,

∆ =
N(1−ρ)

n

n∑
i=1

Σ
− 1

2
0 xix

∗
iΣ
− 1

2
0

x∗i Ĉ
−1
N (ρ)xi

+ρΣ−10 −IN .

Writing Ĉ−1N as:

Ĉ−1N =
(
ĈN−Σ0+Σ0

)−1
= Σ

− 1
2

0 (IN+∆)
−1

Σ
− 1

2
0

= Σ−10 −Σ
− 1

2
0 ∆Σ

− 1
2

0 +op(‖∆‖)

we obtain:

∆ =
N(1−ρ)

n

n∑
i=1

Σ
− 1

2
0 xix

∗
iΣ
− 1

2
0

x∗iΣ
−1
0 xi−x∗iΣ

− 1
2

0 ∆Σ
− 1

2
0 xi+op(‖∆‖)

+ρΣ−10 −IN .

From [25, Lemma 2.12], ∆ writes finally as:

∆ =
N(1−ρ)

n

n∑
i=1

Σ
− 1

2
0 xix

∗
iΣ
− 1

2
0

x∗iΣ
−1
0 xi

(
1+

x∗iΣ
− 1

2
0 ∆Σ

− 1
2

0 xi

x∗iΣ
−1
0 xi

)
+ρΣ−10 −IN+op(‖∆‖)

= Σ
− 1

2
0 Σ̃Σ

− 1
2

0 −IN

+
N(1−ρ)

n

n∑
i=1

Σ
− 1

2
0 xix

∗
iΣ
− 1

2
0 x∗iΣ

− 1
2

0 ∆Σ
− 1

2
0 xi(

x∗iΣ
−1
0 xi

)2 +op(‖∆‖)

= Σ
− 1

2
0 Σ̃Σ

− 1
2

0 −IN

+
N(1−ρ)

n

n∑
i=1

Σ
− 1

2
0 xix

∗
iΣ
− 1

2
0

(
xTi (Σ

− 1
2

0 )T⊗x∗iΣ
− 1

2
0

)
vec(∆)(

x∗iΣ
−1
0 xi

)2
+op(‖∆‖).

Let F be the N2×N2 matrix given by:

F =
N(1−ρ)

n

n∑
i=1

vec
(
Σ
− 1

2
0 xix

∗
iΣ
− 1

2
0

)(
xTi (Σ

− 1
2

0 )T⊗x∗iΣ
− 1

2
0

)
(
x∗iΣ

−1
0 xi

)2 .

Then, vec(∆) satisfies the following system of equations:

vec(∆) = vec
(
Σ
− 1

2
0 Σ̃Σ

− 1
2

0 −IN

)
+E (F) vec(∆)

+(F−E(F)) δ+op(‖δ‖). (19)

Given that the two last terms in the right-hand side of (19)
converges to zero at a rate faster than 1√

n
, we have:

√
nvec(∆) =

√
n

((
Σ
− 1

2
0

)T

⊗Σ
− 1

2
0

)
δ̃+
√
nE(F)vec(∆)

+op(1). (20)

It remains thus to compute E(F) and to check that its spectral
norm is less than 1. We will start by controlling the spectral
norm of E(F). Recall that E(F) is given by:

E(F) = N(1−ρ)

×E

vec
(
Σ
− 1

2
0 xx∗Σ

− 1
2

0

)(
xT(Σ

− 1
2

0 )T⊗x∗Σ
− 1

2
0

)
(x∗Σ−10 x)2


= N(1−ρ)E


(

(Σ
− 1

2
0 )Tx⊗Σ

− 1
2

0 x
)(

xT(Σ
− 1

2
0 )T⊗x∗Σ

− 1
2

0

)
(
x∗Σ−10 x

)2


= N(1−ρ)E


(

(Σ
− 1

2
0 )TxxT(Σ

− 1
2

0 )T
)
⊗
(
Σ
− 1

2
0 xx∗Σ

− 1
2

0

)
(
x∗Σ−10 x

)2
 .

It can be easily noticed that: (Σ
− 1

2
0 )TxxT(Σ

− 1
2

0 )T

x∗Σ−1
0 x

� IN . There-
fore,

E(F) � N(1−ρ)IN⊗E

[
Σ
− 1

2
0 xx∗Σ

− 1
2

0

x∗Σ−10 x

]
= IN⊗

(
IN−ρΣ−10

)
thus implying

‖E(F)‖ ≤
∥∥IN−ρΣ−10

∥∥ < 1.
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We will now provide a closed-form expression for E(F).
To this end, we will use the eigenvalue decomposition of
Σ
− 1

2
0 Σ

1
2

N = UD
1
2 U∗. Then, letting w̃ = U∗w with w =

Σ
− 1

2

N x, we obtain:

E(F) = E

[
N(1−ρ)UD

1
2 (w̃)w̃TD

1
2 UT⊗UD

1
2 w̃w̃∗D

1
2 U∗

(w̃∗Dw̃)
2

]
.

Therefore,(
D−

1
2 UT⊗D−

1
2 U∗

)
E(F)

(
UD−

1
2⊗UD−

1
2

)
= N(1−ρ)E

[
(w̃)w̃T⊗w̃w̃∗

(w̃∗Dw̃)
2

]

= N(1−ρ)E


(

(w̃)⊗w̃
)

(w̃⊗w̃∗)

(w̃∗Dw̃)
2


= N(1−ρ)E

[
vec(w̃w̃∗) (vec(w̃w̃∗))

∗

(w̃∗Dw̃)
2

]
= N(1−ρ)B̃(D),

where B̃(D) is provided by Lemma 4. A closed-form expres-
sion for F̃ , E(F) is thus given by:

F̃ = N(1−ρ)
(
UD

1
2⊗UD

1
2

)
B̃(D)

(
D

1
2 UT⊗D

1
2 U∗

)
.

The linear system of equations in (20) thus becomes:

√
nvec(∆) =

√
n(IN−F̃)−1

((
Σ
− 1

2
0

)T

⊗Σ
− 1

2
0

)
δ̃+op(1).

Writing vec(∆) =

((
Σ
− 1

2
0

)T

⊗Σ
− 1

2
0

)
δ, we finally obtain:

√
nδ =

((
Σ

1
2
0

)T

⊗Σ
1
2
0

)
(IN2−F̃)−1

((
Σ
− 1

2
0

)T

⊗Σ
− 1

2
0

)√
nδ̃

+op(1).

Thus,
√
nδ behaves as a zero-mean Gaussian distributed vector

with covariance:

M1 =

((
Σ

1
2
0

)T

⊗Σ
1
2
0

)
(IN2−F̃)−1

((
Σ
− 1

2
0

)T

⊗Σ
− 1

2
0

)
M̃1

×
((

Σ
− 1

2
0

)T

⊗Σ
− 1

2
0

)
(IN2−F̃)−1

((
Σ

1
2
0

)T

⊗Σ
1
2
0

)
and pseudo-covariance:

M2 =

((
Σ

1
2
0

)T

⊗Σ
1
2
0

)
(IN2−F̃)−1

((
Σ
− 1

2
0

)T

⊗Σ
− 1

2
0

)
M̃2

×
(

Σ
− 1

2
0 ⊗

(
Σ
− 1

2
0

)T
)

(IN2−F̃T)−1
(

Σ
1
2
0 ⊗
(
Σ

1
2
0

)T
)

This completes the proof.
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