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ABSTRACT: A flexible nitride p-n photodiode is demonstrated. The device consists of a 

composite nanowire/polymer membrane transferred onto a flexible substrate. The active element 

for light sensing is a vertical array of core/shell p-n junction nanowires containing InGaN/GaN 

quantum wells grown by MOVPE. Electron/hole generation and transport in core/shell 

nanowires are modelled within non-equilibrium Green function formalism showing a good 

agreement with experimental results. Fully flexible transparent contacts based on a silver 

nanowire network are used for device fabrication, which allows bending the detector to a few 

millimeter curvature radius without damage. The detector shows a photoresponse at wavelengths 

shorter than 430 nm with a peak responsivity of 0.096 A/W at 370 nm under zero bias. The 

operation speed for a 0.3×0.3 cm2 detector patch was tested between 4 Hz and 2 kHz. The -3 dB 

cut-off was found to be ∼35 Hz, which is faster than the operation speed for typical 

photoconductive detectors and which is compatible with UV monitoring applications. 
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INTRODUCTION 

The ultraviolet A (UVA) spectral region (320 – 400 nm) is a major component of the UV solar 

radiation, which corresponds to more than 99 per cent of UV light that reaches the earth surface. 

At high dose, UVA sunlight generates a severe oxidative stress in cells and is harmful for human 

health, however moderate exposure to UVA can be favorable, in particular stimulating the 

vitamin D generation1. In this context, the development of wearable UV sensors helping people 

to balance their sun exposure is today an important societal challenge2. In addition to high 

sensitivity and spectral selectivity, wearable UV sensors need to be lightweight and flexible in 

order to be easily incorporated in skin patches or integrated on clothes. Autonomous operation 

without external bias is also an important requirement for this application. Today, there exist a 

large number of commercially-available UV sensors3, however they remain rather bulky and 

cannot be integrated directly on human clothes or skin4. Today, nanomaterials are extensively 

investigated for UV sensing as a way to enable high sensitivity combined with a possible 

integration on fabric and self-powering5,6. 

Wide bandgap nanowire (NW) photodetectors can successfully respond to the above-

mentioned specifications for a wearable UV sensor. NW photoconductors based on nitride or 

oxide materials were reported to exhibit a very high sensitivity thanks to the separation of 

photogenerated carriers in radial direction7-11. NW arrays are also reported to enhance the light 

absorption by light trapping12 and antireflection13 effects, which can lead to a high sensitivity 

even for a small amount of active material. The use of wide bandgap semiconductors naturally 

provides spectral selectivity by the bandgap absorption cut-off without the use of additional 

optical filters. In particular, ternary InGaN alloys can be employed to precisely tune the 

absorption cut-off to the desired wavelength (for example, in order to adjust the detection to 
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wavelengths of UVA shorter than 400 nm)14,15. Finally, thanks to their small diameter, NWs can 

stand large deformations without damage16,17. This last property enables their use as an active 

material for flexible optoelectronic devices18,19. 

Many realizations of flexible UV detectors have been reported, mainly based on ZnO 

photoconductors20,21. However, photoconductors, despite many efforts13, still suffer from long 

response time constants22. The operation speed can be significantly enhanced by changing the 

operation principle from a photoconductor to a photodiode15. In addition, p-n photodiodes can 

operate under zero bias without any need for external polarization, which is a major advantage 

for their application as portable UV sensors.  

The flexible detector fabrication typically follows one of the two approaches: direct NW 

growth on plastic substrates13,20,23 or NW transfer to plastic by different methods such as electro-

spinning method24, printing21,25, dielectrophoretic positioning26, etc. The direct growth on plastic 

severely restricts the choice of the growth techniques (by limiting the growth temperature) and as 

a consequence the NW materials that can be synthetized. Transfer methods are potentially 

applicable to any NW material. However, for the majority of transfer methods, the NWs are 

positioned horizontally on the substrate, which eliminates the benefit of absorption enhancement 

in a NW ensemble due to light trapping. The initial NW orientation cannot be maintained. 

Recently, an alternative transfer method yielding vertical NWs has gained a broad interest18, 19, 27, 

28. It is based on NW embedding in a polymer layer followed by either mechanical peeling of the 

membrane18, 27, or under-etching of a sacrificial layer19, 28. Following this method, a flexible 

Schottky photodiode based on CVD-grown GaN NWs has been demonstrated29. Unfortunately, 

deep defects in CVD-grown GaN wires yield a strong photoresponse in the visible spectral 

range, which does not allow for selective detection of UVA. It is desirable to replace the defect-
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related absorption by the above-bandgap absorption, which can be better controlled in particular 

by using ternary alloys for tuning the absorption edge. This is the objective of the present study. 

In this work we demonstrate for the first time a flexible nitride p-n photodiode. The device 

employs core/shell p-n junction NWs grown by metalorganic vapor phase epitaxy (MOVPE) on 

sapphire substrates. InGaN/GaN quantum wells (QWs) are inserted in the active region to extend 

the detection range to wavelengths longer than the GaN near band edge cut-off. We employ a 

mechanical peeling transfer method18, which allows to maintain the NW orientation. This is of 

particular importance for the p-n NWs, for which the polarity of the junction should be preserved 

for all wires contacted in parallel. The NWs were embedded into a polymer layer and the 

polymer/NW membrane was mechanically peeled-off, contacted and mounted on a piece of a 

copper tape. A fully flexible transparent contact based on a silver nanowire network was used, 

which allows bending the detector to a few millimeters curvature radius without damage. 

Without any external bias, the detector shows a photoresponse at wavelengths shorter than 430 

nm with a peak responsivity of 0.096 A/W at 370 nm. The operation speed of a 0.3×0.3 cm2 

detector patch was tested between 4 Hz and 2 kHz. The -3 dB cut-off was found to be ∼35 Hz, 

which is faster than the operation speed for typical photoconductive detectors and which is 

compatible with UV monitoring applications. Angular dependence of the photoresponse was 

analyzed. 

 

EXPERIMENTAL SECTION 

Nanowire Growth. The core-shell NWs containing GaN/InGaN multiple quantum wells 

(MQWs) were grown on c-sapphire substrates. An MOVPE growth method has been employed 

using a closed coupled showerhead reactor. The approach to grow the self-assembled c-GaN 



 6 

wires on sapphire is based on an in situ thin SiN layer deposition acting as a partial mask. The 

vertical growth was favored by using a high flux of silane (200 nmol/min), a low V/III ratio (50), 

a high temperature (1040 °C) and a high pressure (800 mbar) as described in detail in ref30. A 

first section of about 5 μm is grown with silane injection under trimethylgallium (TMGa) 

precursor and ammonia (NH3) flux leading to a spontaneous SiNx passivation of the wire 

sidewalls that maintains the wire geometry31, 32 and to a high n+-type doping of the wire core 

(donor concentration around ~1020 cm-3 33). By stopping the silane flux, a second non-

intentionally doped section (1018 cm-3 34) is grown to reach a length of about 25 μm. 30 radial 

InGaN/GaN QWs are subsequently grown around the top unpassivated wire section 

corresponding to the non-intentionally doped part at 400 mbar under the injection of 

triethylgallium (TEGa), trimethylindium (TMIn) and ammonia at 720 °C for the InGaN wells 

(In-content target about 18 %) and 900 °C for the GaN barriers. The nominal thickness is 3 nm 

and 10 nm for the wells and barriers, respectively. A final p-GaN thick shell of about 150 nm is 

grown at 920 °C with a biscyclopentadienyl-magnesium precursor (Cp2Mg) followed by a 

dopant activation annealing performed at 750 °C for 20 min in N2 atmosphere (acceptor 

concentration around ~1016-1017cm-3 34).  

The schematic of Figure 1 (a) illustrates the core/shell NW internal structure while Fig. 1 (b) 

presents an SEM image of an as-grown NW array illustrating the wire morphology. The average 

wire height is 25±5 μm and the diameter is around 1-2 μm. The typical wire density is about 106 

cm-2. We note that this growth procedure yields MQWs not only on the m-plane lateral sidewalls, 

but also on the top -c plane, with a different QW thickness and In content35. 

The internal wire structure was probed by scanning transmission electron microscopy (STEM) 

in high-angle annular dark-field (HAADF) imaging mode. A thin slice perpendicular to the wire 
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axis was prepared by focused ion beam (FIB) in order to observe the wire cross-section in 

transversal direction. Figure 1 (c) shows STEM-HAADF images at three increasing 

magnifications taken along the c-zone axis on the same wire transversal slice. A clear core-shell 

structure is observed around wire sidewalls corresponding to m-planes facets evidencing the 

presence of 30 InGaN/GaN MQWs followed by a p-type GaN shell. The thickness of InGaN 

wells in dark contract is estimated to be 7 ± 1 nm while the GaN barriers are 22 ± 2 nm. The 

thickness of the p-GaN surrounding shell is measured to be ∼175 nm. We observe that the 

external interface of the wells (corresponding to the InGaN/GaN interface) is significantly 

rougher compared to the internal well interface (corresponding to the GaN/InGaN interface), as 

generally observed for InGaN/GaN heterostructures, especially with thick wells. The In-content 

in the well has been estimated close to 15%36 instead of the targeted 18% due to lower 

incorporation of In on the m-plane surfaces37. In Figure 1(c), we observe that the MQW structure 

can be disturbed by dislocations and stacking faults originating from the first QW interface that 

propagates across the whole shell heterostructure. These morphological properties of the core-

shell structure are consistent with the previously reported core-shell structures grown under 

similar growth conditions for photovoltaic applications38. 
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Figure 1. a) Schematic of the core-shell MQW NW structure. b) SEM image of the NW array. c) 

Transversal cross-sectional STEM-HAADF images taken along the c-zone axis evidencing the 

core-shell structure on m-plane hexagonal facets (wire slice prepared by FIB technique). The 

increasing magnification of TEM images reveals that the shell is composed of 30×InGaN 

(7nm)/GaN (22nm) MQWs coated with a thick p-GaN layer. d) µPL of a single NW measured at 

4K. 

The optical properties of NWs were investigated by low temperature micro-photoluminescence 

(µPL) spectroscopy. In order to avoid excitation of multiple NWs, the NWs were cut from their 

substrate by an ultrasonic bath and dispersed with a low density on a Si substrate. The μPL 

characterization was carried out at 4 K by exciting single NWs at 375 nm wavelength by a 

continuous wave laser diode. The luminescence signal was collected by a HR460 spectrometer 
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and a charge coupled device (CCD) camera. Figure 1 b) shows a typical µPL spectrum of a 

single NW. The spectrum presents two contributions. The main peak at 3.07 eV (403 nm) is 

attributed to the radial QWs on the m-plane. A weak shoulder peak observed at a lower energy 

around 2.8 eV (442 nm) originates from the axial QWs at the top part of the NW as previously 

reported in ref35. 

Flexible Photodetector Fabrication. The fabrication of flexible photodetectors started by 

forming an ohmic contact to the p-GaN shell. A photoresist layer was spin-coated on the as-

grown NWs to protect the highly n-doped GaN base of the NWs. Then a semi-transparent 3 nm/3 

nm Ni/Au metallic layer was deposited by e-beam evaporation on the p-GaN shells protruding 

from the resist. The metal was lifted-off and the sample was annealed at 400 °C in air for 10 min. 

The presence of this thin Ni/Au layer allows to form an ohmic contact to the p-GaN shells. The 

NWs were then encapsulated into polydimethylsiloxane polymer (PDMS) with an average 

thickness of 25 μm. The composite nanowire/PDMS membrane was peeled-off from the sapphire 

substrate and flipped upside down to metalize the bottom part of the NWs. An ohmic 

Ti/Al/Ti/Au (10 nm/30 nm/10 nm/200 nm) contact was deposited on the NW highly n-doped 

bases. Then the device was again flipped upside-down and transferred to a flexible substrate 

(copper tape). The transparent top contact was deposited by spin-coating on the surface using a 

suspension of silver nanowires to achieve a flexible network connecting the p-GaN shells. The 

contact area is approx. 0.3×0.3 cm2. The fabrication process is schematically illustrated in figure 

2 (a). The SEM image (figure 2(b)) shows a bird's eye view of the device. The distribution of 

silver nanowires is uniform. The GaN NWs are well connected by silver nanowires as illustrated 

in a close-up SEM image of Fig. 2c). The density of protruding GaN NWs connected by the 
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silver nanowires is ∼1.2×106 cm-2. Fig. 2d) presents a photo of the device and illustrates its 

flexibility.  

 

Figure 2. a) Schematic representation of the fabrication steps : encapsulation in PDMS and peel-

off of the membrane; deposition of the back metal contact; deposition of the top transparent 

contact composed of a silver nanowire mesh. b) Bird's eye view SEM image of the top surface of 

the detector. c) Top view SEM image of an individual nitride NW contacted with silver 

nanowires. d) Device photo illustrating its flexibility. 

We note that the main challenge in the fabrication process is the realization of a flexible 

transparent ohmic contact. For the bottom opaque contact, a standard metallization is used, 

which provides an ohmic contact to the n-GaN NW bases. Metal contacts were shown to well 

sustain bending deformations for curvature radiuses of several millimeters39-43. Therefore, they 

are commonly used for flexible LEDs and photodetectors44, 45. However, standard metal contacts 

are opaque and do not allow for light coupling into the NW photodiode. Following our previous 

developments, we have chosen a silver nanowire mesh as a top transparent contact18. This type of 
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contacts is today intensively studied in the literature as an alternative to ITO, which combines 

mechanical flexibility with optical transparency and low resistance46, 47. 

 

Flexible photodetector characterization techniques. The electrical characteristics of the 

flexible photodetector were investigated using a Janis probe station and a Keithley 2636 source-

meter at room temperature. The spectral dependence of the photocurrent was analyzed by 

illuminating the device with a wavelength tunable Xenon lamp light coupled with a Jobin Yvon 

Triax 180 spectrometer. A calibrated photodiode sensor was used to measure the light source 

output intensity, which was then used to normalize the photocurrent spectra. The photo 

responsivity of the detector was calibrated using a continuous wave laser diode emitting at 375 

nm wavelength. In addition, electron beam induced current (EBIC) measurements were 

performed to probe the top contact properties. EBIC maps were collected at room temperature 

using an acceleration voltage of 20 kV in a Hitachi SU8000 SEM controlled by Gatan Digiscan 

system as described in ref48. 

 

RESULTS AND DISCUSSION 

Electrical characterizations. A current-voltage (I-V) curve in the dark of the fabricated 

flexible photodetector is displayed in Figure 3 a). The curve exhibits a typical rectifying behavior 

with a diode knee voltage around 2.3 V, after which the forward current increases steeply. Under 

reversed bias, the leakage current is negligible up to -3 V. The diode-like I-V characteristic 

validates the fabrication procedure, showing that the PDMS membrane provides a good electrical 

insulation and that there is no pronounced Schottky contact between the p-GaN shell and the 

silver nanowire contact, which would otherwise block the forward current. The I-V 
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measurements were repeated after 50 cycles of device bending down to a radius of 5 mm. No 

modification of the I-V curve was observed.  

To probe the electrical connection between the silver nanowires and the nitride NWs and to 

evaluate the long range conductivity of the silver nanowire top contact, EBIC mapping was 

performed on the flexible photodetector. Figure 3 b) and c) presents the SEM image and the 

EBIC map (under zero bias) of the top surface of the detector. The electron beam arriving at the 

sample surface creates electron-hole pairs in the core/shell nitride NWs, which are separated by 

the internal electrical field of the p-n junction and then collected by the electrodes48. The induced 

current appears as a bright contrast in figure 3 c). The region probed by EBIC in Figure 3 is 

located 1 mm away from the metal bonding pad and there is no current spreading grid on top of 

the silver nanowire network. No significant attenuation of the EBIC signal with distance from 

the bonding pad is observed, which proves that the carrier transport by the silver nanowires 

network is efficient. By comparing the SEM and the EBIC maps, we evaluated the number of 

nitride NWs protruding from PDMS (and thus contacted by silver nanowire) and the number of 

NWs generating EBIC signal. As an example, the positions of the NWs are highlighted with 

green hexagons in the upper right part of the maps. The number of NWs generating EBIC signal 

corresponds to 85% of all protruding NWs. This value gives an estimation of the yield offered by 

the present silver nanowire contacting technique. 
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Figure 3. a) I-V curve of the flexible photodetector. b) Top-view SEM image of the detector 

contacted with silver nanowires and c) the corresponding EBIC map (bright contrast corresponds 

to the induced current in nitride NWs). 

Electro-optical characterizations. The inset of Figure 4 (a) shows the I-V curves of the 

detector in the dark and under illumination with UV light (λ = 370 nm, 1.26 × 10-8 W power) in 

logarithmic scale. Under zero bias, the photocurrent is negative, the corresponding responsivity 

is ∼0.1 A/W. Under forward bias, the photocurrent changes sign at ∼0.25 V. This relatively low 

value may be related to some defects in the active region.  

The power dependence of the responsivity has been probed by illuminating the detector with 

an Ar++ ion laser (λ=244 nm) and varying the incident power density by almost 4 orders of 

magnitude (from 5 ×10-6 W/cm2 to 7 × 10-3 W/cm2). As shown in Fig. 4 b), at moderate excitation 

power densities (up to ~ 3 ×10-3 W/cm2), the photocurrent presents almost a linear dependence 

with power. The responsivity slightly decreases from 0.084 A/W to 0.057 A/W in this region. At 

high power densities the photocurrent dependence becomes sub-linear and the photocurrent 

saturates. Correspondingly, the responsivity decreases down to 0.03 A/W at 7 ×10-3 W/cm2. 

Similar power dependence has been reported in axial junction NW photodiodes49. In thin film p-n 
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photodiodes the response is linear up to higher power densities (0.2 W/cm2 50). The saturation at 

high excitation is related to the screening of the built-in field by the photogenerated carriers.  

The detector operation speed was analyzed. First, the detector response to a square light pulse 

(λ=370 nm) was measured under zero bias. The inset of Figure 4 c) shows the temporal current 

trace. The flexible photodetector presents a fast response with a rise and decay switching time 

below 0.1 sec (which is the time resolution of our measurement system). To further investigate 

the device operation speed, the frequency dependence of the photocurrent was measured at zero 

bias using a mechanically chopped illumination and a lock-in detection. Figure 4 c) shows the 

detector frequency response from 4 Hz to 2000 Hz. The -3 dB cut-off frequency of the large area 

(0.3×0.3 cm2) device is ~ 35 Hz. This operation speed is higher than the typical values for NW 

photoconductors 8, 11 and is comparable to the one of the axial p-i-n NW photodiodes49. We note 

that it is compatible with the potential application of UV monitoring.  

The angular dependence of the photodetector responsivity was investigated. The photocurrent 

was collected under zero bias for incident angles θ between 0 and 45 degrees for a power density 

of 0.001 W/cm2 (i.e. in the range where the photocurrent shows an almost linear dependence on 

the incident power as shown in Fig.4 b). As reported in Figure 4 d), the responsivity increases 

with the incident angle. The responsivity is ∼0.066 A/W for the laser light perpendicular to the 

sample surface, whereas it increases to 0.18 A/W for a 45 degree tilt. This phenomenon can be 

explained by the enhanced light harvesting when the sample is rotated. Indeed, the density of 

nitride NWs obtained by self-catalyzed MOVPE growth is low, they cover only 3.82% of the 

total detector surface. At normal incidence, only a small part of the NW surface (mainly their top 

surface) absorbs light, as illustrated in the inset of Figure 4 d). The effects of light concentration 

reported for nanowire solar cells51 do not play important role for the wire diameters in the 1-2 



 15 

µm range that are used in this study. When the photodetector is tilted, the light is absorbed not 

only by the top surface but also by the NW side walls, which increases the portion of the 

absorbed light and induces a stronger photocurrent for the same power density. 

 

Figure 4. a) I-V curve in the dark and under illumination with λ = 370 nm. b) Power dependence 

of the responsivity. c) Frequency response of the detector. Inset shows the current trace under 

zero bias in response to a square light pulse. d) Angular dependence of the responsivity at 

different angles from θ = 0 degree to 45 degree. Insets show schematics explaining the 

illumination configuration under normal and oblique incidence.  
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The spectral response of the detector was analyzed. Figure 5 displays the room temperature 

photocurrent spectra in logarithmic scale under zero bias and under reverse bias of -0.5 V, 

respectively. The low-energy onset of the photocurrent (i.e. the energy value, for which the 

photocurrent clearly dominates over the noise) is around 2.88 eV (430 nm). At higher energies, 

the photocurrent increases by more than one order of magnitude, reaching its maximum at 3.35 

eV (370 nm) and then slightly decreasing. The bandgap of the radial QWs is estimated to be 

close to 3.03 eV (410 nm) at room temperature (according to µPL measurements discussed 

above and accounting for the Varshni shift with temperature). Therefore, the low-energy onset 

value of the photocurrent is below the bandgap of the radial QWs. This is most likely due to the 

contribution to the photocurrent of the axial QWs, which have a smaller bandgap value due to 

both their higher In concentration and to the quantum confined Stark effect induced by the 

internal electric field along the c-axis. Nevertheless, the overall spectral response matches quite 

well the UVA spectral domain, which validates the possible application of the developed 

photodiode for UVA sensing. 

The peak responsivity of the detector reaches its maximum value of 0.096 A/W at 3.35 eV. We 

note that the density of the active NWs is quite low in the present device, a higher value can be 

reached with a higher density NW array. A decrease of the photocurrent for energies above 

3.4 eV is observed (the responsivity drops to 0.063 A/W at 4.1 eV). This decrease is typical also 

for thin film nitride photodiodes and can be attributed to the high absorption coefficient of GaN 

above the bandgap, which makes the absorption depth small. The carriers are generated close to 

the surface of the p-doped GaN layer and have a large probability to recombine on surface states 

before being collected. Same explanation can be applied in the present case for the enhanced 

light absorption close to the top NW surface. Under a reverse bias of -0.5 V, the spectral shape 
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remains similar whereas the photocurrent signal increases. The peak responsivity becomes 0.157 

A/W. In agreement with theoretical modeling presented in the next section, this signal 

enhancement is attributed to the increase of the electric field in the active region facilitating the 

carrier extraction from the QWs. For energies above the GaN bandgap the signal increase under 

reverse bias can also be due to a slight broadening of the space-charge region in the p-n junction. 

 

Figure 5. Room temperature photocurrent spectrum in logarithmic scale under zero bias and 

under reverse -0.5 V, respectively. 

Modeling of current generation in the active region. The photocurrent generation in the 

InGaN/GaN p-n junction QWs has been modeled using the non-equilibrium Green function 

formalism. This model is described in details in ref52. This approach considers the quantum 

character of electrons, which cannot be neglected in the present device with an active region 

containing QWs, since in QWs the confinement and the tunneling both control the electronic 

transport. Moreover, as we show, the electron-phonon scattering has also a key role in the 

photodetector operation.  

The first step of the calculations is the determination of the potential profile in the entire active 

region in the dark. Figure 6 a) displays the conduction band and valence band profiles for 30 
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InGaN/GaN MQWs with a nominal composition of 18%. The calculations are performed for 

zero external bias and for -0.5 V reverse bias. Zero of energy corresponds to the Fermi level in 

the p-GaN layer. The built-in field of the p-n junction is distributed homogeneously over the 29 

left QWs which are empty in the dark. Only the first QW next to the n-GaN layer is filled with 

electrons. The electron density in this well is 1018 and 1.3×1018 cm-3 at -0.5 and 0 V, respectively. 

Due to the computational burden of the method, the photocurrent is only calculated for one 

representative QW. The procedure is described in ref53. To illustrate the evolution of the 

photocurrent with the photon energy, Figures 6 b) and c) present the current maps as a function 

of position and energy in the conduction band of a QW in an unbiased p-n junction under 

illumination with 3 eV (i.e. deep in the InGaN QW) and with 3.3 eV (i.e. slightly below the 

barrier bandgap), respectively. The calculation predicts that the responsivity increases by a factor 

of 21 when the photon energy increases. This prediction is in qualitative agreement with the 

experimental results shown above, for which the photocurrent signal increases ~9 times between 

3 eV and 3.3 eV (cf. Figure 5). As shown by the quantification of the spectrum presented in Fig. 

6 a), when electrons are generated deep in the well, the scattering with phonons controls the 

extraction (the optical phonon energy is 92 meV). The interaction with phonons is schematically 

illustrated with curved arrows in Fig 6 b), c) and d). In this case, a large number of phonon-

absorption is necessary to extract the photogenerated carriers from the QW. This current is then 

expected to increase with temperature. In contrast, as shown in Fig. 6 c) for excitation with a 

photon energy of 3.3 eV, the electrons can be withdrawn from the well without a large number of 

phonon scatterings. The electronic extraction is then easier and the current is larger. 

To simulate the photodetector response under bias, the photocurrent for a reverse bias of -0.5 

V has been calculated. Figure 6 a) shows the increase of the electric field in the whole active 
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region with the reverse bias. The corresponding current spectrum for the incident photon energy 

of 3.3 eV is shown in Fig. 6 d). The model predicts the current increase by a factor of 1.34 under 

bias, which is in qualitative agreement with the experimental value of 1.61 (cf. Figure 5)). By 

comparing the spectra presented in Fig. 6 c) and d), it is clear that the reverse bias facilitates the 

direct extraction of photogenerated carrier without any scattering with phonons. However, the 

tunneling is not observed since the barriers are too thick. 

 

Figure 6. a) Conduction band and valence band potential profiles in the entire active region for 

external biases of 0 V and -0.5 V. Photocurrent spectra in conduction band versus position in a 

representative QW under illumination for b) V=0 V, illumination at 3 eV; c) V=0 V, illumination 

at 3.3 eV and d) V=-0.5 V, illumination at 3.3 eV. For the current the color legend is in Arb. 

Unit. In panels b), c) and d) arrows schematically represente physical phenomena involved in the 
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extraction of carriers. The vertical arrows represent the interband interactions (photon 

absorption/emission). The curved arrows represent the intraband interactions (phonon 

absorption/emission). The horizontal arrows represent the diffusion process. 

  

CONCLUSIONS 

In conclusion, a flexible nitride p-n photodiode has been demonstrated using core/shell p-n 

junction NWs containing InGaN/GaN QWs. The polymer membranes embedding active nitride 

NWs were contacted using a transparent silver nanowire mesh to ensure high mechanical 

flexibility. Without any external bias, the detector shows a photoresponse at wavelengths shorter 

than 430 nm with a peak responsivity of 0.096 A/W at 370 nm. The -3 dB cut-off frequency for a 

0.3×0.3 cm2 detector patch was found to be ∼35 Hz, which is compatible with UV monitoring 

applications. The detector photoresponse increases for an oblique incidence angle due to an 

increased light absorption. 
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