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Résumé :

Dans un article récent, Esmael et al. [1] ont étudié la transition vers la turbulence en conduite cylin-

drique pour un fluide non-Newtonien. Ils ont montré qu’une turbulence faible peut être générée par le

caractère rhéofluidifiant du fluide. Un fluide rhéofluidifiant est un fluide dont la viscosité décroît non

linéairement lorsque le cisaillement augmente. Dans la présente communication, nous confirmons ce

résultat à travers une autre configuration géométrique. Nous présentons des résultats expérimentaux

sur la stabilité d’un écoulement de Couette à large entrefer (rapport de rayons η = R1/R2 = 0.4) pour

des solutions aqueuses de xanthan (fluide rhéofluidifiant et très faiblement élastique). Pour des concen-

trations suffisamment importantes, l’écoulement devient chaotique à partir de Re = 1.5 Rec où Rec

est le nombre de Reynolds critique de bifurcation primaire. Pour un fluide Newtonien (solution de Gly-

cérol), les tourbillons de Taylor restent stable jusqu’à Re ≈ 7.3Rec avant de bifurquer vers le régime

ondulé. Une étude théorique basée sur des approches linéaire et faiblement non-linéaire est effectuée au

préalable pour déterminer le nombre de Reynolds critique de bifurcation primaire ainsi que la nature

de cette bifurcation.

Abstract :

In a recent paper, Esmael et al. [1] have studied the transition to turbulence in a pipe flow for non-

Newtonian fluids. They have shown that a weak turbulence can be generated by the shear-thinning be-

havior of the fluid. A shear thinning fluid is a fluid for which the viscosity decreases non-linearly with

increasing the shear rate. In this study, we confirm this result through a different geometrical configu-

ration. We present experimental results on the stability of Couette flow with a wide gap (radius ratio

η = R1/R2 = 0.4) for aqueous xanthan gum solutions (shear-thinning fluid and very weakly elastic).

For sufficiently high concentrations, the flow becomes chaotic from Re = 1.5 Rec where Rec is the

critical Reynolds number of the primary bifurcation. For a Newtonian fluid (glycerol solution), Taylor

vortices remain stable up to Re ≈ 7.3Rec before bifurcating towards the wavy regime. A preliminary

theoretical work based on linear and weakly nonlinear approaches is performed in order to determine

the critical Reynolds number of the primary bifurcation as well as the nature of this bifurcation

Keywords : Taylor-Couette flow, shear-thinning fluids, stability.
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1 Introduction

Taylor-Couette flow instabilities between two coaxial cylinders are considered as prototypes for general

studies in hydrodynamic instability and transition to turbulence. In the classical configuration, the in-

ner cylinder is rotating and the outer one is fixed. The primary instability occurs when the centrifugal

force overcomes viscosity. Stationary counter-rotating vortices develop in the system via a supercritical

bifurcation. Increasing the rotation of the inner cylinder above the critical value leads to a finite succes-

sion of the states before transition to a chaotic regime [2]. This transition to turbulence is governed by

the Reynolds number (ratio between nonlinearity of the inertia terms and viscous dissipation terms). In

the case of non-Newtonian fluids (polymer solutions, suspensions, emulsions, ...), mechanisms of the

instability and transition to turbulence may be modified by the nonlinearity of the rheological behavior.

Most non-Newtonian fluids have two common properties, viscoelasticity and shear-thinning. There was

a significant interest in inertialess viscoelastic Taylor-Couette instability [3]. In the laminar state, the ro-

tation produces a shear which stretches the polymer molecule along the curved stream lines. This leads

to a first normal stress difference which acts against the centrifugal force. Groisman and Steinberg (1998)

[4] showed experimentally that elastic instability leads to a strong nonlinear flow transition at vanishing

inertia.

Hereafter, we focus on shear-thinning fluids, for which the elastic response can be neglected. The ob-

jective of the present work is to analyze the influence of the nonlinear variation of the viscosity with

shear-rate on Taylor-Couette instabilities. We show on one hand that the nature of the bifurcation can be

modified by shear-thinning effects and on the other hand, that a chaotic regime can be induced by the

shear-thinning behavior.

2 Couette flow of a shear-thinning fluid

We consider the flow of a shear-thinning incompressible fluid between two infinitely coaxial cylinders of

inner and outer radii R̂1 and R̂2 respectively. The radius ratio is η = R̂1/R̂2. The outer cylinder is at rest

and the inner cylinder rotates with an angular velocity Ω̂1. The governing equations in dimensionless

form are :

∇ · U = 0 (1)

∂tU +Re(U ·∇)U = −∇P +∇ · τ (2)

Here U = Uer+V eθ+W ez is the velocity, P the pressure and τ the deviatoric extra-stress tensor. The

governing equations have been nondimensionalized using the annular gap d̂ = R̂2− R̂1 as the reference

length scale, the velocity of the inner cylinder Ω̂1R̂1 as velocity scale, µ̂ref Ω̂1R̂1/d̂ for stresses and

pressure scale, viscous diffusion time ρ̂ d̂2/µ̂ref for time scale. The viscosity reference µ̂ref will be

specified later. The Reynolds number Re is defined by :

Re = ρ̂Ω̂1R̂1d̂/µ̂ref (3)

The quantities defined with a hat (̂.) are dimensional, while quantities without (̂.) are dimensionless. To

the previous equations, we add the no-slip and impermeability condition at the walls :

U(R1) = (0, 1, 0) and U(R2) = 0 (4)
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The fluid is supposed to be purely viscous i.e. its viscosity depends only on the shear rate. The constitutive

equation reads :

τ = µ(Γ)γ̇ (5)

where, Γ is the second invariant of the strain-rate tensor γ̇. The viscosity µ is assumed to fit the power-law

model :

µ(Γ) = Γ
n−1

2 ; Γ =
1

2
γ̇ij γ̇ij (6)

where, 0 < n ≤ 1 is the shear-thinning index. The reference viscosity is :

µ̂ref = K̂

(

R̂1Ω̂1

d̂

)n−1

(7)

with K̂ [Pa.sn], the fluid consistency.

2.1 Base flow

The base flow is purely azimuthal and is solution of :

d

dr
(r2τ brθ) = 0 (8)

with the boundary conditions

V b(R1) = 1 ; V b(R2) = 0 (9)

The superscript "b" refers to the base flow. The velocity profile is given by :

V b(r) =
r

R1



1−

(

1

R
2/n
2

−
1

R
2/n
1

)

−1(

1

r2/n
−

1

R
2/n
1

)



 (10)

Figure 1a, b shows the effect of shear-thinning index on the velocity and viscosity profiles at η = 0.4.

With increasing shear-thinning effects, the curvature of the velocity profile becomes more pronounced.

The shear rate increases at the inner wall and decreases at the outer wall. The wider is the gap the more

this effect is significant. This results in a viscosity stratification. The viscosity increases from the inner

to the outer wall. As can be seen in figure 1b, for n = 0.2, which corresponds practically to one of the

fluids (0.5% wt xanthan gum) used in our experiments, the viscosity near the outer wall is 103 larger

than that near the inner one.

2.2 Disturbance equations

The velocity U and the pressure P of the disturbed flow are splitted into the base field (with the super-

script "b") and the disturbance :
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Figure 1: Couette flow of a power-law fluid at η = 0.4 : (a) Azimuthal velocity and (b) Viscosity

profiles.

U = Ub + u ; P = P b + p (11)

Here, we consider only axisymmetric disturbances. These are the least stable modes when the outer

cylinder is fixed as indicated by Alibenyahia et al. [5]. We introduce the function φ(r, z; t) such that :

u = −
∂φ

∂z
and w =

(

∂φ

∂r
+

φ

r

)

(12)

In axysimmetric situation, disturbance equations can be written in terms of the azimuthal vorticity ωθ

and the azimuthal velocity v :

∂ωθ

∂t
= Re

[

∂φ

∂z
Dωθ −D∗φ

∂ωθ

∂z
+

1

r

∂φ

∂z
ωθ −

2v

r

∂v

∂z
− 2

V b

r

∂v

∂z

]

+

(

DD∗ −
∂2

∂z2

)

τrz +
∂

∂z
(Dτzz −D∗τrr) +

1

r

∂

∂z
τθθ (13)

∂v

∂t
= −Re

[

∂φ

∂z
D∗v −D∗φ

∂v

∂z
+

∂φ

∂z
D∗V b

]

+
1

r2
∂

∂r

(

r2τrθ
)

+
∂

∂z
τθz (14)

where ωθ =

(

∂2

∂z2
+DD∗

)

φ, D ≡
∂

∂r
and D∗ ≡ D+

1

r
. The boundary conditions u = 0 on R1 and

R2 imply that :

∂φ

∂z
= D∗φ = v = 0 on R1 and R2 (15)

For a small amplitude disturbance, the viscosity of the perturbed flow can be expanded around the base

flow as :

µ(Ub + u) = µb + µ1(u) + µ2(u,u) + µ3(u,u,u) + ... (16)
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The deviatoric stress in the disturbed flow can be written as :

τij(U
b + u) =

(

µb + µ1(u) + µ2(u,u) + µ3(u,u,u) + ...
)(

γ̇bij + γ̇ij(u)
)

(17)

2.2.1 Linear stability analysis

The linearized version of the disturbance equations (13-14) can be written formally as :

∂

∂t





DD∗ +
∂2

∂z2

1





[

φ

v

]

= LI

[

φ

v

]

+ Lv

[

φ

v

]

(18)

where LI and Lv represent the linear inertial and viscous terms respectively. In a classical way, normal

mode analysis is used, assuming that :

[

φ

v

]

=

[

F11(r)

V11(r)

]

e(ikz+ct) (19)
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Figure 2: Comparison of theoretical (continuous line) and experimental (filled circle) variations of (a)

the critical Reynolds number Rec and (b) the axial wave number kc as function of the shear-thinning

effects n.

where k is the axial wave number and c = cr + ici is the complex wave speed. Substituting (19) into

(18), we obtain an eigenvalue problem, which is solved using Chebyshev collocation method.

The influence of shear-thinning effects on the critical Reynolds number and axial wave number is shown

in figure 2. One can note that kc increases with increasing shear-thinning effects. At n = 0.23 the size

of Taylor vortices is smaller than half that obtained for a Newtonian fluid.

2.2.2 Weakly nonlinear stability analysis

In the weakly nonlinear approach it is assumed that the solution of the nonlinear problem near the thre-

shold bifurcation point can be approximated by a perturbation around the fundamental mode. Due to

nonlinear terms, the fundamental interacts with itself, with its complex conjugate and with the mean

flow which result in the generation of harmonics, a mean flow distortion and a modification of the fun-

damental respectively. The disturbance φ(r, z; t) is expanded as an amplitude and harmonic expansion :
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[

φ(r, z; t)

v(r, z; t)

]

=
∑

n=1

[

F0,2n(r)

V0,2n(r)

]

|A|2n +
∑

j=1

∑

n=1

[

Fi,j+2(n−1)(r)

Vi,j+2(n−1)(r)

]

|A|2(n−1)AjEj + c.c (20)

In this equation, c.c means the complex conjugate of the expression that precedes, E is the critical wave

defined by E ≡ exp[ikz + cct], with the critical wave numbers kc, A = A(t) is the complex amplitude

of the fundamental. The time evolution of the disturbance amplitude A is given by the Stuart-Landau

equation :

dA

dt
= cA+ g1|A|

2A (21)

The modulus of the amplitude A is determined by :

d|A|

dt
= cr|A|+ g1r|A|

3 (22)
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Figure 3: Evaluation of the real part of the Landau constant g1r with a shear-thinning effects n

The nature of the bifurcation is determined by the real part g1r of the Landau constant. If g1r < 0 the

bifurcation is supercritical and if g1r > 0, the bifurcation is subcritical as can be shown in figure 3.

3 Experimental set-up and rheology of used fluid

The experimental system consists of two vertical coaxial cylinders. The outer cylinder (OC) is made

of Plexiglas with a radius R̂2 = 5 cm. The inner cylinder (IC) is made of stainless steel with a radius

R̂1 = 2 cm. The annular gap is d̂ = R̂2 − R̂1 = 3 cm, with a radius ratio η = R̂1/R̂2 = 0.4. The

aspect ratio (i.e. annulus length / gap width) is ĥ/d̂ = 31. The outer cylinder is kept at rest and the inner

cylinder is driven by a DC servomotor. The working fluids used are : (i) a 80 wt% aqueous glycerol

solution, which is Newtonian fluid, and (ii) two aqueous xanthan gum (semi-rigid polymer) solutions

at 0.1 and 0.5 wt%. The rheological behavior of these solutions was determined using controlled torque
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rheometer (TA Instrument AR2000). The variation of the shear viscosity µ̂ with the shear rate ˆ̇γ is show

in figure 4. For the xanthan gum solutions, the flow curves (µ̂ vs ˆ̇γ) are very well fitted by the power-law

model (µ̂ = K̂ ˆ̇γn−1) for the whole range of shear rate encountered in our experiments.
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Figure 4: Viscosity vs shear rate : (1) 80 wt% glycerol solution, (2) 0.1 wt% xanthan gum solution

n = 0.47 and (3) 0.5 wt% xanthan gum solution n = 0.23.

The Weissenberg number Wi = N1/τ , ratio of the first normal stress difference to the shear stress, is

much lower than 1 (Wi ≪ 1), therefore viscoelastic effects can be neglected. The temperature of the

working fluids varies by no more than 0.8˚C over the course of our experiment.

The evolution of the flow structure with increasing Reynolds number was determined from measure-

ments of the velocity field by PIV and the space-time diagrams deducted from visualization. For this

last purpose, the flow was seeded with a small amount of dilute solution of Merck IriodinÆ 110 (ani-

sotropic mica platelets - particle size < 15µm). An (r − z) plane is illuminated by He-Ne laser sheet

(λ=532 nm, thickness 1.5 mm). A CCD camera (1200 × 1200 px) records the scattered intensity at

90˚along an axial cross section of the entire cylinder.

4 Results and discussion

For the glycerol solution, the onset of centrifugal instability (TVF regime) takes place experimentally at

Reynolds number Rec = 68.9 with an axial wave number k = 3.20. These values match very well with

the linear stability analysis. The velocity of rotation of the inner cylinder was increased progressively

and slowly. As shown in figure 5c, up to ≈ 7.3 × Rec, the Taylor vortices, separated by radial jets, re-

main stationary and axisymmetric. Their size (axial wavelength) does not vary. The pure singly periodic

motion has been reported, in the case of wide gap η = 0.505, experimentally up to 9Rec [8] and nu-

merically up to 10Rec [7]. These results are in agreement with stability analysis of Taylor vortices with

respect to non-axisymmetric perturbations [6]. Increasing further Ω̂1 (Re1) the vortex flow becomes

wavy and acquire another periodicity along θ. At a given azimuthal position the azimuthal periodicity

is transported into a time periodicity (vortices moving up and down along the vertical axis) as shown in
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figure 5d. This mode disappears at ≈ 8.5Rec, and the flow returns to the TVF state and remains in this

state until a new wavy state is excited at ≈ 10.7Rec.

For 0.1 wt% xanthan gum solution, power-law fluid with n = 0.47, Taylor Vortex Flow (TVF) due to

primary centrifugal instability is observed experimentally at Rec = 66.8 with an axial wave number

k = 3.6. These values are in a good agreement with the linear theory as indicated in figure 2. The

rotation of the inner cylinder was then gradually increased. At Re ≈ 1.8Rec, the TVF regime looses its

stability. Also, Taylor cells loose their identity. As Re increased further the flow becomes increasingly

complex and chaotic.

For 0.5 wt% xanthan gum solution, power-law fluid with n = 0.23, the onset of centrifugal instability

occurs slightly befor the linear theory prediction. It could be viewed as a first experimental observation

of a subcritical bifurcation in a Taylor-Couette system for shear-thinning fluids. This is in agreement

with the results of weakly nonlinear analysis (see figure 3). At Re = 1.02 Rec, Taylor vortices exhibit

a drifting at approximately 1 mm/s, along the axis of the geometry in the direction opposite to the

centerbody rotation vector. This observation is consistent with the description made by Escudier et al.

(1995)[9]. At higher Re say Re ≥ 1.5 Rec a chaotic flow is observed.

In figure 6, we have represented the critical relative Reynolds number εc = (Re− Rec)/Rec at which

TVF looses its stability as a function of the shear-thinning index. It is observed that shear-thinning effects

reduce strongly εc.

5 Conclusion

The stability of Newtonian and non-Newtonain shear-thinning in a wide gap Taylor-Couette system (ra-

dius rate η = 0.4) is investigated. For a Newtonain fluid, Taylor vortices are stable up to Re ≈ 7.3Rec

before bifurcating to a wavy regime. This mode disappears at ≈ 8.5Rec, and the flow returns to the

TVF state and remains in this state until a new wavy state is excited at ≈ 10.7Rec. For xanthan gum

solutions, shear-thinning fluids, the critical values of the relative Reynolds number εc at which Taylor

vortices loose their stability decreases strongly with increasing shear-thinning effects. At ε > εc, the

flow structure becomes increasingly complex and chaotic.
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