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Abstract

Speaking involves sequences of linguistic units that can be pro-
duced under different sets of control strategies. For instance, a
given phoneme can be achieved with different acoustic proper-
ties, and a sequence of phonemes can be performed at different
speech rates and with different prosodies. How does the Cen-
tral Nervous System select a specific control strategy among all
the available ones? In a previously published article we pro-
posed a Bayesian model that addressed this question with re-
spect to the multiplicity of acoustic realizations of a sequence
of phonemes. One of the strengths of Bayesian modeling is that
it is well adapted to the combination of multiple constraints. In
the present paper we illustrate this feature by defining an ex-
tension of our previous model that includes force constraints
related to the level of effort for the production of phoneme se-
quences, as it could be the case in clear versus casual speech.
The integration of this additional constraint is used to model the
control of articulation clarity. Pertinence of the results is illus-
trated by controlling a biomechanical model of the vocal tract
for speech production.

Index Terms: Speech motor control, Bayesian modeling,
Hypo/Hyperspeech, Dynamical constraints.

1. Introduction

A number of various experimental studies have suggested that
speech is a skilled serial-order motor task that is adapted to
achieve time series of goals within a timing that does not al-
low any on-line cortical processing of feedback signals. This is
illustrated for the auditory feedback by the absence of impact
on speech production of a feedback delayed by up to 75 ms
[1]. In addition, the speech motor system is highly redundant
with many available degrees of freedom, which makes the infer-
ence of motor commands from physical signals an “ill-posed”
inverse problem [2]. These degrees of freedom are used in dif-
ferent ways to deal with sequence planning and variations in
the conditions of articulation. For instance, clear anticipatory
behaviors have been observed in articulatory and acoustic pat-
terns associated with speech sequences [3].

To deal with this complexity, motor control models classi-
cally consider a feedforward control scheme for ongoing speech
production under normal conditions. This is associated with a
feedback controller enabling, with a certain delay, a correction
of the motor commands in case of inadequate feedforward com-
mands or in presence of external perturbations [4]. In this con-
text, speech planning, which aims at solving the “ill-posed” in-
verse problem by finding the motor command patterns adapted

to the production of a speech sequence, has been classically
modeled within an optimal motor control framework. This ap-
proach has been shown to generate results in close agreement
with experimental data, in particular in terms of adaptation to
perturbations [5] or in terms of anticipatory behavior [6, 7].

However, criticisms of this approach include key issues in
cognitive science, such as the nature of the neuro-physiological
mechanisms likely to be associated with cost computation and
cost minimization, or the inability to account for the well-
known token-to-token speech variability [8]. This last drawback
is inherent to the feedforward optimal control scheme, since this
scheme basically cancels possible variations along the degrees
of freedom directions, by specifying a unique optimal solution
to the control problem.

In this context we have published an alternative approach by
formulating feedforward optimal control in a Bayesian model-
ing framework [9], which has been implemented for the control
of a 2D biomechanical model of the tongue [10]. The method-
ology is based on Bayesian Programming [11, 12, 13], which
proposes a structure for the construction of Bayesian models.
Bayesian modeling, in a nutshell, solves inference problems by
computing probability distributions for the solutions instead of
proposing specific values; this allows to solve ill-posed prob-
lems while conserving token-to-token variability in a principled
way [14]. It also preserves the basic principles underlying the
search for optimality without being explicitly driven by the min-
imization of a cost, relying instead on probabilistic evaluation
of all possibilities.

The approach was illustrated by reformulating GEPPETO,
an existing optimal control model for speech production plan-
ning developed in the lab [15], into the Bayesian modeling
framework. We have shown that these two models are nested,
with optimal control as a special case of the Bayesian model: in-
deed, the Bayesian model is simplified into the optimal control
model, when the inferred control commands are strictly limited
to those with maximum posterior probability. Variability in the
Bayesian model is formally generated by assuming that control
is performed by sampling motor commands randomly accord-
ing to the distribution that solves the inference problem.

An interesting aspect of the proposed formalism is its co-
herence for dealing with multiple constraints. This is illustrated
in the present work by describing an extension of the Bayesian
model that takes into account an important additional constraint
associated with the trade-off between accuracy and effort at fast
speaking rate, which has also been integrated in GEPPETO
[16]. While our recently published model specified the con-



straints only in terms of auditory goals to be reached at the dif-
ferent phonemes of a speech sequence, the proposed extension
integrates the specification of the level of effort (weak, medium,
strong) involved in the production of the sequence. Depending
on this effort level, different probability distributions are associ-
ated to the achievement of the task. The inferred command pat-
terns will be assessed on the biomechanical model of the tongue
with a special focus on how increasing the speaking rate affects
the articulatory and acoustic accuracy in phoneme production.

The paper is divided into four sections. Section 2 summa-
rizes the main hypotheses involved in the formulation of the
Bayesian model, with an emphasis on the additional constraint
that is to be included. From these ingredients the extension
of the Bayesian model is introduced in Section 3. Section 4
presents the results of the inference and the assessment of the in-
ferred command patterns with the biomechanical tongue model.
Finally, the strengths of the proposed modeling framework are
discussed with respect to its capacity to deal with different kinds
of physical constraint applied to speech production.

2. Methodology

2.1. Basic control of the biomechanical model

This section summarizes all hypotheses considered in the
model. The first half of these hypotheses are exactly the same
as those used to define our recently published model [9]. The
second half concerns the introduction of the additional total-
level-of-force constraint.

As in GEPPETO, we are concerned with the selection of
control variables for the production of sequences of phonemes.
We only consider phonemes {/i/, /e/, /¢/, /a/, Joe/, 3/, [k/}
that do not require jaw or lip movements since the version of the
biomechanical model that is used for simulations only includes
an account of the tongue [17, 10]. Control variables correspond
to the six control parameters, called A\ [18], used to pilot the
biomechanical model. The first three formants of the acoustic
signal are assumed to define the auditory space in which motor
goals associated with phonemes are specified as convex target
regions. Finally, the knowledge of the mapping between control
variables and formant values is assumed to be stored in an in-
ternal model in the CNS [5]. In our study it is implemented by
a radial basis function (RBF) network learned from more than
2.10" simulations covering the whole motor space [19]. The
internal model is considered to be “static” as it associates com-
mands and outputs at targets.

This first set of hypotheses was used to specify in our pre-
vious model the selection of control variables based on the au-
ditory characterization of phonemes only. However, different
configurations of A control variables may result in the same
tongue shape (and therefore the same acoustic signal), corre-
sponding to an identical equilibrium configuration for different
generated forces. The total level of force influences the capacity
of the tongue to satisfy the speech requirements associated with
increasing speaking rates. GEPPETO characterizes every artic-
ulatory configuration at the targets with a corresponding level
of effort. These levels of effort are associated with the levels of
total muscle force that are categorized in three levels, “Weak”,
“Medium” and “Strong” [16]. Since muscle force capacity is
highly muscle dependent [20, 21] and since phonemes are dif-
ferentiated by the patterns of recruited muscles [22, 23, 24, 25],
for a given total level of effort, the actual muscle force involved
depends on the considered phoneme. Thus, effort is not simply
linked with the absolute amplitude of muscle force, but with

the amplitude of the force relatively to the maximal capacity
of the involved muscles to produce force. This is a way to not
penalize phonemes, such as /i/ or /u/, that requires the activa-
tion of intrinsically strong muscles, such as the Genioglossus or
the Syloglossus, as compared to phonemes, such as /a/ that is
associated with a weaker muscle, the Hyoglossus. Here again,
the knowledge of the control-to-force mapping is assumed to
be stored in the CNS in a “static” internal model, which results
from a learning process that generalizes the relation between
motor commands and generated forces from a number of exam-
ples. It is implemented by a second RBF network.

2.2. Bayesian model
2.2.1. Model definition

Variables Variables correspond to the formal representation of
all the relevant quantities selected for the description of the sys-
tem. In the Bayesian framework, these quantities correspond to
probabilistic variables. These variables are extracted from the
control scheme presented in Section 2:

@ is a discrete variable representing phonemes. It corre-
sponds to the set of phonemes specified in Section 2.

S is a continuous vector variable in the auditory space
described as the 3-dimensional formant space: S =
(F17 F27 F3)

M is a 6-dimensional continuous vector variable represent-
ing the motor commands controlling the tongue: M =
(A1, Xe)-

v is a continuous scalar variable representing the amount
of total muscle force generated.

NN is a discrete variable representing the level of effort gen-
erated at the target articulation of a phoneme. Its ele-
ments are the 3 levels of effort considered in GEPPETO.

Decomposition Our aim is to completely specify the joint prob-
ability distribution P(M S ® v N). To this aim, the joint prob-
ability distribution is first decomposed following the standard
chain rule of probabilities. Then, assumptions related to de-
pendencies linking different variables are exploited, in order to
simplify the obtained decomposition. The resulting decomposi-
tion is:

P(MS®vN) = P(M)P(S|M)P(@®|S)
P(v| M) P(N | ®v). )

The assumptions leading to the terms in the first line of Eq. (1)
are the same as for our previous model [9]. Terms appearing
in the second line of Eq. (1) correspond to the additional con-
straint included in the model. The simplifications leading to
these terms are the assumptions that the total force level v is
uniquely specified by the motor variable M, and that the level
of effort IV is completely characterized by the knowledge of ¢
and v. It is worth noting that the global structure of the ob-
tained decomposition results in the combination of the structure
involved in our previous model with the structure relating mus-
cle forces and related level of effort. Figure 1 illustrates the
incorporation of these two structures into the current model.
Parametric forms Once defined the decomposition for the joint
distribution P(M S ® v N) (Eq. (1)) has been defined, it is
necessary to specify the form taken by each of its factors.

P (M), the probability of occurrence of a motor pattern
M, is specified by a uniform distribution, since, in the absence



Figure 1: Incorporation of the additional effort-constraint into
our previous Bayesian model [9].

of further knowledge, there is no reason to assume that some
motor control patterns should be favored as compared to others.

P(S | M) and P(v | M) represent probabilistic accounts
of the knowledge of the motor-to-auditory and motor-to-force
mappings respectively (see Section 2). Since these mappings
uniquely specify the auditory and force outputs corresponding
to motor variable M, they are described by Dirac delta func-
tions located on the outputs of the corresponding RBF networks.
These outputs are denoted by s* (M) and v* (M) respectively.

P(® | S) corresponds to the probability of associating
phoneme ® with the auditory input S. It is specified in the same
way as in our previous model [9], by defining a sub-model that
implements the inference of this categorization based on Gaus-
sian descriptions of the P(S | ®) distributions, describing the
dispersion of auditory variable S for each phoneme.

P(N | v ®) characterizes the link between the level of
effort N and the total level of force v for a given phoneme P.
It can be seen, for each phoneme, as the categorization of the
generated forces v into one of the three level of efforts N. As
for P(® | S), this term is specified by a sub-model that per-
forms this categorization based on the probability distributions
P(v | N ®) of forces v generated with respect to each level of
effort N and for each phoneme ®. P(v | N ®) are assumed
to be Gaussian, with location parameters (means) specified by
the effort constraint implemented in GEPPETO, and variances
scaled by parameter «,, which controls the strength of the con-
straint.

2.2.2. Inference of motor commands M producing phoneme ®
with a desired level of effort N

Having specified the joint distribution P(M S ® v N), we now
formulate the question that is to be solved by the model. As the
problem is to infer the control commands M producing a de-
sired phoneme & under a desired level of effort NV, the approach
consists in using the model to infer the probability distribution
over M, conditioned on the specified values of ® and N. The
corresponding distribution, P(M | ® N), is obtained by stan-
dard Bayesian inference and is given by:
Y5, P(MS®vN)

PAr|eN) = ZZ\{,S,I/P(MS©VN)‘ @

Since in Eq. (2) the denominator is constant for fixed N and &,
we focus on its numerator and make the denominator implicit by
using a proportionality symbol “o<”. Using the decomposition
given by Eq. (1) and including the constant P(M) term in the
proportionality symbol, we obtain:

P(M | ® N)
x > P(S|M)P(®|S)Pv|M)P(N|®v)
S,v
x P(®|s"(M))P(N|®v"(M)), 3)

where the summation over S and v is reduced to the terms
v = v*(M) and S = s*(M) for which P(v | M) and

Figure 2: Diagram of the sequence-planning model including
the effort constraint.

P(S | M) are not equal to zero. Eq. (3) completely defines
the distribution from which motor variables M can be selected
in order to produce a specific phoneme with a desired level of
effort.

2.2.3. Inference of motor commands producing a sequence of
phonemes with a desired level of effort

Until now we have only considered the selection of motor com-
mands for the production of isolated phonemes. The interest
of taking into account the level of effort corresponding to the
planned motor variable is made clear in the generation of se-
quences of phonemes. We previously proposed a Bayesian
model planning motor commands for the production of se-
quences of phonemes, which only considered the auditory con-
straint [9]. Based on the above methodology for the planning
of a single phoneme, it is straightforward to include the addi-
tional effort constraint into the sequence planning model. Fig-
ure 4 represents the diagram corresponding to this extended
sequence-planning model from which we can infer motor vari-
ables for the production of sequences of phonemes with differ-
ent levels of effort. Variables are duplicated and indexed by
their order in the intended sequence. The additional variable
C'», implements a motor constraint that imposes the proximity
of planned motor commands resulting in anticipatory coarticu-
lation effects [9].

3. Results
3.1. Inferred control patterns

The decision policy underlying the selection of a set of control
variables for the production of phoneme ® with effort level NV
consists in random sampling based on P(M | ® N). This sam-
pling is approximated by the Metropolis-Hasting algorithm that
performs a Markov Chain Monte Carlo (MCMC) random walk
that converges to the desired distribution. Simulations were per-
formed with Matlab’s “mhsample” function with 20 chains of
2.10* samples each and a burning period of 10 samples. Tests
revealed that further increasing the number of samples had no
influence on the global shape of the obtained distributions.

In order to validate the performance of the model it is nec-
essary to evaluate whether control samples M obtained from
this sampling policy effectively result in intended auditory and
force values that satisfy the constraints. Figure 2 gives an ex-
ample of the results. It represents the histograms of the first
three intended formant values corresponding to the samples M
obtained for phoneme /i/ from P(M | ® N) at the three effort
levels. These intended formant values where computed from
the RBF network used for the internal models described in Sec-
tion 2. It can be seen that the formants correctly distribute inside
the target regions for all the categories of effort. This remains
true for all other phonemes. Similarly, Figure 3 represents the
histograms of the total intended muscle force obtained from the
same set of samples M used in Figure 2. Again, these levels
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Figure 3: Histograms of the total level of force corresponding to samples M obtained by the the probability distribution P(M|®N) for
phoneme /i/ and effort levels N=“Weak” (Left), N="“Medium” (Middle) and N=“Strong” (Right). The vertical dotted lines indicates
the borders of the regions characterizing the effort constraint of GEPPETO.
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Figure 4: Histograms of auditory consequences of samples
M sampled from the probability distribution P(M | & N)
for phoneme /i/ and effort levels N=“Weak” (Bottom),
N=“Medium” (Middle) and N="“Strong” (Top). The vertical
dotted lines indicate borders of the auditory regions character-
izing the auditory constraint for this phoneme.

of intended total force were obtained from the RBF network. It
can be seen that the forces correctly distribute according to the
corresponding regions that define each level of effort. In sum-
mary, the Bayesian model correctly infers control samples M
that jointly satisfy both the auditory and the effort constraints
characterizing the speech planning task.

3.2. Sequence planning at various levels of effort

We consider for illustration the sequence /aie/ planned with the
N="Weak” and N="Strong” levels of effort. The set of control
variables having the highest inferred probabilities are selected
and the resulting tongue trajectories are generated by the biome-
chanical model presented in Section 2. Two speaking rates are
implemented for each set of control variables by specifying a
slow and fast transition rate between the motor commands of
the first and second phoneme in the sequence, together with a
long and a short duration of the second phoneme. Results are
illustrated as formant trajectories in auditory space shown in
Figure5. It can be seen that for a fast speaking rate, motor com-
mands planned with the N="“Weak” level of effort result in a
formant trajectory that misses the auditory target region for the
middle phoneme /i/ (Top left image). This is not the case for
control variables planned with the N=“Strong” levels of effort
(Top right image). In a slow speaking rate however, these same
two sets of control variables result in formant trajectories that
both reach auditory target regions (Bottom images).

4. Conclusion

We have presented an extension of a recently published
Bayesian model of speech motor control that plans control vari-
ables for the production of phoneme sequences [9]. This ex-
tension shows how an additional constraint, related to the level
of total muscle force generated in the production of phonemes,
can be included in a modular manner into the model. We have
shown that the model correctly infers motor commands that
jointly satisfy both constraints characterizing the speech task:
intended auditory outputs lie inside the desired phonemic re-
gions and total level of muscle force satisfies the desired ef-
fort interval. The model was constructed as a reformulation
of GEPPETO, an existing optimal control model that rests on
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Figure 5: Formant trajectories corresponding to the motor com-
mands planned for the sequence /aie/ with the N=“Weak”
(Left) and N=“Strong” (Right) effort levels, produced with fast
(Top) and slow (Bottom) speech rates. For a fast speaking rate,
the trajectory planned with the N="“Weak” effort level misses
the auditory target for the middle phoneme /i/ (Top left image),
but not for the N="“Strong” effort level. Both commands pro-
duce trajectories that reach the auditory targets for slow speech
rate (Bottom images). Red crosses indicate the intended audi-
tory output of the motor commands.

the minimization of a cost function. We have shown in a pre-
vious paper [9] that the Bayesian model includes the optimal
control approach of GEPPETO as the particular case of find-
ing motor commands with the maximum posterior probability.
In this sense the Bayesian framework offers a more general ap-
proach that has valuable properties. For instance, the Bayesian
approach results in a distribution of solutions while the opti-
mal control approach gives a unique point-like value. These
distributions allow us to better explore the space of solutions
and study the possibility that patterns of variability may be at-
tributed to the distribution of possible equivalent motor solu-
tions.

We see that the proposed Bayesian Programming approach
offers an interesting framework for the integration of multi-
ple constraints. The flexibility and coherence of the Bayesian
methodology allows us to further include additional constraints
considered in speech motor control. In this context, current
work is focused in the combination of constraints related to pro-
prioceptive characterization of phonemes along with the present
auditory representation.
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