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ABSTRACT 

Modeling societies of individuals is a challenging task increasingly attracting the interest of 

the Machine Learning community. In ant colonies, individuals have the same physical 

attitudes and, in principle, can assume any role the social environment requires. For he 

biologist understanding the complex dynamics ruling a colony is hard due to the difficulty of 

collecting and classifying long term ant activities. Here we present a novel approach for 

analyzing activity logs from an ant colony using an RFID environment. A semi-automated 

algorithm for segmenting traces and discovering the role played by each individual during the 

observation phase is described. A Structured Hidden Markov Model was used to build the 

model of single individual activities. Then, the global profile of the colony was traced during 

the emigration from one nest to another. The method provided significant information 

concerning the social dynamics of ant colonies. 

KEYWORDS: S-HMM, RFID, ant, emigration, activity learning 

1. INTRODUCTION 

This paper addresses the problem of analyzing the behavior of an ant colony to 
discover their social rules and social roles, which are still not yet well identified and 
understood. Machine Learning can offer a great help to the biologist in discovering 
the complex interactions between individuals in an ant colony. The large number of 
subjects that must be examined and the complexity of the environment make this 
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task infeasible without the help of some (semi)automated framework for collecting 
and analyzing data. 

In this specific case, an ant colony was observed after creating an artificial 
climatic mutation, which caused the emigration from one nest to another. Colony 
migrations are dangerous events because each colony member—and particularly the 
queen and brood—becomes vulnerable to predation or runs the risk of getting lost. 
Therefore, the relative timing of queen emigration and brood transport are strategic 
issues for the colony as they may significantly lower the risks incurred by these 
essential members. 

The queen moving and the brood transport do not occur at random during nest 
relocation but rather in the middle of the sequence of all emigration events. In 
addition, the different brood categories are transported in a specific sequence (i.e. 
cocoons first, larvae second, and eggs last) (Pezon et al. 2005). The results 
correspond to robust colony-level strategies since they are related neither to 
emigration distance nor to colony or brood size. 

All individuals have the same physical attitudes and, in principle, can assume 
any role the social environment requires. Facing the emergency, the different 
elements of the colony change their current social activity and assume specific roles 
to accomplish the emigration in the new nest, depending to the necessities of the 
colony. Afterwards, they return to normal activities, not necessarily the same they 
where accomplishing before the emergency.  

The collective and individual decision rules followed by workers as well as the 
specific mechanisms underlying this colony-level phenomenon are still poorly 
understood so it is essential to find the rules that govern ant individual behavior and 
its integration at the colony scale. 

We monitored individual activities using passive radio-frequency identification 
(RFID) technology, a novel procedure as applied to ants. RFID tagging has no 
observable effects on the behavior of the ants (Robinson et al. 2009) and allows 
tracking the activity patterns of large numbers of individuals over a long period. 

The fundamental issue investigated here is the construction of the model of the 
activities that an individual can undertake, such as: nursing, transporting, foraging, 
and so on, according to the emerging needs of the colony. Activity models are used 
to segment ant traces obtained by RFID logs for determining the different roles 
played by each ant during the emigration act. Starting from those segmentations, 
global parameters characterizing the global colony behavior can be inferred. 
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The activity models are based on Structured Hidden Markov Models (S-HMM), 
a variant of classical HMM (Rabiner, 1989), well suited to combine a priori 
structural information from the domain experts with statistical information inferred 
from data. The paper describes both the methodological approach and the results 
obtained. Those results are innovative and offer to biologists new insights into the 
behavior of ants. 

2. THE PROBLEM OF NEST RELOCATIONS 

The ecological success of insect societies is due in large part to their ability to 
build long-lasting and elaborate nests, which provide a secure environment for the 
successful rearing of brood and reduce predation risks for all colony members 
(Wilson, 1971). As constructing a complex nest requires a considerable amount of 
resources, for long time the ethologist studying animal behavior believed social 
insect colonies to be tendentially rooted in the same nest. In the past few decades, 
however, a strikingly new picture has slowly emerged regarding the stability of ant 
nests. Ant colonies migrate from one nest site to another one more frequently than 
previously assumed (Holldobler & Wilson, 1990). Indeed, in many species, colony 
emigration proves to be the rule rather than the exception (Möglich, 1978, Herbers, 
1985, Partridge et al. 1997), and even highly sedentary species will migrate if 
sufficiently disturbed due to mechanical vibration, micro-climate change , predation, 
competition and so on (Smallwood, 1982, Droual, 1984, Franks et al. 2002). 

Emigrations represent a costly and perilous phase in the colony life cycle, 
especially for small colonies. Each colony member becomes exposed to predation 
and incurs the risk of getting lost, thus reducing the population size and colony 
resilience (Byrne, 1994, Bouwma et al. 2003). During emigration, an ant colony 
must swiftly move the brood to a better location, and the timing of brood transport is 
a crucial strategic issue. 

Despite their importance to colony survival, the issues of risk minimization 
during colony movement and the different role played by each individual are still 
poorly understood. Only very specific individuals or events (queen or cocoon 
relocation) have been analyzed. This limitation is mainly due to the difficulty of 
collecting information about large numbers of individuals acting in such a chaotic 
environment like an ants’ nest. 
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The brood is sensitive to prevailing environmental conditions and is generally 
helpless, requiring the constant care and protection of workers. Pezon et al. (2005) 
demonstrated that the median of the temporal distribution of brood transport events 
should occur in the middle of the emigration phase, thus ensuring that the brood is 
swiftly transferred to the new nest while still benefiting from maximum worker 
protection at all times in both the new and old nests. 

The stereotyped techniques of chemical communication and recruitment by 
tandem running employed during nest relocation have been extensively studied in P. 
Obscuricornis (Holldobler, 1980, Holldobler, 1984), as well as other ant species 
belonging to the Ponerinae, Myrmicinae, and Formicinae (Holldobler & Wilson, 
1990). 

Recently, Franks and Sendova-Franks (2000), demonstrated that in monogynous 
ants, the queen is transported in the middle of the emigration phase, thus ensuring 
that the queen moves from the safe environment provided by one half the colony in 
the old nest to the safe environment provided by the other half in the new nest. This 
adaptive colony-level phenomenon guarantees that the colony’s only queen benefits 
from maximum worker protection at all times in both sites. During emigration, 
functionally polygynous colonies (characterized by the simultaneous presence of 
many queens) should not necessarily face the same selection pressures as their 
strictly monogynous counterparts. 

3. EXPERIMENTAL SETTING 

The dynamic of task allocation through worker ontogenesis has been widely 
described in prior theoretical investigations. However, the lack of adequate tools for 
tracing ant behavior has prevented an experimental test of the theoretical hypothesis. 
In this paper we aim at studying the dynamic of a nest change in an ant’s colony. 
Our interest is in characterizing and analyzing the evolution of the whole colony, 
understanding how ants act and partition their roles during the entire phase of nest 
relocation. The kinetics characterizing the sequence of departure from the original 
nest, passage through the foraging area (outside), and arrival in the new protected 
nest will be analyzed. These actions require a high coordination among workers. It is 
likely to expect that foragers will start the exploration of the new nest and will 
initiate recruitment to lead more static ants (nurses and inactive ants) toward the new 
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nest. Which ants will transport the brood and more importantly which ants will take 
care of the queen movement toward the new nest is unknown. Similarly, we do not 
know whether the established distinction of activities in a stable situation will 
condition the role a specific individual will assume during the emigration phase. 

3.1 RFID For Ants Activity Tracking 

RFID technology has been used for social insects’ analysis for a few years. The 
first results of Streit et al. (2003) convinced other authors to use this technology 
because of its flexibility and the richness of the recorded information (Sumner et al. 
2007, Molet et al. 2008). Concerning ants, the challenge is represented by the 
miniaturization of the RFID equipment. This task has been done successfully by 
Robinson et al. (2009). 

In all prior experiments, RFID tags have been supported without great difficulty 
by the insects. Nevertheless the devices did not allow monitoring points or multiple 
individuals to be monitored simultaneously. The originality of the device presented 
here is that this tool supports many observation points and allows a large number of 
individuals to be traced simultaneously. In this way, we are able to follow the entire 
colony in real time.  

3.2 Measurement Device 

For this investigation, we chose a big-sized tropical ant, Pachycondyla tarsata, 
which constructs subterranean nests distributed in several interconnected chambers 
spread over a distance of 10 meters. Colonies of these species are typically composed 
of ten to a few thousand ants. The RFID tag consists of a chip attached to an antenna 
weighing under 40 mg (i.e., 25% of an ant weight), glued on the animal thorax (Fig. 
1(a)). The movement between nests of a colony of 55 workers was monitored by the 
RFID device for the whole duration of colony emigration (about 4 h). 

The experimental device for this experiment consists of three rooms each and a 
foraging area, linearly connected by six tunnels (Fig. 1(b)(c)). At the beginning of 
the experiment, the queen (not tagged) and its brood (eggs, larva and cocoon) are 
located in Room 3 of the first nest, the farthest from the foraging area. Each tunnel is 
equipped with two RFID readers (number 1 to 12 from Room 3 in Nest 2 to Room 3 
in Nest 1) that detect the passage and the direction of tagged individuals between 
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rooms. The position of an individual may be inferred unambiguously by the 
information provided by the readers in the tunnels. The lack of detection implies that 
the individual is out of the tunnel and thus in one of the seven rooms. The exact 
location of a tag (i.e., of an individual) can be deduced from the travel direction. 

 
 

Fig. 1:  The RFID environment: (a) Ant with RFID tag. (b) Snapshot of a part of the ant 

nest. One can appreciate the three rooms of the old nest and the foraging area. 

(c) The RFID experimental device. (d) Example of a recorded scan in the data file 
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The information recorded by readers is handled by an RFID electronic device, and 
then sent to a computer that creates and store the data files. 

The data files are in text format and indicate for each antenna scan (about three 
scans per second), the progressive number of scan and the time of day, and for each 
individual (i.e., for each tag), which antenna is activated (Fig. 1(d)). If, during a 
scan, none is detected, then nothing appears in the data file. A simple treatment on 
these files makes it possible to obtain spatial information for each individual. Due to 
the limitation imposed by miniaturization, the RFID tags sometimes can be missed 
by the detecting apparatus. A missing detection rate ranging from 5% to 15% has 
been observed.  

At time t = 0 we switch on a strong neon light (strongly repellent for ants) over 
the first nest and we open the entrance of the second nest, then we record the colony 
movement until the entire brood is moved into the second nest (4 h). 

4. MODELING SOCIAL ACTIVITIES 

The RFID apparatus only provides a partial observation of the individuals. No 
information is provided concerning what happens inside a room, but only the 
duration of the permanence of an ant inside it can be known. Moreover, sensors are 
not reliable having a missing detection rate ranging from 5% to 15%. 

The goal is to reconstruct the evolution of the activity of the single individuals 
in the context of the social environment under the pressure of the simulated 
ecological mutation. More specifically, we want to discover which kinds of 
activities are undertaken during the emigration phase, how many individuals are 
dedicated to each activity, and when an individual may change activity. 

Achieving this goal requires solving the following problems:  
 
• To reconstruct the most likely paths made by ants considering that many 

transits in the tunnels are unobserved due to missing detections.  
• To characterize the different activity patterns emerging from the data.  
• To infer the activity models.  
• To segment and label the paths according to the activity, which most likely 

produced the observed action sequence.  
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The major requirements that a modeling tool must satisfy are the capacity of 
handling partially observable status, and modeling the duration of the permanence in 
the different areas of the environment. To this purpose, the graphic model approach 
(Murphy, 2002) is the most promising.  

The probability theory offers a framework for modeling the evolution of 
processes characterized by inherent randomness or operating in environments too 
complex for a precise analysis. The core idea is that the statistical distributions 
governing the evolution of a system can be estimated from a learning set of traces 
describing its past history. This approach allows us to infer a model from a relatively 
small set of strings. In particular, two tools emerge as candidates for the specific task 
of segmenting and labeling sequences in presence of hidden states: Hidden Markov 
Model (HMM) (Rabiner, 1989) and Conditional Random Fields (CRF) (Lafferty et 
al. 2001). Recent findings (Murphy, 2002) favor CRF, which in many cases 
outperformed HMM. Nevertheless, the requirement of modeling duration suggested 
that we adopt the HMM approach. Indeed, directed graphs are a natural choice when 
modeling successions of events that are characterized by some temporal causality is 
needed. Undirected models like CRF are appropriate in modeling those data in 
which such directionality does not exist. Well-assessed methods for extending 
HMMs to cope with durations are available, whereas CRFs have been little 
investigated in this sense (Natarajan & Nevatia, 2008).  

Another reason that make the HMMs a natural choice is that they can be easily 
learned, also in real-time application. In fact the well-known forward-backward and 
Viterbi algorithms for HMMs (Rabiner, 1989) have direct analogues for CRFs, with 
the same asymptotic running times. But the training step, which determines a weight 
for each feature function, is somewhat more complex; generally, no closed-form 
solution exists for the optimal assignment of weights, so it must be found using 
numerical optimization techniques. The adopted tool is then a HMM variant called 
S-HMM (Galassi et al. 2007a), which offers specific features for modeling 
permanence inside rooms. In the following section, a brief explanation of the S-
HMMs and their properties will be presented. 

4.1 The Structured Hidden Markov Model 

An S-HMM is a directed graph built up according to precise composition rules, 
with several independent sub-graphs (blocks) structured according to the paradigm 
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used in Object Oriented Programming. A block consists of a set of states, only two 
(the initial state I and the end state E) are allowed to be connected to other blocks. 
The blocks can be nested inside each other.  

Two kinds of blocks are possible: basic blocks and composite blocks. The states 
of basic blocks produce observable emissions according to the classical HMM 
paradigm. The states of composite blocks correspond to basic or composite block 
defined at a lower abstraction level. When a transition into a state q occurs in a 
composite block, a call is made to the lower level block associated to q and the 
activity is suspended until the call returns. 

The basic assumption underlying an S-HMM is that a sequence of observations 
O = o1,o2…,oT  could be segmented into a set of subsequences O1,O2…,ON, each 
generated by a sub-process with only weak interactions with its neighbors 
(Bouchaffra & Tan, 2006). This assumption is realistic in many practical 
applications, such as, for instance, speech recognition (Rabiner, 1989, Rabiner & 
Juang, 1993), and DNA analysis (Durbin et al. 1998).  

A major feature of S-HMM is that it could be locally trained using the classical 
Baum-Welch algorithm, considering only a subset of the sub-models occurring in 
the compound one (Galassi et al. 2007b). A nice consequence of this property is that 
an S-HMM can be constructed and trained incrementally, by adding new sub-models 
or revising existing ones as new information comes in. Newly added sub-model 
could be produced by an independent learning process or may be provided by an 
expert as a-priori knowledge. Different models could be learned and successively re-
trained independently one from the other, providing a natural sub-problems’ 
decomposition. 

Another major feature of S-HMM is that it allows different kinds of blocks to be 
defined for modeling specific tasks. This feature is fundamental for building models 
describing complex temporal dynamics like the permanence of ants inside different 
kind of rooms. As demonstrated in a recent work of Abou-Moustafa et al. (Abou-
Moustafa et al. 2004), the use of an ad-hoc topology strongly increases HMM 
performances. S-HMM permits explicitly differentiating the models adopted for the 
various kind of rooms present in the nest. 

All basic algorithms for computing probability distributions and estimating 
model parameters from sequences, such as forward-backward and Viterbi algorithm 
(Rabiner, 1989), immediately extend to S-HMM. A detailed description of S-HMM 
is provided in (Galassi et al. 2007a, Galassi, 2008). 
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4.2 Modelling Duration 

The problem of modeling durations in the HMM framework has been 
principally faced in Signal processing. Two approaches to the problem emerge from 
the literature. The first produced an extend modeling tool called Hidden Semi-
Markov Model (HSMM), which corresponds to HMM augmented with probability 
distributions over the state permanence (Levinson, 1986, Pylkkonen & Kurimo, 
2004, Tweed et al. 2005). The alternative approach is the so called Expanded HMM 
(Josep, 1996). Each state, where it is required to model duration, is expanded into a 
network of states, properly interconnected. In this way, the duration of the 
permanence in the original state is modeled by a sequence of transitions through the 
new state network where the observation remains constant. The advantage of this 
method is that the Markovian nature of the HMM is preserved. Nevertheless, the 
complexity increases according to the number of new states generated by expansion. 

In the framework of S-HMM, the approach of Expanded HMM is used and 
specific basic blocks are provided to model the probability distribution of the 
permanence inside a macro state. The specific HMM topology we adopted for the 
present application is reported in Figure 2(e). Basically, this model exhibits an 
Erlang’s distribution, when the Forward-Backward algorithm is used to compute the 
probability distribution. Basically, an ant activity model assigns a probability 
distribution over the set of all possible paths an ant accomplishing a specific activity 
can go through the artificial environment. Let s be a sequence of observations. By 
comparing the different probability assigned to s by a set of different activity 
models, we can infer the activity that most likely generated s.  

4.3 Ant Activity Model Architecture 

The observation of a path is a sequence of pairs i it ,s  collected from the RFID 
sensors, being ti the time of the detection in msecs, and si the id of the sensor. In the 
S-HMM framework discrete time is assumed. Then, a transformation from the 
numeric representation from the sensors to a discrete (symbolic) representation has 
been defined, which preserves the accuracy implicit in the original coding. The 
symbolic sequences are encoded using an alphabet A={A,B,C,D,E,F,G,H,J,K,L,.}, 
where letters from A to L correspond to the RFID detectors from 1 to 12, 
respectively, and “.” denotes a time interval, in which no observation from the 
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sensorial apparatus is received. The transformation, from a numeric to a symbolic 
sequence is obtained by subdividing the time into discrete intervals of one second. A 
numerical sequence is scanned from the beginning to the end moving ahead of one 
interval at a time. If a signal from a detector is found, the corresponding symbol in 
the symbolic sequence is appended; otherwise a “.” is inserted. After the translation, 
the permanence in a room, is be represented as a string of “.”. Moreover, undetected 
transit in a tunnel will be report as a “.”, as well. 

 
 

 
 

Fig. 2: Structured HMM used for modeling ant behavior. (a) The activity tagger, i.e. a three-
levels S-HMM used for modeling colony behavior. (b) Example of labeled sequence 
obtained using the activity tagger. (c) Second level model; For each behavior, an 
independent model has been learned. (b) basic block encoding the passage under a 
sensor; (c) basic block modeling the duration of the permanence in a room or a tunnel. 
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After experimenting with different model architectures, the one reported in Figure 
2(c) has been chosen. It is a two level S-HMM, where the upper level models the 
long range path through the environment, while the lower level models the 
observations detected by the RFID sensors, and the duration of the permanence 
inside rooms and tunnels. States in the upper level defines a double chain sharing the 
ends. The states denoted with single circles represent the permanence in a tunnel, 
whereas those denoted with a double circle represent the permanence in the rooms 
of the nests or in the foraging area. States denoted with squares represent sensors. 
Each state is associated to a block at lower level, which models the probability 
distribution for the permanence in the associated location or the process of 
generating the observable emissions of the sensors. Referring to Figure 2(c), the 
upper chain models the action of going from the old nest to the new nest, while the 
other models the action of going from the new nest to the old nest. Changes of 
directions cause switching from one chain to the other.  

5. LEARNING FROM THE ACTIVITY TRACES 

From the model architecture described in Figure 2(c), the activity models have 
been estimated to construct an activity tagger. This feature is used to infer the most 
likely path of an ant and to segment and label it according to the activity, which 
most likely generated the signals reported by the RFID detectors. From the labeled 
paths, the global behavior of the colony along the emigration phase has been 
reconstructed.  

5.1 Activity Tagger Architecture  

An activity tagger is a three-level S-HMM, obtained by layering a new block on 
top of the activity models. As show in Figure 2(a), this new layer defines a fully 
connected graph among the blocks modeling the different activities. Then the 
activity tagger interprets the ant traces as a sequence of segments, each corres-
ponding to a different activity phase. By exploiting the S-HMM compositional 
properties the activity tagger can be refined by training single blocks independently, 
as well as the entire structure using the classical Baum-Welch algorithm. 
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The standard method for interpreting a sequence using an HMM (S-HMM) 
makes use of the Viterbi algorithm (Forney, 1973, Rabiner, 1989) to find the 
maximum likelihood path in the model state space, which corresponds to the 
observed events. In our case, this method does not work because the HMM 
modeling the duration of the permanence in the rooms and in the tunnels requires 
forward-backward algorithm.  

Then we adopted an alternative method, also described in (Rabiner, 1989), 
which consists in finding, at each time t, the maximum likelihood state qt of the 
model, as defined by the following equation:  

qt=argmaxi(αt(i)βt(i))      1≤i≤N (1) 

In expression (1) αt(i) is the classical function that estimates the probability for 
model λ of being in state qi after generating (in all possible ways) the sequence of 
observations from t0 to time t. Symmetrically βt(i) is the probability for λ of 
generating the remaining part of the sequence from t to T starting from status qi . 

5.2 Learning Procedure  

The complete learning procedure for learning the activity tagger integrates data-
mining algorithms with the manual action of an expert of the domain. The domain 
expert is very good in detecting where the activity pattern changes and in providing 
an episodic interpretation of fragments of the paths, but it performs poorly in tasks 
requiring the systematic analysis of a large amount of data. On the other hand, the 
learning algorithm is very good in discovering regularities and similarities among 
different episodes discovered by the expert. From this cooperation, the groups of 
characteristic activities are progressively individuated and modeled. The procedure 
consists of the following steps, which are repeated until the convergence to stable 
models is achieved: 

Let L be the set of sequences to be labeled. Let, moreover Li a subset of L, used 
for iteration i.  

1. label sequences using the current tagger version;  
2. refine the assigned labels with the help of an expert of the domain;  
3. segment every sequence according to the assigned label;  
4. cluster segments according to the assigned label;  
5. from every cluster Ck estimate a model λk;  
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6. construct a new tagger using the models learned in the previous 
step, and optionally train it using the Baum-Welch algorithm;  

7. add new sequences extracted from L to Li obtaining a new learning 
set Li+1 . 

 
Finally, after the procedure iteration stops, all sequences in L are labeled using 

the tagger constructed at the last step. 
Notice that, the first time the procedure is executed, no tagger exists. In this 

case, the first step has been carried using an algorithm based on Kohonen maps 
(Cabanes et al. 2008, Cabanes & Bennani, 2008), which was able at providing a 
rough segmentation. Then the domain expert manually corrected the output of the 
program. As this task is time consuming, we started with a small learning set 
extracted from the a set L containing 57 sequences (one for each individual of the 
colony). The procedure has been iterated three times incrementing the learning set 
up to 40 sequences. Afterwards, all 57 sequences have been labeled using the final 
tagger. An example of labeled sequence is reported in Figure 2(b). 

5.3 Tracing The Colony Profile 

From the labeled sequences three groups of global parameters have been 
extracted tracing the profile of the ant colony during the emigration phase:  

• The temporal evolution of the number Nj of individuals present in 
every room Rj of the old and of the new nest.  

• The temporal evolution of the number Nij of individuals involved 
in the activity characterized by model λi, in every room Rj.  

• The global number ni ij
Ri

N = !  of the individual involved in each 
activity λi 

6. EXTRACTED KNOWLEDGE ANALYSIS 

At the end of learning procedure, eight groups of behaviors Ai(1≤i≤8)  emerged. 
A last group (A0) has been defined, which corresponds to activity segments where a 
clear pattern is not detectable. The activity logs of each ant have been labeled 
according to those behaviors. Starting from the labeled sequences, the global 
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parameters have been extracted tracing the profile of the ant colony during the 
emigration phase. 

The first information extracted from the sensor logs, using the activity tagger, is 
the path made by every ant during the emigration phase. From it, the global 
parameters Nj (1≤j≤8)reporting the temporal evolution of the number of individuals 
in the different rooms, have been computed. The results are described by the 
diagram of Figure 3(a). Here every room is associated to a different color. Then, the 
area covered by a color is proportional to the number of ants in the corresponding 
room. Three facts emerge, 

1. In the beginning, a small number of ants are also present in rooms R1’, R2’ and 
R3’ of the new nest, meaning that the colony started to explore the new nest as 
soon as the door was opened. Anyhow, this does not produce remarkable effects 
until the neon light begins to trouble the colony.  

2. After the emigration phase was concluded, no more ants where present in the 
internal rooms R2 and R3 of the old nest, but the presence of ants in room R1 was 
remarkably higher than in the corresponding room R1’ of the new nest before 
the emigration. This can be explained considering the combined effect of the 
residual pheromone, which acts as an attractor for the ants in the old nest, and 
the neon light, which acts as a repellent.  

3. The final repartition of individuals on rooms R2’ and R1’ is quite different than 
the one in the corresponding rooms of the old nest before the emigration phase. 
More specifically, the percentage of individuals in room R2’ is much higher. 
The explanation is that ants were busy with cocoons located in room R2’. The 
distribution shows tendency to returning to the normal values at the end of the 
period of observation.  
 
Figure 3(b) shows the evolution of parameters Ni corresponding to the number 

of individuals involved in activity 0 8A , ,AK . Figures 4, 5, 6 present the evolution of 
the number nij of individuals involved in the activity characterized by model λi, in 
every room Rj. For sake of clarity, in the figures we grouped together the rooms 
belonging to the same nest.  
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 Fig. 3: Activity analysis: (a) Distribution of the individuals on the different rooms of the 
environment during the emigration phase. (b) Evolution of the number of individual 
involved in the different activities. 
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Those results have been used by ethologists for hypothesizing a plausible 
explanation for each behavior. 

A0 Unstructured patterns. The ants are not participating into any activity and 
their path through the rooms is not structured. An ant can stay for a long 
time in a room, then change rooms, depending on random events: social 
interaction (sometime aggressive), noise in the environment, fear, thirst, 
hunger, etc...  

A1 Quick exploration of the new nest. The ants have just discovered the new 
nest and start a fast and active exploration of the new site. They move 
quickly through all rooms for evaluating the safety of the new site and 
decide quickly if the emigration should start to this new nest.  

A2 Panic movements. This behavior is expressed mostly by nurses: due to the 
new environmental conditions —strong light and increased temperature— 
the old nest is no longer suitable for a good brood care. The ants then start 
moving quickly inside the old nest to find a room with appropriate 
conditions. As such rooms no longer exist in the old nest, such ants are then 
ready to emigrate.  

A3 Panic movements in the old nest. These movements are very similar to A2, 
but the ants are more fearful (this behavior seems to be expressed mainly 
by the youngest ants). With respect to behavior A2, the ants remain closer 
to the brood and the queen and never go outside.  

A4 General patrolling. Patrolling is a general exploration of the environment. 
This behavior can be expressed by some foragers that are not really 
involved in the emigration activity, or it may be the beginning of a 
protection behavior, as has been observed in some other species. In this 
case, the ants move through the two nests and the foraging area to identify 
potential problems (predator, dangerous area, ...).  

A5 Transportation. The ants are transporting something, i.e. the queen, a 
cocoon, a larva, or an egg. This behavior is characterized by many very 
regular round-trips between the two nests. This is a very characteristic 
pattern. Sometimes it can be expressed by ants that actually don’t transport 
anything but rather act as a transporter (follow a transporter or move until 
finding something to transport).  

A6 Accommodation/preparation of the new nest. The new nest is now known 
to be safe (it has no light, no disturbance, and most ants are installed in it, 
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then the colony is well structured again), but some work is needed to 
prepare the nest for an optimal brood care (find some water outside to 
increase the humidity inside the new nest in some room, find some 
construction materials, find some food, etc...).  

A7 Patrolling in the old nest. This behavior is a defensive patrolling inside the 
old nest in reaction to the disturbance. Ants act for defending and 
protecting the queen and the brood until their relocation.  

A8 Patrolling in the new nest and foraging area. This behavior is a defensive 
patrolling inside the new environment. The purpose is probably to defend 
and protect the queen and the brood while moving and installing inside the 
new nest.  

From an ethological point of view, the previous results are of great help for 
understanding how tasks are distributed during a nest relocation. Indeed, we 
obtained a very accurate description of the dynamic of the whole colony during all 
the emigration phase allowing us to posit a strong hypothesis about the function of 
the different behavior during the nest relocation phase. Some results are in 
accordance with previous works, especially the behaviors that can be observed in the 
foraging area. For example, the dynamic of the transportation behavior detected by 
the system match the results presented in (Pezon et al. 2005). These hypotheses 
should now be validated by repeating the experiment with different colonies and 
different species. A complete understanding of the emigration process based on 
systematic experimentations would be an important step ahead for the research in 
social insects. 

7. FINAL REMARKS 

We have presented a novel application of graphical model methods to the 
interpretation of data collected from an ant colony. Very encouraging results were 
obtained using S-HMM, a variant of HMM, well suited for modeling duration. We 
obtained an exhaustive description of the dynamic of the whole colony during all the 
emigration phase, allowing the ethologist to better understand the role played by 
each individual. Noteworthy is that the presented application is very innovative with 
respect to the current state of the art. Indeed, even if several authors have addressed 
the problem of modeling insect colonies, then this has been done with different 
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Fig. 4: Evolution of the number of individuals involved in the activities A0…A2. Each 
histogram bin is proportional to the number of individuals acting such activity in a 20 
minutes window. The bins are subdivided according to the number of individuals that 
are present in the old nest, the foraging area or the new nest. 
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Fig. 5: Activity analysis: evolution of the number of individuals involved in the activities 
A3…A5. Each histogram bin is proportional to the number of individuals acting such 
activity in a 20 minutes window. The bins are subdivided according to the number of 
individuals that are present in the old nest, the foraging area or the new nest. 
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Fig. 6: Activity analysis: evolution of the number of individuals involved in the activities 

A6…A8. Each histogram bin is proportional to the number of individuals acting such 
activity in a 20 minutes window. The bins are subdivided according to the number of 
individuals that are present in the old nest, the foraging area or the new nest. 
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goals. In general, the interest has been to study the emerging behavior of the colony, 
seen as a complex system, starting from a simple model of the individual. In our 
case, we started from the opposite point of view, proposing a method for observing 
and modeling the medium/long term behavior of real individuals, as induced by the 
conditioning of the social environment, in an emergency condition. Finally, RFID 
methods for tracking the positions of people or animals begin to be quite a diffused 
practice, which is attracting the interest of the data mining community. Nevertheless, 
a method for constructing a complex model of the behavior of an individual traced 
by an RFID has not been proposed until now.  
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