
Polynomial Evaluation and Side Channel
Analysis

Claude Carlet1 and Emmanuel Prouff2,3

1 LAGA, UMR 7539, CNRS, Department of Mathematics,
University of Paris XIII and University of Paris VIII

claude.carlet@univ-paris8.fr

2 ANSSI, FRANCE
emmanuel.prouff@ssi.gouv.fr

3 POLSYS, UMR 7606, LIP6,
Sorbonne Universities, UPMC University Paris VI

Abstract. Side Channel Analysis (SCA) is a class of attacks that ex-
ploits leakage of information from a cryptographic implementation dur-
ing execution. To thwart it, masking is a common countermeasure. The
principle is to randomly split every sensitive intermediate variable oc-
curring in the computation into several shares and the number of shares,
called the masking order, plays the role of a security parameter. The main
issue while applying masking to protect a block cipher implementation is
to specify an efficient scheme to secure the s-box computations. Several
masking schemes, applicable for arbitrary orders, have been recently in-
troduced. Most of them follow a similar approach originally introduced
in the paper of Carlet et al published at FSE 2012; the s-box to protect
is viewed as a polynomial and strategies are investigated which minimize
the number of field multiplications which are not squarings. This paper
aims at presenting all these works in a comprehensive way. The meth-
ods are discussed, their differences and similarities are identified and the
remaining open problems are listed.

1 Introduction

Side-channel analysis is a class of cryptanalytic attacks that exploit the physical
environment of a cryptosystem to recover some leakage about its secrets. It
is often more efficient than a cryptanalysis mounted in the so-called black-box
model where no leakage occurs. In particular, continuous side-channel attacks in
which the adversary gets information at each invocation of the cryptosystem are
especially threatening. Common attacks as those exploiting the running-time,
the power consumption or the electromagnetic radiations of a cryptographic
computation fall into this class.

Many implementations of block ciphers have been practically broken by con-
tinuous side-channel analysis — see for instance [40, 9, 45, 42] — and securing
them has been a longstanding issue for the embedded systems industry. A sound

approach is to use secret sharing [6, 62], often called masking in the context of
side-channel attacks. This approach consists in splitting each sensitive variable Z
of the implementation (i.e. each variable depending on the secret key, or better
for the attacker, on a small part of it, and of public data such as the plaintext)
into d+ 1 shares M0, . . . ,Md, where d is called the masking order, such that Z
can be recovered from these shares but no information can be recovered from
less than d + 1 shares. It has been shown that the complexity of mounting a
successful side-channel attack against a masked implementation increases expo-
nentially with the masking order [12, 52, 24]. Starting from this observation, the
design of efficient masking schemes for different ciphers has become a foreground
issue. When specified at higher order d, such a scheme aims at specifying how
to update the sharing of the internal state throughout the processing while en-
suring that (1) the final sharing corresponds to the expected ciphertext, and (2)
the dth-order security property is satisfied. The latter property, which is equiv-
alent to the probing security model introduced in [35], states that every tuple
of d or less intermediate variables is independent of the secret parameter of the
algorithm. When satisfied, it guarantees that no attack of order lower than or
equal to d is possible.

Most block cipher structures (e.g. AES or DES) are iterative, meaning that
they apply several times a same transformation, called round, to an internal
state initially filled with the plaintext. The round itself is composed of a key
addition, one or several linear transformation(s) and one or several non-linear
transformation(s) called s-box(es). Key addition and linear transformations are
easily handled as linearity enables to process each share independently. The main
difficulty in designing masking schemes for block ciphers hence lies in masking
the s-box(es).

During the last decade, several attempts have been done to define higher-
order schemes working for any order d. The proposals [1, 2, 17, 22, 30, 61] either
did unrealistic assumptions on the adversary capabilities or have been broken in
subsequent papers [53, 51, 54, 21, 20]. Actually, there currently exist four masking
schemes which have not been broken (and even benefit from formal security
proofs):

– The first method is due to Genelle et al [28] and consists in mixing additive
and multiplicative sharings. This scheme is primarily dedicated to the AES

sbox and seems difficult to generalize efficiently to other s-boxes (not affinely
equivalent to a power function).

– The second masking scheme is due to Prouff and Roche [55] and it relies
on solutions developed in secure multi-party computation [3]. It is much less
efficient than the other schemes (see e.g. [32]) but, contrary to them, remains
secure even in presence of hardware glitches [41].

– The third approach has been recently proposed by Coron in [18]. The core
idea is to represent the s-box by several look-up tables which are regenerated
from fresh random masks and the s-box truth table, each time a new s-box
processing must be done. It extends the table re-computation technique in-
troduced in the original paper by Kocher et al [40]. The security of Coron’s

scheme against higher-order SCA is formally proven under the assumption
that the variable shares Mi leak independently. Its asymptotic timing com-
plexity is quadratic in the number of shares and can be applied to any s-box.
However, the RAM memory consumption to secure (at order d) an s-box with
input (resp. output) dimension n (resp. m) is m(d + 1)2n bits, which can
quickly exceed the memory capacity of the hosted device (e.g. a smart card).

– The three methods recalled in previous paragraph have important limita-
tions which impact their practicability. Actually, when the s-box to secure
is not a power function and has input/output dimensions close to 8, only
the following fourth approach is practical when d is greater than or equal to
3. This approach, proposed in [10], generalizes the study conducted in [57]
for power functions (the latter work is itself inspired by techniques proposed
for Boolean circuits by Ishai, Sahai and Wagner in [35]). The core idea is
to split the s-box processing into a short sequence of field multiplications
and F2-linear operations, and then to secure these operations independently.
The complexity of the masking schemes for the multiplication and for an F2-
linear operation4 is O(d2) and O(d) respectively. Moreover, for dimensions
n greater than 6, the constant terms in these complexities are (usually) sig-
nificantly greater for the multiplication than for the F2-linear operations.
Based on this observation, the authors of [10] propose to look for opera-
tions sequences (aka s-box representations) that minimize the number of
field multiplications which are not F2-linear5 (this kind of multiplication
shall be called non-linear in this paper). This led them to introduce the no-
tion of s-box masking complexity, which corresponds to the minimal number
of non-linear multiplications needed to evaluate the s-box. This complexity
is evaluated for any power function defined in F2n with n ≤ 10 (in particular,
the complexity of x ∈ F28 7→ x254, which is the non-linear part of the AES

s-box, is shown to be equal to 4). Tight upper bounds on the masking com-
plexity are also given for any random s-box. The analysis in [10] has been
further improved by Roy and Vivek in [59], where it is in particular shown
that the masking complexity of the DES s-boxes is lower bounded by 3. The
authors of [59] also present a polynomial evaluation method that requires
7 non-linear multiplications (instead of 10 in [10]). Another improvement
of [10] has been proposed in [15], where it is shown that it is possible to
improve the processing of the non-linear multiplications which have the par-
ticular form x×L(x) with L being F2-linear. Recently, Coron, Roy and Vivek
proposed an heuristic method which may be viewed as an extension of the
ideas developed in [19] and [59]. For all the tested s-boxes it is at least as
efficient as the previous methods and it often requires less non-linear mul-

4 A function f is F2-linear if it satisfies f(x ⊕ y) = f(x) ⊕ f(y) for any pair (x, y)
of elements in its domain. This property must not be confused with F2m -linearity
of a function, where m divides n and is larger than 1, which is defined such that
f(ax⊕ by) = af(x)⊕ bf(y), for every a, b ∈ F2m . An F2m -linear function is F2-linear
but the converse is false in general.

5 A multiplication over a field of characteristic 2 is F2-linear if it corresponds to a
squaring.

tiplications (e.g. 4 for the DES s-boxes). Eventually, in [11], Carlet, Prouff,
Rivain and Roche continued the generalization of [10] by proposing to split
the evaluation of any s-box into a short sequence of evaluations of polyno-
mial functions with upper bound algebraic degree. It is for instance shown
that the processing of any s-box of dimension n = 8 can be split into 11
evaluations of quadratic functions, or into 4 evaluations of cubic functions.
For the latter evaluations of low degree polynomials, the authors propose
several methods, among which an adaptation of CRV which is more efficient
than the original one when the degree is low.

The purpose of this paper is to give an overview of the results presented
in the sequence of works [10, 15, 16, 31, 59] and we also prove that the masking
scheme introduced in [15] for functions in the form x × L(x) can be extended
to any function of algebraic degree 2. Since the work [11] was published several
months after the writing of this paper, it is not fully detailed here, except in
Section 3.4 where some results are discussed.

2 Securing Elementary Operations over Finite Fields

Except the masking schemes by Genelle et al [28] and by Coron [18] (which
cannot be applied to any s-box for the first one, or has a too important RAM

memory complexity for the second one), the state-of-the-art masking schemes
[10, 16, 31, 55, 59] all follow the same principle: the sbox evaluation is split into a
sequence of so-called elementary operations which are independently protected
thanks to dedicated masking schemes. The set of elementary operations contains
the field additions and multiplications and, for reasons that will be exposed in
this section, it also includes all affine and quadratic transformations. In the
following, we recall the secure masking schemes which have been introduced in
the literature to process elementary operations. When defined with respect to
an operation (aka transformation) f , such a scheme takes at input a (d + 1)th-
order sharing of f ’s input(s) and returns a (d+ 1)th-order sharing of its output,
while ensuring that any d-tuple of intermediate results during the processing is
independent of the unshared input.

2.1 Securing Multiplications in Finite Fields

Let us first start the section with a few basics on finite fields multiplications.

Basics on Multiplication Processing. Different time/memory trade-offs ex-
ist in the literature for implementing multiplications. For hardware implementa-
tions and large dimensions n, several works have been published among which the
Omura-Massey method [47], the Sunar-Koc method [64, 67], the Karatsuba algo-
rithm [36], etc. For software implementations in small dimensions (e.g. n 6 10),
the number of pertinent possibilities is reduced. We recall them in the follow-
ing and we give their time/memory complexities (time complexities are given

in terms of number of cycles). For illustration, we also give a pseudo-code.
We moreover assume that the multiplication in F2n corresponds to some ir-
reducible polynomial p(X) of degree n over F2 (i.e. we use the representation
F2n ' F2[X]/(p(X)) or F2n ' {αi; i ∈ [0;n − 2]} ∪ {0} where α is a primitive
element, root of p(X)).

– The most efficient multiplication method in terms of timing, and the most
costly in terms of memory, is based on a complete tabulation of the process-
ing(s). The calculation of c = a× b in F2n is done by reading the content of
a table multFn in ROM containing all the pre-computed results. The size of
the table is n22n bits and the timing of the operation is constant, around 5
cycles depending on the device architecture.

c = multFn[a, b]

– The most efficient in terms of memory, and the most costly in terms of timing,
is the direct processing of the multiplication in F2n . The memory consump-
tion is reduced to 0 but the timing complexity is O(nlog3(2)) with important
constants. The latter complexity is achieved thanks to Karatsuba’s method.
The core idea of this method is that the product (ahY + al) × (bhY + bl),
where ah, al, bh, bl live in some ring R, say of characteristic 2, can be com-
puted with 3 multiplications and 4 additions in R, thanks to the following
processing decomposition called 2-segment Karatsuba’s method:

(ahY + al)× (bhY + bl) = chY
2 + chlY + cl ,

where ch
.
= ah× bh, cl

.
= al× bl and chl

.
= (ah+al)× (bh+ bl)− ch− cl. With

the formula above, two elements a and b of F2n (viewed as polynomials over
F2) can be rewritten and multiplied using the formula:

(ahX
m + al)× (bhX

m + bl) = chX
2m + chlX

m + cl , (1)

where ah, al, bh, bl, chl, ch and cl are polynomials of degree lower than
or equal to m = dn2 e. The polynomials ci are computed by applying the
Karatsuba method to the polynomials ai and bi as single coefficients and
adding coefficients of common powers of X together. Formula (1) is after-
wards repeated recursively, either until getting multiplications in F2 only or
until getting low-cost multiplications (e.g. because they are tabulated). We
will call r-Karatsuba (or Kn,r for short), a multiplication processing where
Karatsuba’s method is applied r times recursively. Eventually, the reduction
by the polynomial p(X) can be interleaved to get the field multiplication.

– The log-alog method is a compromise between the two previous methods. Its
memory complexity is n2n+1 bits and its timing complexity is constant with
respect to n. It assumes that the functions log : x ∈ F2n 7→ i = logα(x) and
alog : i 7→ x = αi have been tabulated in ROM. The processing of a× b then
simply consists in processing:

c = alog[(log[a] + log[b]) mod 2n − 1] .

It may be observed that this addition modulo 2n− 1 can be processed on n-
bit architecture by simply adding log[a] to log[b] (modulo 2n) and by adding
to the result the carry which has possibly been raised (if log[a]+log[b] ≥ 2n).

– Another compromise is obtained thanks to the so-called Tower Fields ap-
proach (see e.g. [34, 60]). It can be applied when n is even (i.e. n = 2m
with m ∈ N) and first consists in representing F2n has a degree-2 exten-
sion of F2m , allowing to perform the computations in F2m ' F2[X]/(p′(X))
instead of F2n . Concretely, the elements of F2n are viewed as elements of
F2m [X]/(p′′(X)), where p′′(X) is a degree-2 polynomial irreducible over F2m .
The field isomorphism mapping an element a ∈ (F2[X]/p(X)) into the pair
(ah, al) ∈ (F2m [X]/p′′(X)) is denoted by L. Assuming that the polynomial
p′′(X) takes the form X2 + X + β (which is always possible thanks to a
scaling on X and normalization of the polynomial), the multiplication a× b
is then executed by the following sequence of operations:

(ah, al)← L(a)
(bh, bl) ← L(b)
cl ← ah × bh × β + al × bl
ch ← (ah + al)× (bh + bl)− al × bl
c ← L−1(ch, cl)

Actually, the technique can be applied to decompose the multiplications in
any subfield F2m such that 2r divides n and m = n

2r . We will call r-Tower
(or Town,r for short), a multiplication processing where the Tower Fields
approach is applied downto F2m . It may be observed that this multiplication
method combines the specificity of Tower fields and Karatsuba’s method
(one could also use Toom-Cook’s multiplication [14, 65] instead but it is
only advantageous for high dimensions which is out of scope here). In the
following, we assume that β is chosen such that the cost of the multiplication
by β is negligible.

We sum-up hereafter the complexities of the listed multiplication methods
in terms of memory consumption (ROM in bits), elementary field additions (ADD)
and calls to look-up tables (LUT). For Karatsuba and Tower Fields approaches,
we give the complexities depending on whether the the multiplications in the
final subfield are performed with the log-alog method or is tabulated in ROM.
Moreover, for simplicity reasons, complexities are given in the case where n is a
power of 2.

Method ROM (in bits) ADD LUT

Global Look-Up Table (LUTn) n× 22n 0 1
Log-ALog Method (LALn) 3n× 2n 2 3

r-Karatsuba (Kn,r) + LUT n
2r

n
2r × 2

2n
2r 2× (3r − 1) 3× 3r−1

2

r-Karatsuba (Kn,r) + LAL n
2r

3 n
2r × 2

n
2r 5× (3r − 1) 9× 3r−1

2

r-Tower (Town,r) + LUT n
2r

n
2r × 2

2n
2r + 2n× 2n 2× (3r − 1) 3× (3r − 1)

r-Tower (Town,r) + LAL n
2r

3 n
2r × 2

n
2r + 2n× 2n 6× (3r − 1) 5× (3r − 1)

Table 1. Complexities of multiplication methods

We give hereafter some examples of costs (in cycles) of the elementary oper-
ations listed in Table 1 when performed on 8051 and AVR chip micro-controllers.
For simplicity, we assume that the operations are performed whose bit-length is
below that of the processor architecture:

– Addition: 1 cycle (for 8051 and AVR).

– Multiplication: 25 cycles (8051), 36 cycles (AVR).

– LUT call: 1− 4 cycle(s) (8051), 3− 7 cycles (AVR).

State-of-the art methods proposed to secure a finite field multiplication be-
tween two elements a and b are general and apply similarly for all the multi-
plication techniques previously recalled. The choice of the latter technique will
however impact the practical cost of the scheme (in terms of both memory and
cycles count). This explains why a security designer will often favour one of these
techniques according to some pre-defined timing/memory trade-off chosen with
respect to the context (application, device, cost of the random values generation,
etc.). For instance, if the ROM memory is not a constrained resource (and/or if
the dimension n is small, e.g. lower than 5), then the field multiplication can be
tabulated and all the operations × in the hereafter schemes will simply consist in
a LUT call (which costs around 4 cycles). At the opposite, when the ROM memory
is a constrained resource (and/or the dimension n is between 5 and 8), then the
multiplications can be performed thanks to the log-alog method (in this case
each of them will cost around 25 – or 35 – cycles).

Masking Schemes for Finite Multiplications (additive sharing). When
the inputs a and b are additively shared into (a0, a1, · · · , ad) and (b0, b1, · · · , bd)
respectively, a straightforward solution consists in applying the following scheme:

Algorithm 1: Higher-Order Masking Scheme for the Multiplication (Ad-
ditive Sharing)

Input : a (d+ 1)th-order sharing (a0, a1, · · · , ad) and (b0, b1, · · · , bd) of a and b in F2n

Output: a (d+ 1)th-order sharing (c0, c1, · · · , cd) of c = a× b

1 Randomly generate (d+ 1)2 elements rij ∈ F2n such that
∑

i∈[0..d] rij = 0 for every j 6 d

2 for i = 0 to d do
3 ci = 0
4 for j = 0 to d do

/* Construct ci =
∑

j ai × bj +
∑

j rij */

5 ci ← ci + ai × bj + rij

6 return (c0, c1, · · · , cd)

Algorithm 1 has been proved to be dth-order secure in [26]. In [35], the authors
show that the number of random values rij can be reduced to d(d − 1)/2 with
no impact on the security. Initially, the scheme was presented over F2 and it was
generalized to any finite field in [57]. The improved scheme, recalled hereafter,
involves 2d(d+ 1) additions and (d+ 1)2 multiplications in F2n .

Algorithm 2: Improved Higher-Order Masking Scheme for the Multipli-
cation (Additive Sharing)

Input : a (d+ 1)th-order sharing (a0, a1, · · · , ad) and (b0, b1, · · · , bd) of a and b in F2n

Output: a (d+ 1)th-order sharing (c0, c1, · · · , cd) of c = a× b

1 Randomly generate d(d+ 1)/2 elements rij ∈ F2n indexed such that 0 6 i < j 6 d
2 for i = 0 to d do
3 for j = i+ 1 to d do
4 rj,i ← (ri,j + ai × bj) + aj × bi

5 for i = 0 to d do
6 ci ← ai × bi
7 for j = 0 to d, j 6= i do
8 ci ← ci + ri,j

9 return (c0, c1, . . . , cd)

Masking Schemes for Finite Multiplications (polynomial sharing). When
polynomial masking/sharing [62] is used, an alternative to Algorithm 2 exists
which has been proposed by Ben-Or et al in [4]. The complexity of the latter al-
gorithm in terms of additions and multiplications is O(d3) and its application is
more complex than Algorithm 2 (see [46]). As explained in [55], it however stays
secure even in presence of glitches [43] and, compared to additive sharing, it
offers better resistance against unbounded adversaries (namely adversaries who
can get noisy observations on all the shares of a). Before recalling Ben-Or’s et
al algorithm, let us give some basics about Shamir’s polynomial sharing.

In [62] Shamir has introduced a simple and elegant way to split a secret
a ∈ F2n into a well chosen number ` of shares such that no tuple of shares with
cardinality lower than d depends on a. Shamir’s protocol consists in generating
a degree-d polynomial with coefficients randomly generated in F2n , except the
constant term which is always fixed to a. In other terms, Shamir proposes to
associate a with a polynomial Pa(X) defined such that Pa(X) = a+

∑d
i=1 uiX

i,

where the ui denote random coefficients. Then, ` > d distinct non-zero elements
α0, . . . , α`−1 are publicly chosen in F2n and the polynomial Pa(X) is evaluated
in the αi to construct a so-called (`, d)-sharing (a0, a1, · · · , a`−1) of a such that
ai = Pa(αi) for every i ∈ [0..` − 1]. To re-construct a from its sharing, polyno-
mial interpolation is first applied to re-construct Pa(X) from its ` evaluations ai.
Then, the polynomial is evaluated in 0. Those two steps indeed lead to the re-
covery of a since, by construction, we have a = Pa(0). Actually, using Lagrange’s
interpolation formula, the two steps can be combined in a single one thanks to
the following equation:

a =

`−1∑
i=0

ai · βi , (2)

where the constants βi are defined as follows:

βi :=

`−1∏
k=0,k 6=i

αk
αi + αk

.

Remark 1. The βi can be precomputed once for all and can hence be considered
as public values. They can moreover be also considered as the evaluation in 0 of
the polynomials:

βi(x) :=

`−1∏
k=0,k 6=i

x+ αk
αi + αk

.

To securely process the multiplications of two values a and b represented by
polynomial sharings, Ben-Or et al have introduced a protocol in the context of
the Multy-Party Computation Theory [4]. For this protocol to work, the number
of shares n per variable must be at least 2d+ 1 and for ` = 2d+ 1, it is proved
that it satisfies a security property encompassing the dth-order SCA security.
We give hereafter the adaptation of [4] in the SCA context as proposed in [55,
58]6.

6 The protocol is an improved version of the protocol originally proposed by Ben-Or
et al [4], due to Gennaro et al in [29].

Algorithm 3: Higher-Order Masking Scheme for the Multiplication (Poly-
nomial Sharing)

Input : two integers ` and d such that ` ≥ 2d+ 1, the (`, d)-sharings (ai)i = (Pa(αi))i and
(bi)i = (Pb(αi))i of a and b respectively.

Output: the (`, d)-sharing (Pc(αi))i of c = a · b.
Public : the ` distinct points αi, the interpolation values (β0, · · · , β`−1)

1 for i = 0 to `− 1 do
2 wi ← Pa(αi) · Pb(αi)

/* Compute a sharing (Qi(αj))j≤d of wi with Qi(X) = wi +
∑d

j=1 aj ·X
j */

3 for i = 0 to `− 1 do
4 for j = 1 to d do
5 aj ← rand(F2n)

6 for j = 0 to `− 1 do

7 Qi(αj)← wi +
∑d

k=1 ak · α
k
j

/* Compute the share ci = Pc(αi) for c = a · b */
8 for i = 0 to `− 1 do

9 ci ←
∑`−1

j=0 Qj(αi) · βj

10 return (ci)i

The completeness of Algorithm 3 is discussed in [4]. Its dth-order SCA secu-
rity can be straightforwardly deduced from the proof given by Ben-Or et al in [4]
in the secure multi-party computation context. Eventually, for ` = 2d+1 (which
is the parameter choice which optimizes the security/efficiency overhead), the
complexity of Algorithm 3 in terms of additions and multiplications is O(d3). In
[21], it is reduced to O(d2 log d), essentially by computing polynomial evaluations
with a Discrete Fourier Transform as proposed in [68] instead of a naive evalua-
tion7. In [33], Grosso and Standaert apply a classical technique from multi-party
computation, called packet secret sharing and introduced by Franklin and Yung
[27], which essentially consists in sharing several secrets with the same polyno-
mial. This technique is of interest when several multiplications, say t, between
secrets must be secured. In such a case, the achieved complexity is O((t + d)3)
instead of O(td3), which implies a complexity improvement if d is greater than

t(t
1
3 − 1)−1.

Masking Schemes for Finite Multiplications (sharing by linear codes).
As initially observed by Massey [44], there is an equivalence between the ex-
istence of linear sharing schemes and the existence of linear codes with cer-
tain parameters. Indeed, the set {(a, a0, a1, · · · , a`−1) ∈ F`+1

2n } defined by the
linear sharings of the elements a ∈ F2n into (a0, · · · , a`−1) ∈ F`+1

2n is a sub-
space of F`+1

2n (aka a linear code). Reciprocally, from any linear [` + 1, k, d]-
code8 C such that the corresponding dual code C⊥ has a distance d⊥ satisfying
d⊥ > 2, one can define a linear `-sharing over F2n . If G denotes the gener-
ator matrix of C in systematic form (i.e. G = [I`+1 | M] where I`+1 is the

7 such improvement was already known in the context of multi-party computation
[23].

8 where `+1 corresponds to the code length and where k (resp. d) denotes its dimension
(resp. distance).

(`+1)-dimensional identity matrix over F2n), then the sharing (a0, a1, · · · , a`−1)
of a is built from a (` − 1)-tuple of random values (r0, r1, · · · , r`−1) such that
(a, a0, a1, · · · , a`−1) = (a, r0, · · · , r`−1) × G. The reconstruction of a from its
sharing (a0, · · · , a`−1) is obtained by processing the product scalar between the
latter vector and a so-called reconstruction vector (β0, · · · , β`−1) whose defini-
tion depends on the linear code (e.g. it corresponds to the first row of the inverse
of the Vandermonde (`, `)-matrix (αj+1

i)06i,j<` in the case of Shamir’s polyno-
mial sharing (2)). It can moreover be proved that the sharing defined in such
a way defeats any side channel attack of order lower than or equal to d⊥ − 2
[13]. The thesis of Renner [56] is dedicated to this subject: for all the studied
linear sharings (deduced from linear codes) the proposed multiplication schemes
have complexity O(d3). In the particular case of Shamir’s polynomial sharing,
new methods are however proposed that enable to decrease the constant terms in
this complexity and to get interesting practical timing complexity improvements
(compared to the methods proposed in [4, 29]).

2.2 Securing Affine Transformations

For F2-affine transformations, defining a higher-order masking scheme is straight-
forward. If (a0, · · · , ad) ∈ Fd+1

2n denotes the additive sharing of an intermediate
variable a ∈ F2n (i.e. the ai are randomly generated such that a =

∑
i∈[0..d] ai)

andA denotes the affine transformation to securely apply on a, then the following
simple scheme may be involved. It essentially applies the affine transformation
A to each share of a:

Algorithm 4: Higher-Order Masking Scheme for Affine Transformation
(Additive Sharing)

Input : a (d+ 1)th-order sharing (a0, a1, · · · , ad) of a, an affine transformation A
Output: a (d+ 1)th-order sharing (c0, c1, · · · , cd) of c = A(a)

1 for i = 0 to d do
2 ci ← A(ai)

3 if d is odd then
4 c0 ← c0 +A(0)

5 return (c0, c1, · · · , cd)

The same scheme can be straightforwardly extended to any group law and
any function A which is affine for the latter law (see e.g. [26]). It can moreover
be extended when the sharing is no longer additive with respect to the group law
but is more generally based on a linear code [56]. For instance, if the linear code
corresponds to Shamir’s polynomial sharing (in this case the code is a Reed-
Solomon one), then the ai (resp. the ci) correspond to the evaluation in d + 1
public points αi of a random degree-d polynomial Pa(X) (resp. [Pa ◦ A](X))
with constant term a (resp. c). Namely, the input shares are defined such that
ai = Pa(αi) and, by construction, the output shares satisfy ci = [Pa ◦ A](αi)
(see for instance [55]).

2.3 Securing Quadratic Transformations

In [15], Coron et al have recently shown that multiplications of the form a×L(a),
with L being F2-linear, can be securely evaluated more efficiently than standard
multiplications when n is small enough to allow for the tabulation of univariate
transformation in F2n (i.e. when n 6 10 for nowadays devices). This scheme is
recalled hereafter where the operation a 7→ a× L(a) is denoted by Q(a).

Algorithm 5: Higher-Order Masking Scheme for Multiplication in the
form a× L(a) (Additive Sharing)

Input : the (d+ 1)th-order sharing (a0, a1, · · · , ad) of a in F2n

Output: a (d+ 1)th-order sharing (c0, c1, · · · , cd) of c = a× L(a)

1 Randomly generate d(d+ 1)2/2 elements rij ∈ F2n indexed such that 0 6 i < j 6 d

2 Randomly generate d(d+ 1)2/2 elements r′ij ∈ F2n indexed such that 0 6 i < j 6 d

3 for i = 0 to d do
4 for j = i+ 1 to d do
5 rj,i ← ri,j +Q(ai + r′i,j) +Q(aj + r′i,j) +Q((ai + r′i,j) + aj) +Q(r′i,j)

6 for i = 0 to d do
7 ci ← Q(ai)
8 for j = 0 to d, j 6= i do
9 ci ← ci + ri,j

10 return (c0, c1, . . . , cd)

Algorithm 5 can actually be extended to any quadratic function (instead of
only the quadratic functions a ∈ F2n 7→ a × L(a)). Let Q be any quadratic
function from F2n to F2n . The bivariate function ϕ(2)(a0, a1) = Q(a0 + a1) +
Q(a0) +Q(a1) +Q(0) is bilinear (this is a necessary and sufficient condition for
h to be quadratic), symmetric and null when a0, a1 are linearly dependent over
F2 (that is, when a0 = 0 or a1 = 0 or a0 = a1). The equality Q(a0 + a1) =
ϕ(2)(a0, a1) +Q(a0) +Q(a1) +Q(0) can be iterated: it can be easily proven by
induction on d ≥ 1 that for every (a0, a1, . . . , ad) ∈ F2n

d+1, we have;

Q

(
d∑
i=0

ai

)
=

∑
0≤i<j≤d

ϕ(2)(ai, aj) +

d∑
i=0

Q(ai) + (d [mod 2])Q(0) . (3)

Note that this formula, which has been extended from the quadratic case to any
algebraic degree s in [11] (see Section 3.4, is also valid for d = 0. Moreover, for
every ai, aj , r

′
i,j in F2n we have

ϕ(2)(ai, aj) = Q(ai + aj + r′i,j) +Q(ai + r′i,j) +Q(aj + r′i,j) +Q(r′i,j) , (4)

since ϕ(2)(a0, a1)+Q(a0 +a1 +r)+Q(a0 +r)+Q(a1 +r)+Q(r) = ϕ(2)(a0, a1)+
ϕ(2)(a0, r) +ϕ(2)(a0, a1 + r) is null (ϕ(2) being bilinear). Hence, the same calcu-
lations as above can be made by injecting r′i,j into each processing of ϕ(2)(a0, a1)
and we have then:

Q

(
d∑
i=0

ai

)
=

∑
0≤i<j≤d

Q(ai + aj + r′i,j) +Q(ai + r′i,j) +Q(aj + r′i,j) +Q(r′i,j)

+

d∑
i=0

Q(ai) + (d [mod 2])Q(0) . (5)

From (5) we deduce that a quadratic function Q can be securely evaluated
for any d by processing the following sequence of operations:

Algorithm 6: Higher-Order Masking Scheme for Quadratic Vectorial
Function

Input : a (d+ 1)th-order sharing (a0, a1, · · · , ad) of a in Fn
2

Output: a (d+ 1)th-order sharing (c0, c1, · · · , cd) of c = Q(a)

1 Randomly generate d(d+ 1)/2 elements rij ∈ F2n indexed such that 0 6 i < j 6 d

2 Randomly generate d(d+ 1)/2 elements r′ij ∈ F2n indexed such that 0 6 i < j 6 d

3 for i = 0 to d do
4 for j = i+ 1 to d do

/* process rj,i = ϕ
(2)
h (ai, aj) + ri,j */

5 rj,i ← ri,j +Q(ai + r′i,j) +Q(aj + r′i,j) +Q((ai + r′i,j) + aj) +Q(r′i,j)

6 for i = 0 to d do
7 ci ← Q(ai)
8 for j = 0 to d, j 6= i do
9 ci ← ci + ri,j

10 c0 ← c0 + (d mod 2)Q(0)

11 return (c0, c1, . . . , cd)

Except the addition of the constant term at Step 7, Algorithm 6 is exactly
the same as Algorithm 5. It involves 5d(d + 1) additions and 2d(d + 1) calls to
the transformation Q. In order to satisfy the dth-order security, the sequence of
operations at Step 5 must be done from left to right.

2.4 Conclusion About Elementary Masking Schemes

We sum-up hereafter the complexities of Algorithms9 2, 3, 4 and 6:

Scheme Additions Multilpications LUT Calls

Scheme for Multiplications (Algo. 2) 2d(d + 1) (d + 1)2 0

Scheme for Multiplications (Algo. 3) 4d3 + 8d2 + 3d 4d3 + 4d2 + 5d + 2 0

Scheme for Affine Transformations 0 0 d + 1

Scheme for Quadratic Transformations 5d(d + 1) 0 (2d + 1)(d + 1)

9 The improvement of Algorithm 3 proposed in [56] involves d3 + 9d2 + 5d additions
and d3 + 8d2 + 9d + 2 multiplications, which leads to an improvement when d > 3
(see [56]).

In [31], Grosso et al experimentally validated for n = 8 the advantage of
using Algorithm 5 instead of Algorithm 2 to securely process multiplications in
the form a× L(a). For d ∈ {1, 2, 3}, they indeed implemented both approaches
in C and in Assembly on ATMEGA644p. We recall their results hereafter:

Table 2. Costs comparison (in cycles) between Algorithms 2 and 5 over F2n [8].

Operation C d = 1 C d = 2 C d = 3 [Assembly] d = 1
Algorithm 2 146 430 802 136
Algorithm 5 61 152 344 54

3 Securing Polynomial Evaluation

3.1 On the Notion of Masking Complexity

The core idea of the secure polynomial evaluations proposed in the literature is
to split the processing into a sequence of field multiplications and F2-linear oper-
ations, and then to secure both operations independently thanks to the methods
recalled in previous section. Taking into account that the complexity of masking
schemes for F2-linear operations is linear in d, whereas that for multiplications
is at least quadratic, the proposed techniques try to minimize the number of
field multiplications which are not F2-linear10 (this kind of multiplication shall
be called non-linear in this paper). This strategy led the authors of [10] to in-
troduce the notion of polynomial masking complexity, which corresponds to the
minimal number of non-linear multiplications needed to evaluate a given poly-
nomial (aka s-box). Computing this masking complexity for any given function
is today a challenge. Following a brute force approach, the authors of [10] ex-
hibited the masking complexity for all monomials in F2n with n 6 8. Since the
complexity is the same for all powers in the same cyclotomic class, results are
grouped by classes. We recall the following table from [10]:

Determining the masking complexity of a monomial xα ∈ F2n [x] amounts
to find the shortest 2-addition chain for α, with the supplementary assumption
that multiplications by 2 are for free. The notion of q-addition chain has been
introduced in [38] and studied e.g. in [66]. The general problem (without the
assumption that multiplications by q are for free) is known to be a NP-hard
problem. In [59], the authors argue that the notion of cyclotomic class addition
chain (CC-addition chain for short) is more accurate to refer to the processing of
xα from cyclotomic class elements. A CC-addition chain for a non-zero element
α ∈ Z/(n−1)Z is a collection of cyclotomic classes (Cai)0≤i≤r such that Ca0 = 1
and Car = Cα, and for every i ∈ [1..r] there exist (j, k) ∈ [0..r]2, βj ∈ Caj and

10 A multiplication over a field of characteristic 2 corresponding to a squaring is F2-
linear.

Table 3. Cyclotomic classes for n ∈ {4, 6, 8} w.r.t. the masking complexity k

k Cyclotomic classes Ci of elements xi in F2n for n ∈ {4, 6, 8}
n = 4

0 C0 = {0}, C1 = {1, 2, 4, 8}
1 C3 = {3, 6, 12, 9}, C5 = {5, 10}
2 C7 = {7, 14, 13, 11}

n = 6

0 C0 = {0}, C1 = {1, 2, 4, 8, 16, 32}
1 C3 = {3, 6, 12, 24, 48, 33}, C5 = {5, 10, 20, 40, 17, 34}

C9 = {9, 18, 36}
2 C7 = {7, 14, 28, 56, 49, 35}, C11 = {11, 22, 44, 25, 50, 37}

C13 = {13, 26, 52, 41, 19, 38}, C15 = {15, 30, 29, 27, 23}
C21 = {21, 42}, C27 = {27, 54, 45}

3 C23 = {23, 46, 29, 58, 53, 43}, C31 = {31, 62, 61, 59, 55, 47}
n = 8

0 C0 = {0}, C1 = {1, 2, 4, 8, 16, 32, 64, 128}
1 C3 = {3, 6, 12, 24, 48, 96, 192, 129}, C5 = {5, 10, 20, 40, 80, 160, 65, 130},

C9 = {9, 18, 36, 72, 144, 33, 66, 132}, C17 = {17, 34, 68, 136}
2 C7 = {7, 14, 28, 56, 112, 224, 193, 131}

C11 = {11, 22, 44, 88, 176, 97, 194, 133},
C13 = {13, 26, 52, 104, 208, 161, 67, 134}
C15 = {15, 30, 60, 120, 240, 225, 195, 135},
C19 = {19, 38, 76, 152, 49, 98, 196, 137}
C21 = {21, 42, 84, 168, 81, 162, 69, 138},
C25 = {25, 50, 100, 200, 145, 35, 70, 140}
C27 = {27, 54, 108, 216, 177, 99, 198, 141},
C37 = {37, 74, 148, 41, 82, 164, 73, 146}

C45 = {45, 90, 180, 105, 210, 165, 75, 150},
C51 = {51, 102, 204, 153}, C85 = {85, 170}

3 C23 = {23, 46, 92, 184, 113, 226, 197, 139}
C29 = {29, 58, 116, 232, 209, 163, 71, 142},
C31 = {31, 62, 124, 248, 241, 227, 199, 143}
C39 = {39, 78, 156, 57, 114, 228, 201, 147},
C43 = {43, 86, 172, 89, 178, 101, 202, 149}
C47 = {47, 94, 188, 121, 242, 229, 203, 151}
C53 = {53, 106, 212, 169, 83, 166, 77, 154}

C55 = {55, 110, 220, 185, 115, 230, 205, 155}
C59 = {59, 118, 236, 217, 179, 103, 206, 157}
C61 = {61, 122, 244, 233, 211, 167, 79, 158}
C63 = {63, 126, 252, 249, 243, 231, 207, 159}
C87 = {87, 174, 93, 186, 117, 234, 213, 171},
C91 = {91, 182, 109, 218, 181, 107, 214, 173}
C95 = {95, 190, 125, 250, 245, 235, 215, 175}
C111 = {111, 222, 189, 123, 246, 237, 219, 183}

C119 = {119, 238, 221, 187}
4 C127 = {127, 254, 253, 251, 247, 239, 223, 191}

βk ∈ Cak such that βi ≡ βj +βk mod 2n−1. The value r is called the size of the
CC-addition chain. The masking complexity of xα corresponds to the shortest
CC-addition chain of α.

In some contexts, it may be pertinent to evaluate a monomial defined over
F2n thanks to operations defined over subfields F2n/2r of F2n (e.g. applying
the Tower Fields approach recalled in Section 2.1). This strategy increases the
overall number of multiplications. However, operating in F2n/2r instead of F2n

may have a significant practical impact on the processing cost (in terms of CPU
cycles number). For instance, according to Table 1, the number of cycles required
to process multiplications in F24 with LUTn=4 is 4 (in 8051) if 256 bytes of
ROM are available. Since the multiplication in F28 cannot be tabulated (it would
require 2562 bytes of ROM), the best timing/memory trade-off is achieved with
LALn=8 method and leads to a cost of around 25 cycles in 8051 architecture.
Eventually, we get a multiplication over F24 which is around 6 times faster than
a multiplication over F28 . Hence exchanging the latter operation by 6 or less
multiplications in F24 leads to a practical efficiency gain. This strategy has been
followed by Kim et al in [37] for the evaluation of the monomial x254 in F28

(which is affinely equivalent to the AES sbox) and led to a practical improvement
compared to the approach in [19].

3.2 Masking Complexity of Polynomials

When the polynomial representation is not reduced to a single monomial, the
notions of CC-addition chain can be straightforwardly extended. Actually, the
notion of polynomial chain is given in [38, Section 4.6.4] and the shortest size of
such a chain (when only non-linear multiplications are counted) exactly corre-
sponds to the masking complexity.

For n ≤ 8, Table 3 can of course be used to deduce an upper-bound of the
masking complexity of any polynomial defined over F2n , by summing the mask-
ing complexities of its monomials. However, as we will see hereafter, the achieved
bounds are far from being tight since the evaluation of a polynomial can be per-
formed more efficiently than simply evaluating each of its monomials separately.
Actually, the authors of [10] present two polynomial evaluation methods which
aim at minimizing the number of required non-linear multiplications. They have
been afterwards improved in [59] and recently in [16]. We recall these works
afterwards.

In [10], the authors propose two solutions to securely evaluate a polynomial
P (x) ∈ F2n [x].

The cyclotomic method consists in rewriting P (x) in the form:

P (x) = u0 +

q∑
i=1

Li(x
αi) + u2n−1x

2n−1 , (6)

where q is a positive integer and (Li)i6q is a family of linearized polynomials11.

Since the transformations x ∈ F2n 7→ x2j

are F2-linear, their masking complexity
is null. This implies that the masking complexity of

∑q
i=1 Li(x

αi) equals the
number of non-linear multiplications required to evaluate all the monomials xαi .
It is shown in [10], that the latter number is bounded above by the number of
cyclotomic classes in F2n minus 2, which led to the following proposition:

Proposition 1. [10] Let n be a positive integer. For every P(x) ∈ F2n [x], the
masking complexity of P (x), denoted MC(P), satisfies:

MC(P) 6
∑

δ|(2n−1)

ϕ(δ)

µ(δ)
− 1 ,

where µ(δ) denotes the multiplicative order of 2 modulo δ and ϕ(·) denotes the
Euler totient function.

Remark 2. The proposition is a direct implication of the fact that the number of

cyclotomic classes in F2n is
∑
δ|(2n−1)

ϕ(δ)
µ(δ) , which is bounded below by (2n−1)/n.

Remark 3. It is proved in [59] that the masking complexity is invariant w.r.t.
field representation.

Proposition 1 has been afterwards completed in [59] with the following result
giving a lower bound on the masking complexity.

Proposition 2. [59] Let n be a positive integer. For every polynomial P(x) =∑2n−1
i=0 uix

i in F2n [x], the masking complexity of P (x) satisfies:

max
0<i<2n−1

ui 6=0

mn(i) 6MC(P) ,

where, for every i ∈ [1..2n−2], mn(i) denotes the size of the shortest cyclotomic-
class addition chain.

Remark 4. It may be observed that the masking complexity of the monomial xi

exactly corresponds to mn(i) [10, 59]. The authors of [59] recall that the mn(i)
is itself bounded above by dlog2(HW(i))e. They moreover show that techniques
proposed by Brauer in [8] may be applied to prove that mn(i) is bounded below

by log2(i)
log2 log2(i) × (1 +O(1)) when i (and thus n) tends towards infinity.

Thanks to Proposition 2, Roy and Vivek argue that the masking complexity
of the DES s-boxes is lower bounded by 3, whereas the s-box of AES is bounded
below by 4 (actually the bound is tight with the representation introduced in
[57]). Proposition 2 has been further improved by Coron, Roy and Vivek in [16]
where the following new lower bound has been exhibited by adapting a technique
initially introduced by Paterson and Stockmeyer [49].

11 i.e. a linear combination of monomials in the form x2j with j < n

Proposition 3. For every positive integer n, there exists a polynomial P (x) ∈
F2n [x] with masking complexity satisfying:√

2n

n
− 2 6MC(P) . (7)

For the polynomials P (x) =
∑2n−1
i=0 uix

i whose masking complexity is bounded

above by
√

2n

n −2, Proposition 3 improves the lower-bound maxi,ui 6=dlog2(HW(i)e
givenin Proposition 2 when n is greater than or equal to 9.

The Knuth-Eve method proposed in [10] is actually a direct application of
Knuth-Eve algorithm [25, 39] which is based on a recursive use of the following
lemma.

Lemma 1. Let n and t be two positive integers and let P (x) be a polynomial
of degree t over F2n [x]. There exist two polynomials P1(x) and P2(x) of degrees
bounded above by bt/2c over F2n [x] such that:

P (x) = P1(x2)⊕ P2(x2)x . (8)

Applying Lemma 1 to the polynomial P (x) gives P (x) = P1(x2) + P2(x2)x,
where P1(x) and P2(x) are two polynomials of degrees bounded above by 2n−1−
1. The authors of [10] deduce that P (x) can be computed after computation of
all monomials (x2j)j≤2n−1−1 with a single multiplication by x. Then, applying
Lemma 1 again to the polynomials P1(x) and P2(x) both of degree bounded
above by 2n−1 − 1 leads to two new pairs of polynomials (P11(x), P12(x)) and
(P21(x), P22(x)) such that P1(x2) = P11(x4)+P12(x4)x2 and P2(x2) = P21(x4)+
P22(x4)x2. The degree of the new polynomials is bounded above by 2n−2 − 1.
Eventually, applying Lemma 1 recursively r times gives an evaluation of P (x)
involving evaluations in x2r

of polynomials of degree bounded above by 2n−r−1
plus 2r − 1 =

∑r−1
i=0 2i multiplications by powers of x in the form x2i

with
i ≤ 2r−1. This observation leads to the following proposition.

Proposition 4. Let n be a positive integer. For every P (x) ∈ F2n [x], the mask-
ing complexity of P (x) satisfies:

MC(P) 6 min
0≤r≤n

(2n−r−1 + 2r)− 2 =

{
3
22n/2 − 2 if n is even
2(n+1)/2 − 2 if n is odd

. (9)

Roy-Vivek’s method has been introduced in [59]. It follows an approach very
close to that of Paterson and Stockmeyer in [49] and it essentially consists in
expressing P (x) as a function of several lower degree polynomials, each of degree
at most k for some fixed k. In its most simple version, the method assumes that
the degree of P (x) equals k(2t − 1) and it starts by dividing P (x) by xkt. The
remainder R0(x) has degree at most kt − 1, whereas the quotient Q0(x) has
degree k(t − 1). Adding the term xk(t−1) to R0(x) and dividing the sum by

Q0(x) leads to R0(x)− xk(t−1) = C0(x)×Q0(x) +S0(x) where C0(x) and S0(x)
have degree at most k and k(t− 1)− 1 respectively. We then get:

P (x) = (xkt + C0(x))×Q0(x) + xk(t−1) + S0(x) .

The method is then applied recursively to the polynomials Q0(x) and xk(t−1) +

S0(x) (both of degree k(t − 1)). Namely, they are both divided by x
kt
2 leading

to:
Q0(x) = (x

kt
2 + C1(x))×Q1(X) + xk(t

2−1) + S1(x)

and
xk(t−1) + S0(x) = (x

kt
2 + C2(x))×Q2(x) + xk(t

2−1) + S2(x) ,

where, for i ∈ {1, 2}, the polynomials Ci(x) have degree at most k, the poly-
nomials Qi(x) have degree k(t2 − 1) and the polynomials Si(x) have degree
strictly lower than k(t2 −1)). Repeating the procedure dlog2(t)e times eventually
splits P (x) as a combination of polynomials of degree upper bounded by k and
of monomials in the cyclotomic class of xk. For a polynomial P (x) represent-
ing an s-box from F2n to F2m , the number of non-linear multiplications needed
with Roy-Vivek’s method is around k× (2m− 1) (assuming that the polynomial
representation is dense). It involves around (k + 1) × (2m − 1) additions and
k/2 + logk deg(P) squarings.

Roy-Vivek’s method enables to process the DES s-boxes with 7 non-linear
multiplications which is smaller than the numbers 10 and 11 respectively needed
with the cyclotomic and Knuth-Eve’s methods. Actually, for CAMELIA, CLEFIA,
PRESENT and SERPENT s-boxes, Roy-Vivek’s method is at least as efficient as the
latter methods, and often performs more efficiently.

Coron-Roy-Vivek’s method has been recently proposed in [16] and may be
viewed as an extension of [59]. It first consists in building an union C of some
cyclotomic classes Ci of elements in Z/(2n − 1)Z. The number of non-linear
multiplications required to build C is denoted by µ. The set of monomials xj

with j in C spans a subspace of F2n [x] which is denoted by P. The second step
of Coron’s method consists in finding a t-variate polynomial R ∈ F2n [x1, · · · , xt]
such that:

P (x) = R (P1(x), · · · , Pt(x)) , (10)

and MC(R) + µ is as small as possible. To ease the search of the polynomial
R, Coron suggests to limit the search to some polynomials and to apply the
following heuristic approach:

1. build the union set C such that all the powers of P ’s monomials are in C+C.
2. Choose/fix a set of r polynomials P1(x), ..., Pr(x) in P and search r + 1

polynomials Pr+1(x), ..., P2r+1(x) such that:

P (x) =

r∑
i=1

Pi(x)× Pr+i(x) + P2r+1(x) . (11)

To find the r+ 1 polynomials Pr+i(x), with i ∈ [1..r+ 1], Coron suggests to
solve the linear system of n2n Boolean equations implied by the evaluation
of Equation (11) in every x ∈ F2n . Let ` denote the size of C. The number of
unknown values in the system is bounded above by min(r, `)× `+ `. Hence,
the condition 2n 6 ` × (1 + min(r, `)) ensures that the method outputs at
least one solution.

In [16], it is pointed out that the method is heuristic and that there is cur-
rently no proof that it leads to a solution. In practice however, it is observed that
the method always leads to a solution in the cases considered by the author. Its
complexity (in terms of the number of non-linear multiplications) in those cases
is O(

√
2n/n), which is asymptotically better than the complexity of Knuth-Eve’s

method that equals O(
√

2n) (due to Inequality (9)). Moreover, a comparison of
Coron’s complexity with Inequality (7) shows that it is asymptotically optimal.

The method is applied for the first DES s-box and leads to an evaluation with
only 4 non-linear multiplications, implying that the masking complexity of this
sbox is at most 4 (and at least 3 due to Proposition 2). The method is also
applied to the sboxes of CLEFIA [63], PRESENT [7] leading to a complexity of
10 and 2 respectively (which improves all previous methods).

3.3 The Extended Masking Complexity

As recalled in previous section, the secure processing of monomials in the form
x1+2s

(which corresponds to Algorithm 5) is more efficient than that of any other
power functions which are not in the cyclotomic class of x. Based on this obser-
vation, the authors of [31] followed an approach close to [10] in order to exhibit
a new processing of power functions where calculi of the form x 7→ x × x2s

are
no longer considered as nonlinear multiplications but as a third type of opera-
tions. Namely, for every power function x 7→ xα, [31] presents new operations’
sequences which first minimize the number of non-linear multiplications (which
are neither F2-affine nor in the form x 7→ x×x2s

) (referred as Type II operation),
and then minimize the number of processings in the form x 7→ x× x2s

(referred
as Type III operation). As observed by the authors themselves, this amounts to
output, for each exponent α, the shortest cyclotomic class addition chain with
the supplementary constraint that multiplications by 2s, for any integer s, or
additions in the form v+ 2sv are for free. The length corresponding to this type
of addition chain is referred to as extended length in [31]. It is defined as a pair
(k1, k2) where k1 refers to the number of Type III operations and k2 refers to
the number of Type II operations. The results obtained in [31] are recalled in
Table 4.

Remark 5. Costs given in Table 4 have been obtained by first minimizing the
global number of Type-II and Type-III operations, and then by minimizing the
number of Type-III multiplications. It can be noticed that other minimization
strategies could be applied. For instance, if the goal is to minimize the number
of Type-III multiplications, then it can be checked that x254 can be evaluated

Table 4. Cyclotomic classes for n ∈ {4, 6, 8} w.r.t. the masking complexity k

(k1, k2) Cyclotomic classes Cα of elements xα in F2n for n ∈ {4, 6, 8}
n = 4

(0, 0) C0 = {0},C1 = {1, 2, 4, 8}
(0, 1) C3 = {3, 6, 12, 9}, C5 = {5, 10}
(1, 1) C7 = {7, 14, 13, 11}

n = 6

(0, 0) C0 = {0},C1 = {1, 2, 4, 8, 16, 32}
(0, 1) C3 = {3, 6, 12, 24, 48, 33}, C5 = {5, 10, 20, 40, 17, 34}, C9 = {9, 18, 36}
(0, 2) C11 = {11, 22, 44, 25, 50, 37},C15 = {15, 30, 60, 57, 51, 39} C27 = {27, 54, 45}
(1, 1) C7 = {7, 14, 28, 56, 49, 35} C13 = {13, 26, 52, 41, 19, 38}

C21 = {21, 42} C31 = {31, 62, 61, 59, 55, 47, }
(1, 2) C23 = {23, 46, 29, 58, 53, 43}

n = 8

(0, 0) C0 = {0},C1 = {1, 2, 4, 8, 16, 32, 64, 128}
(0, 1) C3 = {3, 6, 12, 24, 48, 96, 192, 129}, C5 = {5, 10, 20, 40, 80, 160, 65, 130}

C9 = {9, 18, 36, 72, 144, 33, 66, 132}, C17 = {17, 34, 68, 136}
(0, 2) C15 = {15, 30, 60, 120, 240, 225, 195, 135}

C21 = {21, 42, 84, 168, 81, 162, 69, 138}
C25 = {25, 50, 100, 200, 145, 35, 70, 140}
C27 = {27, 54, 108, 216, 177, 99, 198, 141}
C45 = {45, 90, 180, 105, 210, 165, 75, 150}
C51 = {51, 102, 204, 153}, C85 = {85, 170}

(0, 3) C63 = {63, 126, 252, 249, 243, 231, 207, 159}
C95 = {95, 190, 125, 250, 245, 235, 215, 175}
C111 = {111, 222, 189, 123, 246, 237, 219, 183}

(0, 4) C39 = {39, 78, 156, 57, 114, 228, 201, 147}
C55 = {55, 110, 220, 185, 115, 230, 205, 155}
C87 = {87, 174, 93, 186, 117, 234, 213, 171}

(1, 1) C7 = {7, 14, 28, 56, 112, 224, 193, 131}
C11 = {11, 22, 44, 88, 176, 97, 194, 133}
C13 = {13, 26, 52, 104, 208, 161, 67, 134}
C19 = {19, 38, 76, 152, 49, 98, 196, 137}
C37 = {37, 74, 148, 41, 82, 164, 73, 146}

(1, 2) C23 = {23, 46, 92, 184, 113, 226, 197, 139}
C29 = {29, 58, 116, 232, 209, 163, 71, 142}
C31 = {31, 62, 124, 248, 241, 227, 199, 143}
C43 = {43, 86, 172, 89, 178, 101, 202, 149}
C47 = {47, 94, 188, 121, 242, 229, 203, 151}
C53 = {53, 106, 212, 169, 83, 166, 77, 154}

C59 = {59, 118, 236, 217, 179, 103, 206, 157}
C61 = {61, 122, 244, 233, 211, 167, 79, 158}
C91 = {91, 182, 109, 218, 181, 107, 214, 173}

C119 = {119, 238, 221, 187}
(1, 3) C127 = {127, 254, 253, 251, 247, 239, 223, 191}

without such operation: first process x63, then (x+x63)3 = x189 +x127 +x65 +x3,
end eventually process x189, x65 and x3, and subtract them to (x+ x63)3 to get
x254 = (x127)2 (which gives a processing without Type-III operations and 9
Type-II operations).

For the exponentiation x 7→ x254 (the non-linear part of the AES S-box),
the extended addition chain is (1, 2, 5, 25, 125, 127, 254) whose extended length
is 1+3. This sequence requires only 1 operation of Type II (to get x127), 2 linear
operations (aka Type I operations) (to get and x2 and x254) and 3 operations
of Type II (to get x5, x25 and x125)). It may moreover be observed that the

sequence involves the same operation y 7→ y1+22

each time, which reduces the
memory required to implement the solution.

The interest of using extended addition chains instead of addition chains has
been experimentally validated by Grosso et al [31] for the particular case of the
exponentiation x 7→ x254 over F2n [8] and the first DES sbox. We recall their
implementation results hereafter12:

Table 5. Secure AES S-box for ATMEGA644p.

Solution [C] d = 1 [C] d = 2 [C] d = 3
Addition-Chain Method [58] 753 1999 3702
Extended Addition-Chain Method [31] 488 1227 2319

Table 6. Secure DES S-box for ATMEGA644p.

Solution C d = 1 C d = 2 C d = 3
Cyclotomic Method [10] 2001 4646 8182
Cyclotomic Method with Type-III operation [31] 1623 3574 7413

3.4 Some recent progresses made during this paper was reviewed

The present paper was written in November 2014. The publication process makes
it published approximately one year later. Meanwhile, important advances have
been made, that we wish to briefly present. In [11], it has been introduced a
new method for masking s-boxes, which decomposes them by means of functions
of low algebraic degree, and masks each such low degree function. The decom-

position step starts by deriving a family of generators:

{
G1(x) = F1(x)
Gi(x) = Fi

(
Gi−1(x)

)
where the Fi are random polynomials of algebraic degree s. Then it randomly

12 Implementations have been done in C and compiled for ATMEGA644p micro-
controller thanks to the compiler avr gcc with optimisation flag -o2.

generates t polynomials Qi =
∑r
j=1 Lj ◦Gj , where the Lj are linearized polyno-

mials. Eventually, it searches for t polynomials Pi of algebraic degree s and for
r + 1 linearized polynomials Li such that:

P (x) =

t∑
i=1

Pi
(
Qi(x)

)
+

r∑
i=1

Li
(
Gi(x)

)
+ L0(x) .

As in the CRV method, the search of polynomials Pi and Li amounts to solve a
system of linear equations over F2n .
For masking a function F of algebraic degree at most s, the method uses that
for such function, the mapping

ϕ
(s)
F (a1, a2, . . . , as) =

∑
I⊆{1,...,s}

F
(∑
i∈I

ai

)
is multilinear (this is characteristic of functions of algebraic degree at most s).
Then, it is proved that, for every d ≥ s:

F
(d∑
i=1

ai

)
=

∑
1≤i1<···<is≤d

ϕ
(s)
F (ai1 , . . . , ais) +

s−1∑
j=0

ηd,s(j)
∑

I⊆{1,...d}
|I|=j

F
(∑
i∈I

ai

)
,

where ηd,s(j) =
(
d−j−1
s−j−1

)
mod 2 for every j ≤ s− 1, and this allows proving that:

F
(d∑
i=1

ai

)
=

s∑
j=0

µd,s(j)
∑

I⊆{1,...,d}
|I|=j

F
(∑
i∈I

ai

)
,

where µd,s(j) =
(
d−j−1
s−j

)
mod 2 for every j ≤ s.

This reduces the complexity of the d-masking of a degree s function to several
s-maskings.

4 Conclusion and Perspectives

In this paper we have recalled the main techniques proposed in the literature to
evaluate functions over finite fields while defeating higher-order side channel at-
tacks. All of them start by splitting the evaluation into a sequence of elementary
operations which are afterwards independently protected with bespoke schemes
that operate on shared values and output a sharing of the result. A section has
been dedicated to the presentation and analysis of these schemes. Essentially,
they allow for the secure processing of any field multiplication or quadratic func-
tion (or more general low degree function). Their construction differs depending
on the underlying data sharing (e.g. additive, polynomial or, more generally,
based on a linear code). When additive sharing is used, the complexity of the
secure processing of affine transformations is linear in the security order d and it

is quadratic for the secure processing of multiplications or quadratic functions.
If data are represented by polynomial (aka Shamir’s) sharing, the complexity of
the scheme for affine functions stays linear in d but the complexity of the scheme
dedicated to the multiplication becomes cubic. As argued in [55, 33], polynomial
sharing (and the dedicated schemes) may however be preferred to additive shar-
ing since it provides better resistance against unbounded side-channel attacks13.
For practical values of d (e.g. d 6 10), the timing complexity of the recalled
schemes in terms of CPU cycles strongly depends on the cost of the underly-
ing field multiplication. The latter one itself depends on the field dimension n
and the memory constraints. We recalled different multiplication implementa-
tion strategies which offer various timing/memory trade-offs. The choice among
them depends on the context constraints.

Since the complexity of the schemes dedicated to the secure processing of
multiplications is quadratic, several polynomial evaluation strategies published
in the literature essentially try to split the evaluation into a sequence of ele-
mentary operations including a minimal number of multiplications. We recalled
these strategies which are: the Cyclotomic method [10], the Knuth-Eve method
[39] and the Coron-Roy-Vivek’s method [16]. This approach has raised the need
to introduce a new notion, called masking complexity of a polynomial, which
corresponds to the minimum number of non-linear multiplications required to
evaluate the polynomial on any field element. Computing this complexity for
any polynomial seems to be a difficult problem but we recalled several results
published in [10, 16, 59] which enable to have lower and upper bounds. Among
the three evaluation methods presented in the three latter papers, the one by
Coron et al seems to be the most efficient one in general, i.e. when d and n are
not too small and the polynomial has no particular structure (but the very re-
cent Carlet-Prouff-Rivain-Roche CPRR method further improves the efficiency).
It involves only O(

√
2n/n) non-linear multiplications which can be proved to be

asymptotically optimal. Despite its qualities, Coron et al ’s method is heuristic,
as well as the more recent CPRR method, and no formal rules today exist to
parametrize the main steps (the construction of the union of cyclotomic classes
and the choice of the fixed polynomials). Dealing with this issue seems to be
an interesting open avenue for further research. Moreover, several ways could
be investigated to improve Coron-Roy-Vivek’s approach. For instance, it can
be studied whether the cost of the building of the classes of cyclotomic classes
(which is the first step of the method) could not be reduced. Another interest-
ing subject of further research could be to study whether Coron-Roy-Vivek’s
approach cannot be advantageously combined with the idea extended masking
complexity in which quadratic functions are viewed as a a class of elementary
functions whose complexity is between that of affine transformations and that
of non-linear multiplications.

13 these attacks assume that the adversary is not limited to the observation of d in-
termediate results during the evaluation but can observe any family of intermediate
results.

References

1. M.-L. Akkar and L. Goubin. A Generic Protection against High-order Differential
Power Analysis. In T. Johansson, editor, Fast Software Encryption – FSE 2003,
volume 2887 of Lecture Notes in Computer Science, pages 192–205. Springer, 2003.

2. J. Balasch, S. Faust, B. Gierlichs, and I. Verbauwhede. Theory and practice of a
leakage resilient masking scheme. In X. Wang and K. Sako, editors, ASIACRYPT,
volume 7658 of Lecture Notes in Computer Science, pages 758–775. Springer, 2012.

3. M. Bellare, S. Goldwasser, and D. Micciancio. “pseudo-random” number gener-
ation within cryptographic algorithms: the DSS case. In B. Kalisky Jr., editor,
Advances in Cryptology – CRYPTO ’97, volume 1294 of Lecture Notes in Com-
puter Science, pages 277–291. Springer, 1997.

4. M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness theorems for non-
cryptographic fault-tolerant distributed computation. In STOC ’88: Proceedings of
the twentieth annual ACM symposium on Theory of computing, pages 1–10, New
York, NY, USA, 1988. ACM.

5. G. Bertoni and J.-S. Coron, editors. Cryptographic Hardware and Embedded Sys-
tems - CHES 2013 - 15th International Workshop, Santa Barbara, CA, USA, Au-
gust 20-23, 2013. Proceedings, volume 8086 of Lecture Notes in Computer Science.
Springer, 2013.

6. G. Blakely. Safeguarding cryptographic keys. In National Comp. Conf., volume 48,
pages 313–317, New York, June 1979. AFIPS Press.

7. A. Bogdanov, L. R. Knudsen, G. Leander, C. Paar, A. Poschmann, M. J. B. Rob-
shaw, Y. Seurin, and C. Vikkelsoe. PRESENT: An Ultra-Lightweight Block Cipher.
In Paillier and Verbauwhede [48], pages 450–466.

8. A. Brauer. On Addtion Chains. Bull. Amer. MAth. Soc., 45, 1939.

9. E. Brier, C. Clavier, and F. Olivier. Correlation Power Analysis with a Leakage
Model. In M. Joye and J.-J. Quisquater, editors, Cryptographic Hardware and Em-
bedded Systems – CHES 2004, volume 3156 of Lecture Notes in Computer Science,
pages 16–29. Springer, 2004.

10. C. Carlet, L. Goubin, E. Prouff, M. Quisquater, and M. Rivain. Higher-order
masking schemes for s-boxes. In A. Canteaut, editor, FSE, volume 7549 of Lecture
Notes in Computer Science, pages 366–384. Springer, 2012.

11. C. Carlet, E. Prouff, M. Rivain, and T. Roche. Algebraic decomposition for prob-
ing security. In R. Gennaro and M. Robshaw, editors, Advances in Cryptology -
CRYPTO 2015 - 35th Annual Cryptology Conference, Santa Barbara, CA, USA,
August 16-20, 2015, Proceedings, Part I, volume 9215 of Lecture Notes in Computer
Science, pages 742–763. Springer, 2015.

12. S. Chari, C. Jutla, J. Rao, and P. Rohatgi. Towards Sound Approaches to Coun-
teract Power-Analysis Attacks. In Wiener [69], pages 398–412.

13. H. Chen, R. Cramer, S. Goldwasser, R. de Haan, and V. Vaikuntanathan. Se-
cure computation from random error correcting codes. In M. Naor, editor, EU-
ROCRYPT, volume 4515 of Lecture Notes in Computer Science, pages 291–310.
Springer, 2007.

14. A. Cook, Stephen. On the minimum computation time of functions. PhD thesis,
Harvard University, Cambridge, MA, USA, 1966. Available at http://cr.yp.to/

bib/entries.html#1966/cook.

15. J. Coron, E. Prouff, M. Rivain, and T. Roche. Higher-order side channel secu-
rity and mask refreshing. In S. Moriai, editor, Fast Software Encryption - 20th

International Workshop, FSE 2013, Singapore, March 11-13, 2013. Revised Se-
lected Papers, volume 8424 of Lecture Notes in Computer Science, pages 410–424.
Springer, 2013.

16. J. Coron, A. Roy, and S. Vivek. Fast evaluation of polynomials over binary finite
fields and application to side-channel countermeasures. In L. Batina and M. Rob-
shaw, editors, Cryptographic Hardware and Embedded Systems - CHES 2014 - 16th
International Workshop, Busan, South Korea, September 23-26, 2014. Proceedings,
volume 8731 of Lecture Notes in Computer Science, pages 170–187. Springer, 2014.

17. J.-S. Coron. A New DPA Countermeasure Based on Permutation Tables. In
R. Ostrovsky, R. D. Prisco, and I. Visconti, editors, Security and Cryptography for
Networks, 6th International Conference, SCN 2008, volume 5229 of Lecture Notes
in Computer Science, pages 278–292. Springer, 2008.

18. J.-S. Coron. Higher order masking of look-up tables. In P. Q. Nguyen and E. Os-
wald, editors, EUROCRYPT, volume 8441 of Lecture Notes in Computer Science,
pages 441–458. Springer, 2014.

19. J.-S. Coron, C. Giraud, E. Prouff, S. Renner, M. Rivain, and P. K. Vadnala. Con-
version of security proofs from one leakage model to another: A new issue. In
W. Schindler and S. A. Huss, editors, COSADE, volume 7275 of Lecture Notes in
Computer Science, pages 69–81. Springer, 2012.

20. J.-S. Coron, E. Prouff, and M. Rivain. Side Channel Cryptanalysis of a Higher
Order Masking Scheme. In Paillier and Verbauwhede [48], pages 28–44.

21. J.-S. Coron, E. Prouff, and T. Roche. On the use of shamir’s secret sharing against
side-channel analysis. In S. Mangard, editor, CARDIS, volume 7771 of Lecture
Notes in Computer Science, pages 77–90. Springer, 2012.

22. N. Courtois and L. Goubin. An Algebraic Masking Method to Protect AES against
Power Attacks. In D. Won and S. Kim, editors, Information Security and Cryp-
tology – ICISC 2005, volume 3935 of Lecture Notes in Computer Science, pages
199–209. Springer, 2006.

23. I. Damg̊ard, Y. Ishai, M. Krøigaard, J. B. Nielsen, and A. Smith. Scalable multi-
party computation with nearly optimal work and resilience. In D. Wagner, editor,
CRYPTO, volume 5157 of Lecture Notes in Computer Science, pages 241–261.
Springer, 2008.

24. A. Duc, S. Dziembowski, and S. Faust. Unifying Leakage Models: from Probing
Attacks to Noisy Leakage. In P. Q. Nguyen and E. Oswald, editors, Eurocrypt,
volume 8441 of Lecture Notes in Computer Science, pages 423–440. Springer, 2014.

25. J. Eve. The evaluation of polynomials. Comm. ACM, 6(1):17–?21, 1964.
26. S. Faust, T. Rabin, L. Reyzin, E. Tromer, and V. Vaikuntanathan. Protecting

circuits from leakage: the computationally-bounded and noisy cases. In H. Gilbert,
editor, EUROCRYPT, volume 6110 of Lecture Notes in Computer Science, pages
135–156. Springer, 2010.

27. M. K. Franklin and M. Yung. Communication complexity of secure computation
(extended abstract). In S. R. Kosaraju, M. Fellows, A. Wigderson, and J. A. Ellis,
editors, STOC, pages 699–710. ACM, 1992.

28. L. Genelle, E. Prouff, and M. Quisquater. Thwarting higher-order side channel
analysis with additive and multiplicative maskings. In Preneel and Takagi [50],
pages 240–255.

29. R. Gennaro, M. O. Rabin, and T. Rabin. Simplified vss and fact-track multiparty
computations with applications to threshold cryptography. In PODC, pages 101–
111, 1998.

30. L. Goubin and A. Martinelli. Protecting aes with shamir’s secret sharing scheme.
In Preneel and Takagi [50], pages 79–94.

31. V. Grosso, E. Prouff, and F. Standaert. Efficient masked s-boxes processing - A
step forward -. In D. Pointcheval and D. Vergnaud, editors, Progress in Cryptology
- AFRICACRYPT 2014 - 7th International Conference on Cryptology in Africa,
Marrakesh, Morocco, May 28-30, 2014. Proceedings, volume 8469 of Lecture Notes
in Computer Science, pages 251–266. Springer, 2014.

32. V. Grosso, F.-X. Standaert, and S. Faust. Masking vs. multiparty computation:
How large is the gap for aes? In Bertoni and Coron [5], pages 400–416.

33. V. Grosso, F.-X. Standaert, and S. Faust. Masking vs. multiparty computation:
how large is the gap for aes? J. Cryptographic Engineering, 4(1):47–57, 2014.

34. S. Gueron, O. Parzanchevsky, and O. Zuk. Masked Inversion in GF(2n) Using
Mixed Field Representations and its Efficient Implementation for AES. In N. Ned-
jah and L. M. Mourelle, editors, Embedded Cryptographic Hardware: Methodologies
and Architectures, pages 213–228. Nova Science Publishers, 2004.

35. Y. Ishai, A. Sahai, and D. Wagner. Private Circuits: Securing Hardware against
Probing Attacks. In D. Boneh, editor, Advances in Cryptology – CRYPTO 2003,
volume 2729 of Lecture Notes in Computer Science, pages 463–481. Springer, 2003.

36. A. Karatsuba and Y. Ofman. Multiplication of many-digital numbers by automatic
computers. Proceedings of the USSR Academy of Sciences, 145:293–294, 1962.
Translation in the academic journal Physics-Doklady, 7 (1963), pp. 595596.

37. H. Kim, S. Hong, and J. Lim. A fast and provably secure higher-order masking of
aes s-box. In Preneel and Takagi [50], pages 95–107.

38. D. Knuth. The Art of Computer Programming, volume 2. Addison Wesley, third
edition, 1988.

39. D. E. Knuth. Evaluation of polynomials by computers. Comm. ACM, 5(12), 1962.

40. P. Kocher, J. Jaffe, and B. Jun. Differential Power Analysis. In Wiener [69], pages
388–397.

41. S. Mangard, T. Popp, and B. M. Gammel. Side-Channel Leakage of Masked CMOS
Gates. In A. Menezes, editor, Topics in Cryptology – CT-RSA 2005, volume 3376
of Lecture Notes in Computer Science, pages 351–365. Springer, 2005.

42. S. Mangard, N. Pramstaller, and E. Oswald. Successfully Attacking Masked AES
Hardware Implementations. In J. Rao and B. Sunar, editors, Cryptographic Hard-
ware and Embedded Systems – CHES 2005, volume 3659 of Lecture Notes in Com-
puter Science, pages 157–171. Springer, 2005.

43. S. Mangard and K. Schramm. Pinpointing the Side-Channel Leakage of Masked
AES Hardware Implementations. In L. Goubin and M. Matsui, editors, Crypto-
graphic Hardware and Embedded Systems – CHES 2006, volume 4249 of Lecture
Notes in Computer Science, pages 76–90. Springer, 2006.

44. J. Massey. Minimal Codewords and Secret Sharings. Sixth Joint Sweedish-Russian
Workshop on Information Theory, pages 246–249, 1993.

45. T. Messerges. Using Second-order Power Analysis to Attack DPA Resistant soft-
ware. In Ç. Koç and C. Paar, editors, Cryptographic Hardware and Embedded
Systems – CHES 2000, volume 1965 of Lecture Notes in Computer Science, pages
238–251. Springer, 2000.

46. A. Moradi and O. Mischke. How Far Should Theory Be From Practice? - Evaluation
of a Countermeasure. In E. Prouff and P. Schaumont, editors, CHES 2012, volume
7428 of Lecture Notes in Computer Science, pages 92–106. Springer, 2012.

47. J. Omura and J. Massey. Computational method and apparatus for finite field
arithmetic. Technical report, Omnet Associates, May 1986. Patent Number
4,587,627.

48. P. Paillier and I. Verbauwhede, editors. Cryptographic Hardware and Embed-
ded Systems – CHES 2007, volume 4727 of Lecture Notes in Computer Science.
Springer, 2007.

49. M. Paterson and L. J. Stockmeyer. On the number of nonscalar multiplications
necessary to evaluate polynomials. SIAM J. Comput., pages 60–66, 1973.

50. B. Preneel and T. Takagi, editors. Cryptographic Hardware and Embedded Sys-
tems, 13th International Workshop – CHES 2011, volume 6917 of Lecture Notes
in Computer Science. Springer, 2011.

51. E. Prouff and R. P. McEvoy. First-Order Side-Channel Attacks on the Permutation
Tables Countermeasure. In C. Clavier and K. Gaj, editors, CHES, volume 5747 of
Lecture Notes in Computer Science, pages 81–96. Springer, 2009.

52. E. Prouff and M. Rivain. Higher-Order Side Channel Security and Mask Refresh-
ing. In T. Johansson and P. Q. Nguyen, editors, Advances in Cryptology - EURO-
CRYPT 2013 - 32nd Annual International Conference on the Theory and Applica-
tions of Cryptographic Techniques, Athens, Greece, May 26-30, 2013. Proceedings,
volume 7881 of Lecture Notes in Computer Science, pages 142–159. Springer, 2013.

53. E. Prouff, M. Rivain, and T. Roche. On the practical security of a leakage resilient
masking scheme. In J. Benaloh, editor, CT-RSA, volume 8366 of Lecture Notes in
Computer Science, pages 169–182. Springer, 2014.

54. E. Prouff and T. Roche. Attack on a higher-order masking of the aes based on
homographic functions. In G. Gong and K. C. Gupta, editors, INDOCRYPT,
volume 6498 of Lecture Notes in Computer Science, pages 262–281. Springer, 2010.

55. E. Prouff and T. Roche. Higher-order glitches free implementation of the aes using
secure multi-party computation protocols. In Preneel and Takagi [50], pages 63–78.

56. S. Renner. Protection des Algorithmes Cryptographiques Embarqués. PhD thesis,
University of Bordeaux, 2014. Available at http://www.math.u-bordeaux1.fr/

~srenner/Thesis_Soline_Renner.pdf.

57. M. Rivain and E. Prouff. Provably secure higher-order masking of aes. In S. Man-
gard and F.-X. Standaert, editors, CHES, volume 6225 of Lecture Notes in Com-
puter Science, pages 413–427. Springer, 2010.

58. T. Roche and E. Prouff. Higher-order glitch free implementation of the AES using
secure multi-party computation protocols - extended version. J. Cryptographic
Engineering, 2(2):111–127, 2012.

59. A. Roy and S. Vivek. Analysis and improvement of the generic higher-order mask-
ing scheme of fse 2012. In Bertoni and Coron [5], pages 417–434.

60. A. Rudra, P. K. Bubey, C. S. Jutla, V. Kumar, J. Rao, and P. Rohatgi. Efficient
Rijndael Encryption Implementation with Composite Field Arithmetic. In Ç. Koç,
D. Naccache, and C. Paar, editors, Cryptographic Hardware and Embedded Systems
– CHES 2001, volume 2162 of Lecture Notes in Computer Science, pages 171–184.
Springer, 2001.

61. K. Schramm and C. Paar. Higher Order Masking of the AES. In D. Pointcheval,
editor, Topics in Cryptology – CT-RSA 2006, volume 3860 of Lecture Notes in
Computer Science, pages 208–225. Springer, 2006.

62. A. Shamir. How to Share a Secret. Commun. ACM, 22(11):612–613, Nov. 1979.

63. T. Shirai, K. Shibutani, T. Akishita, S. Moriai, and T. Iwata. The 128-bit block-
cipher clefia (extended abstract). In A. Biryukov, editor, FSE, volume 4593 of
Lecture Notes in Computer Science, pages 181–195. Springer, 2007.

64. B. Sunar and Çetin Kaya Koç. An efficient optimal normal basis type ii multiplier.
IEEE Trans. Computers, 50(1):83–87, 2001.

65. A. L. Toom. The complexity of a scheme of functional elements realizing the
multiplication of integers. Soviet Mathematics Doklady, 3:714–716, 1963. Available
at http://www.de.ufpe.br/toom/articles/engmat/MULT-E.PDF.

66. J. von zur Gathen. Efficient and optimal exponentiation in finite fields. Computa-
tional Complexity, 1:360–394, 1991.

67. J. von zur Gathen, A. Shokrollahi, and J. Shokrollahi. Efficient multiplication
using type 2 optimal normal bases. In C. Carlet and B. Sunar, editors, WAIFI,
volume 4547 of Lecture Notes in Computer Science, pages 55–68. Springer, 2007.

68. Y. Wang and X. Zhu. A fast algorithm for the Fourier transform over finite fields
and its VLSI implementation. IEEE Journal on Selected Areas in Communications,
6(3):572–577, Apr. 1988.

69. M. Wiener, editor. Advances in Cryptology – CRYPTO ’99, volume 1666 of Lecture
Notes in Computer Science. Springer, 1999.

