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Individual variability has clear effects upon the outcome of therapies and treatment approaches. The customization
of healthcare options to the individual patient should accordingly improve treatment results. We propose a novel
approach to brain interventions based on personalized brain networkmodels derived from non-invasive structural
data of individual patients. Along the example of a patient with bitemporal epilepsy, we show step by step how to
develop a Virtual Epileptic Patient (VEP) brain model and integrate patient-specific information such as brain con-
nectivity, epileptogenic zone andMRI lesions. Using high-performance computing, we systematically carry out pa-
rameter space explorations, fit and validate the brainmodel against the patient's empirical stereotactic EEG (SEEG)
data and demonstrate how to develop novel personalized strategies towards therapy and intervention.

© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

Personalized medicine proposes the customization of healthcare
with medical decisions, practices and products being tailored to the
individual patient. Individual variability has clear effects upon the re-
sponsiveness to treatment approaches, thus diagnostic testing is often
employed for selecting appropriate and optimal therapies based on
the context of a patient's genetic content or othermolecular and cellular
analysis. Historically personalized medicine uses heavily genetic
information, but finds more and more viability on the systems level.
Structural and functional neuroimaging play a key role and have already
contributed concrete diagnostic tools that are though mostly restricted
to neurology, e.g., such as presurgical evaluation of epilepsy or differen-
tial diagnosis of coma. Other domains such as psychiatry suffer from a
void of diagnostic tools for routine clinical practice.

One solution to this issue that has been proposed by several groups is
to link the interpretation of neuroimaging signals to computational brain
models (Deco et al., 2011; Friston et al., 2014; Jirsa et al., 2010; Stephan
and Mathys, 2014; Stephan et al., 2015). (Jirsa et al., 2002) proposed
the use of connectivity (later referred to as the connectome, Sporns et
al., 2005) derived from Diffusion-weighted MRI (dMRI) to constrain
. This is an open access article under
large-scale brain network models. An upsurge of connectome-based
model development followed with applications to the resting state
(Deco et al., 2009; Ghosh et al., 2008; Honey et al., 2007), aging
(Nakagawa et al., 2013), and pathologies such as schizophrenia (Deco
and Kringelbach, 2014) and lesions (Falcon et al., 2015). So far, modeling
has focused on reproducing the set of functionally active links between
brain areas (the so-called functional connectivity), but has been ham-
pered by the stationary nature of most connectivity-based metrics ap-
plied to validate the models (Hansen et al., 2014). In fact, most
meaningful situations and tasks in neuroscience pose themselves as
non-stationary processes including the resting state, as well as cognitive
and motor behaviors (Allen et al., 2012; Hansen et al., 2014). The same
applies to pathological behaviors also, of which seizure recruitment, the
focus of the current article, is only one example.

Here we argue that large-scale brain networkmodels maymake the
link between non-stationary network dynamics (such as seizure propa-
gation) and person-specific structural indicators including connectivity.
We take advantage of two recent developments in system neuroscience
that is adding Connectomics to Genomics in personalizedmedicine, and
using patient-specific connectomes in large-scale brain networks as
generative models of neuroimaging signals. To successfully make this
link, three requirements need to be satisfied:

1. Demonstration of systematic and reproducible variation of structural
connectomes across subjects (Bernhardt et al., 2013; Besson et al.,
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Table 1
SEEG electrode locations for the virtualized patient. The prime in the electrode name indi-
cates a left electrode. Often both internal and external structures are recordedwith the in-
ternal and external contacts respectively.

Name of the
electrode External structure Internal structure

B′ (left) Anterior middle temporal gyrus Hippocampus head
C′ (left) Posterior middle temporal gyrus Hippocampus tail
H′ (left) Superior temporal gyrus Thalamus
HH′ (left) Frontal lobe Hypothalamic hamartoma
OR′ (left) Middle frontal gyrus Orbitofrontal cortex
TB′ (left) Inferior temporal gyrus Entorhinal cortex
TP′ (left) Temporal pole Temporal pole
B (right) Lateral temporal cortex (T2) Hippocampus head
TP (right) Temporal pole Temporal pole
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2014). An obvious prerequisite is that dMRI sufficiently faithfully re-
constructs individual connectomes. Validation studies have demon-
strated good reliability of dMRI when state-of-the-art acquisition
and post-processing techniques are applied (Knösche et al., 2015;
Seehaus et al., 2013).

2. Existence of a link between individual structural and functional
variation. At the group level, patterns of whole-brain connectome
alterations were proven to distinguish left from right temporal lobe
epilepsy (Besson et al., 2014; Wirsich et al., 2016.). At the individual
level, resting state studies in healthy and pathological brains have
established the predictive value of structural connectivity (Falcon
et al., 2015; Finn et al., 2015).

3. Demonstration of explanatory power of connectome-based large-
scale brain models. (Deco et al., 2014) showed that the structure-
function relation is maximal when the global network dynamics ap-
proaches criticality. Further support of this link is provided by the
derivation of the well-known resting state network patterns from
connectome-based models in spontaneous conditions (Hansen
et al., 2014) and following stimulation (Spiegler et al., in press).
This link justifies clustering of patients into subpopulations of clinical
functional relevance.

There is thus evidence indicating that all three criteria may indeed
be satisfied, at least for certain cases including epilepsy and lesions
and careful choice of the validation metrics. Under these conditions a
virtualization strategy needs to be established, which is the objective
of this article, and systematically validated. We present our systematic
virtualization approach of an individual patient's brain along the exam-
ple of epilepsy spread and define the Virtual Epileptic Patient (VEP)
model, thereby identifying the key challenges along its way. All steps
can be performed within the neuroinformatics platform The Virtual
Brain (see http://www.thevirtualbrain.org; (Sanz Leon et al., 2013,
2015 Spiegler and Jirsa, 2013)) and its associated pipelines (Schirner
et al., 2015; Proix et al., 2016).

Our approach to build the VEP brain model comprises the following
steps:

i) Structural network modeling: non-invasive structural neuroim-
aging using MRI and dMRI allows the reconstruction of the
patient's individual brain network topography and connection
topology within the 3D physical space.

ii) Functional networkmodeling: Neural populationmodels are de-
fined on each network node. For epilepsy, our preferred model is
the Epileptor, which comprises variables for the fast discharges
and the slow energetic processes. Couplings between Epileptors
are defined using the patient's connectome, that is the complete
set of reconstructed white matter tracts

iii) Hypothesis formulation: Structural anomalies such as hamartoma,
pachygyria, etc. (as observed for instance in the MRI) are identi-
fied within the network. Non-invasive functional neuroimaging
further informs the expert clinician on the evolution of the
epileptic seizure and allows the formulation of first hypotheses
of the location of the Epileptogenic Zone (EZ), here defined as
the hypothetical area in the brain responsible for the origin
and early organization of the epileptic activity (Talairach and
Bancaud, 1966). The Propagation Zone (PZ) comprises areas that
are recruited during the seizure evolution, but are by themselves
not epileptogenic. Parameters (epileptogenicity, anomalies) are
set in the network model following the hypothesis on EZ
(Bartolomei et al., 2013).

iv) Evaluation of the VEP brain model: The patient's brain network
model is evaluated via simulation, data fitting and mathematical
analysis. It can be used to either “fingerprint” individual patient
brains by identifying a personalized parameter set through data
fitting or according to clinical criterion. Systematic computational
simulations will further generate parameter maps outlining the
zones of seizures and seizure freedom. Thesemaps will give guid-
ance of how to tunemodel parameters (patient charts). The result
of this evaluation predicts the most likely propagation patterns
through the patient's brain and allows the exploration of brain
intervention strategies.

In the following we demonstrate all steps necessary to build a VEP
model for a particular patient. We simulate and analyze the VEP
model. In particular we show parametric analyses of the VEP model
and fit it against functional stereotactic EEG (SEEG) data. Finally we
discuss the limits of its interpretation and point out future avenues for
VEP modeling.

Materials and methods

Patient data

The patient is a right-handed 41-year-old female initially diagnosed
with bitemporal epilepsy. The patient underwent comprehensive
presurgical evaluation, including clinical history, neurological examina-
tion, neuropsychological testing, structural and diffusion MRI scanning,
EEG and stereotactic EEG (SEEG) recordings along with video monitor-
ing. Nine SEEG electrodes were placed in critical regions (see Table 1)
based on the presurgical evaluation. SEEG electrodes comprise 10 to
15 contacts. Each contact is 2 mm of length, 0.8 mm in diameter and
is 1.5 mm apart from other contacts. Brain signals were recorded
using a 128-channel Deltamed™ system (sampling rate: 512 Hz, hard-
ware band-pass filtering: between 0.16 and 97 Hz).

Structural and diffusion MRI were acquired with a Siemens
Magnetom Verio 3 T MR-Scanner Siemens, Erlangen, Germany).
T1-weighted images were acquired with a MPRAGE-sequence (TR =
1900 ms, TE = 2.19 ms, voxel size =1 × 1 × 1 mm3, 208 slices). The
diffusion acquisition used a DTI-MR sequence (angular gradient set of
64 directions, TR = 10.7 s, TE = 95 ms, 70 slices, voxel size =
2 × 2 × 2 mm3, b-value = 1000 s/mm2).

Structural reconstruction

The large-scale connectivity and the cortical surface of the patient
were reconstructed using SCRIPTS (available on GitHub: https://
github.com/timpx/scripts), a processing pipeline tailored for TVB
(Proix et al., 2016). The pipeline uses FreeSurfer (Fischl, 2012), FSL
(Jenkinson et al., 2012), remesher (Fuhrmann et al., 2010), and MRtrix
(Smith et al., 2013, 2012; Tournier et al., 2007) to process T1 and
dMRI scans. The brain is divided in several regions according to a
parcellation template, which is used for whole brain tractography to
develop the connectivity (number of streamlines) and delay (length of
streamlines) matrices. Cortical and subcortical surfaces are reconstruct-
ed and downsampled, along with a mapping of vertices to correspond-
ing region labels. All processed data are formatted to facilitate import
into TVB.

http://www.thevirtualbrain.org
https://github.com/timpx/scripts
https://github.com/timpx/scripts


Fig. 1. Spatial distribution map of epileptogenicity. Isolated nodes outside of the network
are epileptogenic for the critical value x0C=−2.05. When embedded into the network,
the nodes in the EZ (red) have a high excitability value (x0Nx0C+0.4), whereas the
nodes in the PZ (blue) have elevated excitability (x0C+0.4Nx0Nx0C). Finally, all other
nodes (white) are not epileptogenic (x0bx0C). EZ: left hippocampus, right hippocampus,
left hypothalamus, right hypothalamus. PZ: left parahippocampal, left temporal pole, left
parahippocampal, brainstem, left thalamus proper.
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Network node and neural mass model

We use the Epileptor (Jirsa et al., 2014) as a network node model.
The Epileptor comprises five state variables acting on three different
time scales. On the fastest time scale, state variables x1 and y1 account
for the fast discharges during the seizure. On the slowest time scale,
the permittivity state variable z accounts for slow processes such as
variation in extracellular ion concentrations (Heinemann et al., 1986),
energy consumption (Zhao et al., 2011), and tissue oxygenation (Suh
et al., 2006). The system exhibits fast oscillations during the ictal state
through the variables x1 and y1. Autonomous switching between
interictal and an ictal states is realized via the permittivity variable z
through saddle-node and homoclinic bifurcation mechanisms for the
seizure onset and offset, respectively. The switching is accompanied
by a direct current (DC) shift, which has been recorded in vitro and
in vivo (Ikeda et al., 1999; Jirsa et al., 2014; Vanhatalo et al., 2003). On
the intermediate time scale, state variables x2 and y2 describe the
spike-and-wave electrographic patterns observed during the seizure,
as well as the interictal and preictal spikes when excited by the fastest
system via the coupling g(x1). The Epileptor equations read as follows:

_x1 ¼ y1− f 1 x1; x2ð Þ−zþ I1

_y1 ¼ 1−5x21−y1

_z ¼ 1
τ0

4 x1−x0ð Þ−zð Þ
_x2 ¼ −y2 þ x2−x32 þ I2 þ 0:002g x1ð Þ−0:3 z−3:5ð Þ

_y2 ¼ 1
τ2

−y2 þ f 2 x1; x2ð Þð Þ

where

f 1 x1; x2ð Þ ¼ x31−3x21 if x1b0
x2−0:6 z−4ð Þ2

� �
x1 if x1≥0

(

f 2 x1; x2ð Þ ¼ 0 if x2b−0:25
6 x2 þ 0:25ð Þx1 if x2≥−0:25

�

g x1ð Þ ¼
Zt
t0

e−γ t−τð Þx1 τð Þdt

and x0=−1.6;τ0=2857;τ2=10; I1=3.1; I2=0.45;γ=0.01. The
parameter x0 controls the tissue excitability, and is epileptogenic
triggering seizures autonomously, if x0 is greater than a critical value,
x0C = −2.05; otherwise the tissue is healthy. I1 and I2 are passive
currents setting the operating point of the Epileptor. The excitability pa-
rameter x0 and its spatial distribution are the target of all parameter-
fitting approaches described further on. The LFP is the directed sum of
discharges, –x1 + x2. Detailed bifurcation analyses of these parameters
have been performed by El Houssaini et al. (2015).

Definition of the network and the epileptogenic zone

We couple the network nodes by permittivity coupling (Proix et al.,
2014), which quantifies the influence of neuronal fast discharges x1j of a
remote region j on the local slow permittivity variable of region i.
Changes in ion homeostasis are influenced by both local and remote
neuronal discharges via a linear difference coupling function, which
quantifies the deviation from the interictal stable state as a perturbation
perpendicular to the synchronization manifold. The linearity is justified
as a first order approximation of the Taylor expansion around the
synchronized solution (Proix et al., 2014). Then permittivity coupling
further includes the connectome Cij, a scaling factor G, which both are
absorbed in Kij = GCij. The permittivity coupling from area j to area i
reads∑
N

j¼1
Kij � ðx1; jðt−τijÞ−x1; jðtÞÞ, where τijdenotes the signal transmis-

sion delay. Herewe neglect the signal transmission timedelays, because
we do not consider synchronization effects, but rather only epileptic
spread, which is determined by the slow dynamics of the permittivity
coupling. Mathematically, then the full VEP brain model equations
read as follows:

_x1; j ¼ y1;i− f 1 x1;i; x2;i
� �

−zi þ I1;i

_y1;i ¼ 1−5 x1;i
� �2−y1;i

_zi ¼ 1
τ0

4 x1−x0ð Þ−zi−
XN
j¼1

Kij � x1; j−x1;i
� �0

@
1
A

_x2;i ¼ −y2;i þ x2;i− x2;i
� �3 þ I2:i þ 0:002g x1;i

� �
−0:3 zi−3:5ð Þ

_y2;i ¼
1
τ2

−y2;i þ f 2 x1;i; x2;i
� �� �

To define the EZ, we defined a spatial map of epileptogenicity where
each node was characterized by an excitability value x0, which quan-
tifies the ability of an Epileptor to trigger a seizure. For an isolated
Epileptor, G = 0, the Epileptor can trigger seizures autonomously if
x0 N x0c and is referred to as epileptogenic; inversely if x0 b x0c, the
Epileptor does not trigger seizures autonomously and is not epilepto-
genic. The spatial map of epileptogenicity comprises the excitability
values of the EZ, the PZ and all other regions (see Fig. 1). Note that
only nodes in the EZ discharge autonomously while embedded in the
network (for G ≠ 0). For the simulations, the different regions were set
in the EZ or the PZ according to the clinician expertise (see Table 2).

Forward solutions

The functional data available for this patient includes SEEG, fMRI and
EEG; however, in the following,we focus on the SEEG data as it plays the
largest role in the clinical analysis. Like other modalities, the SEEG
measurements can be modeled using a forward solution that describes
the contribution of each source dipole to each contact's measurement.
As with M/EEG, the patient's anatomy, specifically the so-called bound-
ary elements of the brain-skull, skull-scalp and scalp-air interfaces may
be taken into account, however unlike in M/EEG, boundary effects are
usually insignificant and can be ignored for all contacts but those very
close to the boundaries (Gramfort et al., 2010). We compute the poten-
tial for a point dipole in a homogeneous medium following (Sarvas,



Table 2
Excitability values x0=x0C+Δx0 are expressed via their deviations Δx0from the critical
value x0C=−2.05. Positive Δx0 indicates increased excitability. These excitability values
are used to simulate the time series shown in Fig. 5.

Name of the region Δx0 Zones

Right hippocampus 1.3 EZ
Left hippocampus 0.4 EZ
Left hypothalamus 0.4 EZ
Right hypothalamus 0.4 EZ
Brain stem 0.31 PZ
Left parahippocampal 0.27 PZ
Left thalamus 0.24 PZ
Left temporal pole 0.16 PZ
Other regions −0.2 Other regions
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1987), ignoring the effect of source orientation, given that it is largely
unknown for a given epileptic source and cannot be captured reliably
at the resolution of a region-level brain network model. Dropping this
factor from the lead field has, approximately, a spatial smoothing effect
in cases where multiple areas contribute similarly to a given electrode,
however given the sparsity of the lead field, the vast majority of
electrodes effectively measures activity of a single area.

Anomalies in the MRI

Structural anomalies will require their integration into the model.
Here we included a hypothalamic hamartoma in our virtualization via
a modification of the local connectivity Kij=GhypCij of the hypothala-
mus. We delineated the hamartoma in the MRI scan and tractography
and used the hypothalamic hamartoma as a seed region of interest to
reconstruct its local connectivity. The local connectivity strength is
scaled up parametrically by a scalar factor Ghyp to quantify the effect of
the hamartoma without changing its local connection topology.

Data fitting

The target for all data fitting is the excitability parameter x0, which
may be set either to clinical criterion (see the Virtual Brain based
simulations, EZ and PZ section) or estimated using more automated
approaches. Obtaining such estimates of the parameters of the network
model, given the available functional data is performed within a
Bayesian framework, using a reduced Epileptor model (Proix et al.,
2014) and reduced functional data set for the fitting. The SEEG data
are windowed and Fourier transformed to obtain estimates of their
spectral density over time (Bricolo et al., 1978). Then SEEG power
above 10 Hz is summed to capture the temporal variation of the
fast activity. These time series are corrected to a preictal baseline,
log-transformed and linearly detrended over the time window
encompassing the seizure (Makeig, 1993). Contacts are selected,
which present greater high-frequency activity than their neighbors on
the same electrode. Given that, contrary to M/EEG, the SEEG lead field
is very sparse, three nodes per contact are used in the network model.
Other nodes are not recruited and rest at their fixed points. We approx-
imate this effect, in thefitting only, through a constant sumover the cor-
responding elements of the structural connectivity matrix. These
elements correspond to areas, which neither participate in the seizure,
nor have nearby depth electrodes and are thus observable only through
network effects, whose hidden states prove uninformative and unreli-
able in their estimation. Next, we use an observation model that
incorporates the SEEG forward solution described above, under the as-
sumption that the x1 variable describes fluctuations in the log power
of high frequency activity, predicting sensor log power, with normally
distributed observation error.

Hidden states in Bayesian modeling represent states of the genera-
tive model (variables, parameters) that are not directly observable.
Uninformative priors are placed on the hidden states' initial conditions,
while their evolution follows a Euler-Maruyama discretization of the
corresponding stochastic differential equations with linear additive
normally distributed noise. Uninformative priors are also placed on
the excitability parameter per node x0 observation baseline power,
scale and noise. Finally the length of the seizure is also allowed to freely
vary to match that of a given recorded seizure. Structural connectivity
specifies a gamma prior on the connectivity used in the generative
method. This model is implemented using Stan, a software for Bayesian
inference, which implements both Hamiltonian Monte-Carlo and auto-
matic variational inference algorithms for generic differential probabil-
ity models (Hoffman and Gelman, 2011; The Stan Development Team,
2015). This approach takes advantage of the efficiency of the variational
algorithm, which constructs an approximate proxy distribution on the
true posterior optimized via stochastic gradient ascent (Kucukelbir
et al., 2015).

Numerical methods

To simulate the system of stochastic differential equations, we used
anEuler-Maruyama integration schemewith an integration step of 0.05.
Additive white Gaussian noise was introduced in the variables x2 and y2
with mean 0 and variance 0.0025 (Jirsa et al., 2014). Other variables ex-
perienced only little or no noise due to their high sensitivity. 256 time
steps are equivalent to one second of real time to obtain realistic
frequency ranges, seizure lengths, and matched intracranial EEG
sampling frequency. Whenever specified in the Results section, we
used a bandpass Butterworth filter of order 5, with cut-off frequencies
of 0.16 Hz and 97 Hz at −3 dB (Fig. 2D). The filter is identical to the
one used to process intracranial EEG signals (see (Bartolomei et al.,
2008) for processing methods of intracranial EEG signals). Finally, for
the stimulated seizure, a rectangular function in time was applied on
the z variable of the stimulated region (amplitude: 0.5, length: 2 s).

Results

Empirical patient data

The patient was diagnosed with bitemporal epilepsy and experi-
enced simple and secondary generalized seizures, which were accom-
panied by déjà-vu hallucinations, associated with palpitations,
horripilation, and frisson sensations. Fixed gaze, chewing up and pallor
were observed during the seizure. In the post-critic period the patient
showed temporal disorientation, repetition of the same questions and
retrograde amnesia during one week. The MRI examination revealed a
hypothalamic hamartoma. Surface EEG recordings revealed interictal
spikes and indicated a bias towards the left hemisphere. Based on the
presurgical evaluation, seven SEEG electrodes were implanted in the
left hemisphere, and two in the right hemisphere. One electrode was
implanted in the hypothalamic hamartoma. Fig. 2 shows the implanta-
tion sheme in the left column, color-coding the SEEG electrodes. During
two weeks of continuous SEEG recordings, we recorded 6 simple sei-
zures localized in the right hippocampus, and two complex seizures
starting in the right hippocampus and then recruiting the left hippo-
campus, the left temporal lobe and the hypothalamic hamartoma.
Representative seizure propagation patterns are shown in Fig. 2.

Connectivity patterns

We reconstructed the large-scale connectivity of the patient, in
particular the weight and tract length matrices, using the pipeline de-
scribed in the Structural reconstruction section. The tract length matrix
divided by the signal transmission speed defines the time delays. The
two matrices (see Fig. 3A and B) establish the space-time structure of
the coupling (Jirsa, 2009) and allow a full virtualization of the patient's
brainmodel. Fig. 3C shows the location of the hypothalamic hamartoma
and 3D the reconstructed streamlines from the hypothalamus, which



Fig. 2.Different types of epileptic seizures are recordedwith SEEG electrodes in this patient. (A) Simple seizure. The simple seizures started in the right hippocampus (red zone on the left
picture, channel B1–2 on the SEEG time series) and remained restricted to this area. (B) Complex seizure. The complex seizures started in the right hippocampus (channel B1–2) before
spreading to the contralateral hippocampus (channel B′1–2) and further spreading in the left temporal lobe. (C) Stimulated seizure. After stimulating the left hippocampus (channel
C′3–4), a seizure was triggered, spreading to the remainder of the left temporal lobe, but not propagating to the right hemisphere. In particular, the hypothalamic hamartoma was
recruited.
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we used to mimic the hypothalamic hamartoma and differentially
weigh its influence on the network dynamics.

Virtual Brain based simulations, EZ and PZ

Each node of the network was occupied with an Epileptor, a neural
mass model able to reproduce epileptic seizures dynamics (Jirsa et al.,
2014). For the Epileptor in isolation (i.e. no network coupling), if
x0Nx0C, the neuralmass is above threshold: the Epileptor can trigger sei-
zures and is said epileptogenic, and inversely if, x0bx0C, the Epileptor
does not trigger seizure and is said not epileptogenic. When embedded
into a network, each network node's capacity of triggering seizures will
then depend on its excitability and connectivity. The nodes were con-
nected via permittivity coupling, which acts on a slow time scale and
allow the spread of the seizure through the network by recruiting re-
gions not in the EZ. In this section we set the excitability parameters
for EZ, PZ and all other regions according to clinical criteria comprising
(i) regions involved in the seizure; (ii) seizure length; (iii) length of
time delays before recruitment of other regions; (iv) seizure frequency
in each region. These criteria are used clinically in standard-of-care to
evaluate the epileptogenicity of brain regions (Bartolomei et al., 2008,
Proix et al., 2014). The spatial distribution of excitability was heteroge-
neous across the network (see Fig. 1), with high value of excitability for
regions in the EZ (x0≥x0C+0.4), smaller excitability values for regions
in the PZ (x0C+0.4Nx0≥x0C), and other nodes not epileptogenic
(x0bx0C).
Once EZ and PZ were defined, a systematic parameter space explora-
tion was performed by varying the following parameters: (i) the global
coupling strength G, which is a scalar factor multiplying the whole
connectivity matrix, (ii) the local coupling strength Ghyp of the hypothal-
amus, which is a scalar factor multiplying the contribution of the
hypothalamus to the connectivity matrix, (iii) the excitability values
x0
right hippocampus of the right hippocampus, (iv) the excitability values
x0
Other regions of the regions not recruited in the propagation zone. The

excitability values of the other regions in the EZ and the PZ were
fixed (see Table 2). To describe the network behavior in the thus four-
dimensional parameter space, we use the clinical criteria i) through
iv) for seizure quantification. - Fig. 4 shows one of these quantifiers,
the frequency of recruitment for three different regions in a seizure
over a fixed simulation time as a function of the four parameters G,
Ghyp, x0right hippocampus, and x0

Other regions.
Fig. 4 illustrates an important deliverable of the VEP brain model,

that is the results of the systematic parameter space explorations.
These navigation charts offer the clinician a tool for decision-making
and hypothesis building. For instance, Fig. 4 demonstrates for this par-
ticular patient that changes of excitability in the EZ regions show fairly
little influence on the number of seizures in the VEP brain model,
whereas reduction of excitability outside of EZ/PZ regions is linked to
seizure reduction in the left thalamus and hypothalamus, and to a lesser
extent in the left parahippocampus (Fig. 4A and B). A decrease of left hy-
pothalamic connectivity will always cause an increase of seizures in the
left hypothalamus, but not the left thalamus. The only means of



Fig. 3. (A) Structural connectivitymatrix. (B) Tract lengthsmatrix. (C)MRI image showing the hypothalamic hamartoma. (D) Streamlines obtained by seeding from thehypothalamus. The
direction of the streamline is indicated using a color code (red: left-right, blue: superior-inferior, green: anterior-posterior).
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increasing the likelihood for seizures in the left thalamus is the increase
of the scaling of global coupling G, while maintaining high values of hy-
pothalamic connectivity (Fig. 4A). For all of the above scenarios, the left
parahippocampus shows fairly high seizure numbers with one excep-
tion, that is high hypothalamic connectivity and low overall strength
of global coupling G (Fig. 4C). These discussions demonstrate that the
various parameter manipulations have inverse and non-trivial effects
upon the seizure numbers in different brain regions. Changes in param-
eters are directly linked to therapeutic network interventions, though
the link is not always evident, since the variation of a network parame-
ter may find different realizations in clinical practice. For instance,
the excitability of a brain region in the network node model is a
key parameter, which is physiologically linked to variables such as
balance of excitation and inhibition, local synaptic efficacy, extracel-
lular ionic concentrations, or glial activity. Alterations of these vari-
ables will result in excitability changes in the tissue, and thus in
the desired network effects predicted by the VEP brain model;
however, they may also influence other network parameters within
the model. This non-bijective mapping between model and physio-
logical parameters thus poses a clinical challenge in terms of identi-
fication, but also allows the exploration of multiple therapeutic
avenues tomanipulate amodel parameter and exploit the prognostic
predictions of the VEP.

We selected a representative set of parameters (G=10, Ghyp=10,
Δx0right hippocampus=1.3 , Δx0Other regions=−0.2; see red dot in Fig. 4)
matching the patient's seizure with regard to the clinical criteria
i) through iv). We simulated the brain network model over a period of
Fig. 4. Parameter space exploration for (a) left thalamus, (b) left hypothalamus, (c) left fusiform
value x0C=−2.05. PositiveΔx0indicates increased excitability. The color indicates the number
of (i) global coupling strength g (y axis), (ii) local coupling strength for the hypothalamic conn
row is a different value), (iv) the excitability Δx0Other regions of the regions not recruited in the p
chosen for the simulation.
20 seizures and computed the forward solution for the SEEG electrodes
(see Numerical methods). Simple seizures (Fig. 5A) and complex sei-
zures (Fig. 5B) were generated with similar regions recruited compared
to the real SEEG recordings (see Fig. 1A and B). We also stimulated the
left hippocampus (Fig. 5C), and observed a propagation pattern in the
left temporal lobe, similar to the SEEG recordings (Fig. 2C).

Fig. 6A shows the spatial extent of the EZ and the PZ such as estimat-
ed by clinician expertise. Fig. 6B shows the spatial extent of the
excitability zone expressed through the parameter distribution of
x0=x0C+Δx0, here illustrated via its deviations Δx0 from the critical
value x0C=−2.05. These parameter settings are used for the simulation
of Fig. 5 plotted over an MRI view. Fig. 6C shows the comparison of the
distribution of excitabilities found by fitting the model to the SEEG data
(as developed in the Data fitting section). Data fitting identifies a bilat-
eral mesial temporal EZ, a result well in agreement with the clinical
interpretation.

Data fitting

Inversion of the brain network model described above, with the pri-
mary goal of obtaining the spatial distribution of x0 values, provides a
set of samples from the posterior distribution of the model parameters
given the data. The following results were obtainedwith the hamartoma
included in the analysis. Fig. 7 shows the results of inversion on a section
of SEEG containing a complex seizure. Fig. 7A shows in solid black lines
the time course of the high-frequency power for two contacts which il-
lustrate the start and interhemispheric propagation of the seizure. In
cortex. Excitability values x0=x0C+Δx0 are expressed via their deviations from the critical
of recruitments of the region in the seizure over a simulation of fixed length in dependence
ections Ghyp (x axis), (iii) the excitability Δx0right hippocampus of the right hippocampus (each
ropagation zone (each column is a different value). The red point indicates the parameter
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Fig. 5. Simulation of the different types of epileptic seizures for this patient. (A) Simple seizure. The simple seizure started in the right hippocampus (red zone on the left picture, channel
B1–2 on the SEEG time series) and remained restricted to this area. (B) Complex seizure. The complex seizures started in the right hippocampus (channel B1–2) before spreading to the
contralateral hippocampus (channel B′1–2) and further spreading in the left temporal lobe. (C) Stimulated seizure. After stimulating the left hippocampus (channel C′3–4), a seizure was
triggered, recruiting the left temporal lobe.
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order to assess the hidden state estimation, the hidden states are used to
generate corresponding predictions for the SEEG power via the observa-
tionmodel described in themethods. The blue shading covers the 5th to
95th percentiles of the estimates. While the full Epileptor model can re-
produce also the high-frequency states (spike-wave, fast oscillations),
our choice of observation function makes the inference more tractable,
at the loss of lumping these two states together under the observation
function.

Fig. 7B shows the estimates of excitability for each network node in-
cluded in the analysis. Region names are abbreviated as follows: CLE, left
Fig. 6. Clinical interpretation of the distribution of excitability. (A) Clinician's prediction of EZ (
simulations: (B) shows the parameter set identified in Fig. 6, (C) show the distribution of excit
entorhinal cortex; CLLO, left lateral orbitofrontal; CLMT, left middle
temporal; CLST, left superior temporal; CLTP, left temporal pole; CLTT,
left transverse temporal; LP, left pallidum; LH left hippocampus; LA,
left amygdala; RH, right hippocampus; RA, right amygdala; LHyp, left
hypothalamus; RHyp, right hypothalamus. Posterior densities for the
excitability parameter x0 are illustrated by so-called violin plots,
where the probability is proportional to the thickness of the yellow
band. Extrema are shown by red ticks. The node corresponding to the
right amygdala (RA) corresponds to the B2 SEEG electrode where this
seizure starts, shows a high estimate for excitability. The left entorhinal
in yellow) and PZ (in red) (B) and (C) show two distributions of excitability as used in the
ability as found by the data fitting. The color bar is common for (B) and (C).



Fig. 7. Inversion of network model on complex seizure: (A) shows the true time course in
solid black of high-frequencypower of two SEEG channels, B2where the seizure starts and
TP’2 where the seizure propagates. Shown in blue is the predicted SEEG power based
estimates of hidden states to which the observation model is applied, shaded to cover
5th to 95th percentiles. (B) Violin plots of the estimated densities of the x0 parameter
for nodes included in the analysis. Region RA or “Right Amygdala” corresponds to SEEG
electrode B2, where the seizure starts, region CLE or left entorhinal cortex corresponds
to SEEG electrode TP’2, where the seizure propagates. Region names' abbreviations are
provided in the text.
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cortex (CLE in Fig. 7B) corresponds to SEEG electrode TP’2, where the
seizure can be seen to propagate in Fig. 7A. This node's x0 estimate is
ambiguous, as the threshold for epileptogenicity in the model is
x0=−2.1. As inference generates not only point estimates, i.e. single
values for parameters, but a distribution of the parameter values as
shown in the violin plots, it is expected that the data confirm certain hy-
potheses and not others. Likewise, inference can generate informative
estimates with small variance or uninformative estimates with high
variance, depending on data. It is generally considered an advantage
of Bayesianmethodology that data,which do not inform about a param-
eter, provide uninformative results. The important conclusions are that
the propagation of the seizure between areas is correctly reconstructed
and that informative estimates can be obtained for the EZ (here, the
right amygdala estimate is informative). Nevertheless, the estimates
are generally informative, discriminating nodes as epileptogenic or
not, but in some cases run into the upper or lower bounds placed on
the uninformative prior on x0 in (−4 to−1).
Discussion

Despite the heavy sequelae frommedically refractory epilepsy, there
is a potentially curative procedure - surgical resection of the EZ (Najm
et al., 2006; Rosenow and Lüders, 2001). However, to be effective, this
procedure depends on correct identification of the EZ,which is often un-
clear (Bulacio et al., 2012). A comprehensive pre-surgical evaluation is
necessary to pinpoint the EZ aswell as to identify the risks of neurologic
morbidity such as visual or speech impairment (Wyllie et al., 1988;
Jayakar et al., 1994; Adelson et al., 1995; Jayakar, 1999). Various non-
invasive and invasive methods are used. Non-invasive techniques
include scalp EEG and video-EEG monitoring, neuropsychological
tests, speech-language studies, and brain imaging (MRI, PET, Ictal
SPECT). Of these methods, to this date the highest predictor of surgical
success is identification of a single visible MRI lesion (Bulacio et al.,
2012; Jeha et al., 2007; Lopez-Gonzalez et al., 2012). In patients with
non-lesional MRI, localization and surgical success in seizure control
are even more challenging (Jeha et al., 2007) Despite the advances in
imaging technologies, a significant number of surgical patients with
focal epilepsy (~25%) continues to have non-lesional MRIs (Jeha et al.,
2007; Widdess-Walsh et al., 2007), which is a problem calling for
novel approaches.
We propose such a novel approach to brain interventions based on
large-scale brain network based models that are derived from non-
invasive structural data of individual patients. Here we have shown
step by step, along the example of a patient with bitemporal epilepsy,
how to create a virtual patient brain network model. The Virtual
Epileptic Patient (VEP) model provides the perfect test bed for clinical
hypothesis testing of questions linked to network-based mechanisms.
Questions outside of this frameworkwill bemore difficult or impossible
to address by our macroscopic approach and are the focus of other ef-
forts (Markram et al., 2015) emphasizing the microscopic approach.
The latter approaches are a promising avenue for the future and will
shed light on the physiological mechanisms and signaling pathways
involved in pathologies; our macroscopic approach is feasible today
and relates directly to the signals measured by modern brain imaging
technologies.

Large-scale brain network models in general, and the VEP brain
model in particular, have three critical components, network connectiv-
ity, neural mass model and MRI lesions. First, procedures to reconstruct
connectivity from dMRI data nowadays reliably extract structural net-
work connectivity with high anatomical precision (Johansen-Berg and
Berhens, 2009) and efforts are on the way to develop more advanced
methods proving robust and reproducible on subject and group levels
(Besson et al., 2014). Thus there is hope that patient specific con-
nectomes may soon enter in clinical routine use. Second, neural mass
models are placed at the network nodes and determine the dynamic na-
ture of the interactions. Neural mass models need not necessarily to be
derived from biophysical mechanisms, but rather need to capture the
dynamic repertoire of the neural population. It is in this dynamical
sense that they have to be biophysically realistic, not in the traditional
bottom-up causal sense. In epilepsy, the Epileptor is a neural mass
model that has been derived purely based on mathematical reasoning.
It provides a complete taxonomy of epileptic seizures including onset,
offset and seizure evolution characteristics. Once a seizure type has
been determined for a particular patient, then the taxonomy by (Jirsa
et al., 2014) offers a mathematical formulation of a generative model
that can be used as a network node in the VEPmodel. Third, integration
of MRI lesions into the VEPmodel is possible, but not evident due to the
challenge in translating the lesion into model parameters. Reasonable
candidates are excitability and local connectivity, because localized tis-
sue abnormalities are likely to alter these two parameters in the context
of our network perspective. MRI lesions provide a spatial map of altered
parameters that thus enter into the VEP model and affect the network
dynamics. The emergent dynamic effects, that are the seizures in the
current context, will crucially depend on the interplay between net-
work node model (Epileptor), patient specific structural connectivity
(from dMRI), and spatial maps of excitability (EZ, PZ) and MRI lesions.

Translating the VEPmodel to the patient bedwill require then quan-
tification of themodel outcomes through parameter space analyses and
data fitting. In combination, these two will allow systematic discovery
and development of novel therapies and interventions. For the specific
case of our patient, we find excellent correspondence of the spatiotem-
poral seizure evolution between simulation and empirical data. (Proix
et al., under review, 2016) demonstrate a good correlation (N=15 pa-
tients) between (non-invasive) VEP-based prediction of EZ/PZ and the
clinical expert's opinion based on (invasive) SEEG analysis. Their analy-
sis shows that the use of individual connectomes derived from a
patient's DTI improves the prediction significantly. These results are
consistent with structural differences between dMRI measures across
patients, showing reduced fractional anisotropy (Ahmadi et al. 2009;
Bernhardt et al., 2013) and structural alterations in the connectome of
epileptic patients (Bonilha et al., 2012; DeSalvo et al., 2014, Besson
et al., 2014; Wirsich et al., 2016). Dramatic structural changes may be
induced by lesions or tumors changing the topology of the structural
network and thusmay alter the dynamical properties of seizure recruit-
ment. We demonstrated this in Fig. 4, where the inclusion of the hypo-
thalamic lesionmodifies the spatial recruitment pattern. For the present



386 V.K. Jirsa et al. / NeuroImage 145 (2017) 377–388
patient and one fixed parameter set, the VEPmodel captures both, simple
and complex seizure spread (Fig. 5A and B), as well as the responses to-
wards stimulation (Fig. 5C). The spatiotemporal organization of EZ and
PZ matches both empirical data (Figs. 2 and 6A) and simulations (Fig.
5). The distribution of excitability values (Fig. 6B and C) is not trivially
linked to the recruitment of PZ. This becomes evident when the associat-
ed parameter spaces are considered (Fig. 4). As local connectivity of the
hypothalamus increases, the number of seizures reduces generally in
the left thalamus, left hypothalamus and left parahippocampus, if the
overall coupling strength G is sufficiently large. This stabilization appears
to be predominantly a network effect due to the stabilization through the
residual network. As the thalamus iswell connected to the hypothalamus,
an increase of Ghyp destabilizes the thalamic equilibrium, but reciprocally
stabilizes the hypothalamus. This reasoning applies to all regions directly
connected to the hypothalamus, identifying a prominent local network in
this patient's seizure dynamics. Increasing the excitability in the residual
network (other regions, Fig. 4A) alters the parameter space of the thala-
mus such that seizure propensity is indeed minimal for small global con-
nectivity G, but forces the parahippocampus and hypothalamus into a
high-seizure regime, thus does not provide a viable option for seizure re-
duction of the entire brain network. Hence the best strategy to avoid com-
plex seizures and seizure propagation in this patient remains the
navigation into the region of the parameter space with increased global
coupling G and local hypothalamic coupling Ghyp. This therapeutic option
is valid for the patient's present connectome, which leaves these parame-
ter spaces intact. Alternatively, surgical interventions are a means of ma-
nipulating the connectome and, subsequently, reshaping the parameter
spaces with the target of increasing the (blue) regions of low seizure pro-
pensity in Fig. 4.

To improve surgical outcome the VEP approach can make at least
three contributions: first, it provides a non-invasive approach towards
the evaluation of the best placement of the SEEG electrodes. This is
accomplished via the evaluation of the hypothesis on EZ as based on
presurgical evaluation. Because VEP models are generative models
capable of realistically producing clinically usednon-invasive imaging sig-
nals (EEG,MEG, fMRI), different EZ hypotheses can be confronted directly
against imaging data. Second, following invasive SEEG exploration, the EZ
hypotheses can be improved, fit to the data and further tested via stimu-
lation paradigms aswe demonstrated here. Systematic stimulation of tar-
get zones in the VEP network aids in further sharpening of the delineation
of the EZ and in achieving a better understanding of the overall functional
organization of the network. Third, surgical strategies can be systemati-
cally testedwithin theVEPmodel. So far traditional approaches to surgery
apply one focal resection or ablation at the hypothesized EZ, based on the
dogmatic concept that medically refractory epilepsy is ultimately a focal
disease. A large unknown remains the size, the number and the specific
anatomical location of possible resections or thermal lesions designed to
modulate large-scale epileptic networks. VEP models allow not only to
parametrically vary the size of the resection focus, but also to employ
multiple lesions at different locationsmaking thus full use of the network
nature of the VEP model. Technically this is possible nowadays:
stereotactic-guided laser technology, for instance, permits themodulation
of large-scale networks by allowing the placement of multiple lesions in
key components of previously mapped epileptic networks.

Key to the success of this approach will be the VEP model fitting
against empirical data. This approach identifies the individual VEP in
its own personalized parameter space. Fitting high-dimensional non-
linear models to data remains, however, a general challenge for
machine learning techniques. The same nonlinear VEP model may gen-
erate dynamics leading to an infinite number of different realizations,
i.e. evolutions in time, possibly multistability with strong dependence
on initial conditions and stochastic contributions (noise), as well as ex-
ternal perturbations in the case of stimulation. In principle,model inver-
sion of such a generativemodel requires extensive sampling of the state
space and long observation times, both of which are requirements that
cannot be easily satisfied inmost clinical applications. Data fitting is also
renderedmore tractable by ignoring timedelays in interareal communi-
cation. This is justified by our focus on seizure propagation and its cou-
pling via the slow permittivity variable. By this approach, we lose
however the ability to predict the spatial synchronization patterns on
the time scale of fast oscillations. The VEP brain model under this ap-
proximation is comparable to firing rate-based models, which have
been successfully used in connectome based brain network modeling
of the resting state (Deco et al., 2011). These models typically also ne-
glect the signal transmission delays with the justification that the oscil-
lations are not considered explicitly, but only through fixed-point
models of firing rate.

In VEP models we can take advantage of pathology and patient
specific constraints on model structure and priors that enable clinically
useful estimations. Here we used the patient's structural connectivity
and MRI lesion, adapting it based on clinical, anatomical and functional
information specific to this patient, and applied an inversion of the
model to one of the patient's complex seizures. We obtained plausible
time courses for network activity and spatial distribution of the
epileptogenicity parameter. Additional constraints to themodel dynam-
icsmay also be derived from statistical descriptions of the neuroimaging
data in the form of neuromarkers. In the case of epilepsy, examples of
such neuromarkers would include the recruitment probabilities and
associated time delays, functional connectivity, and epileptogenicity
indices (Bartolomei et al., 2008) among others.

To our knowledge no other computational approaches towards the
delineation of the EZ exist with one notable exception. (Burns et al.,
2014) used graph theoretical metrics, in particular centrality, applied to
intracranial EEG (iEEG) signals. The one commonphenomenon across pa-
tients, regardless of what motif they exhibit in some of their iEEG record-
ings, is that immediately prior to seizures, one or a few channels typically
differentiate from the others. These few channels become “disconnected”
or the least “central” to the network near seizure onset because of their
sudden atypical activity. Near seizure termination, the pathological activ-
ity settles and these channels return to their average activity and hence
average inter-ictal centrality. (Burns et al., 2014) compute the network
centrality for each channel as a function of time before, during and after
seizure, and use the centrality time course to delineate the EZ. The success
of this approach further underwrites the network nature of epilepsy.
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