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Abstract— This paper deals with the geometrical properties
of an ellipsoidal object (aspect ratio, volume, orientation) esti-
mation with an underwater sensor inspired by the uncommon
sense of the electric fish. The proposed method first locates
the object independently of its geometrical properties thanks
to the MUSIC (MUltiple SIgnal Classification) algorithm and
then, estimates the geometrical properties using an optimiza-
tion method and the object’s electrical response model. The
simulation results show the relevance of the method.

I. INTRODUCTION

In the field of underwater robotics, a big challenge consists
in giving autonomy to robots navigating in turbid water
and confined or post catastrophic environment. In such
conditions, usual solutions such as vision and sonar are
not efficient enough for trajectory control or cartography.
But an alternative is developing since the early 2000’s, by
taking inspiration of the electric sense, a way of environ-
ment perception used by some fish which live in muddy
waters and hunt by night (Gnathonemus petersii in Africa
or Eigenmannia virescens in South America). This original
sense has been discovered by biologists in the 50’s [1]. The
fish polarizes its body thanks to a dedicated organ and a
surrounding electric field is thus created. The electrical field
response of the objects in the neighborhood to that field
is caught by the fish with a high density distribution of
electroreceptors, spread out over its skin. The fish decodes
this electric image [2] to recover the environment features.
By observation and comprehension of these biological mech-
anisms, researchers in bio-inspired robotics designed new
kinds of sensors directly inspired by electric sense. Simply
composed of two emitting and two receiving electrodes at the
beginning [3], researchers made these systems evolve toward
more complex sensors. Nowadays, the sensors are cylindrical
multi-electrodes devices using either U-I technology (voltage
polarization and current measurements) [4], [5], [6] or U-U
technology (voltage polarization and voltage measurements)
[7]. The U-I sensor, which is the purpose of this paper, is able
to accurately estimate a sphere’s location and size thanks to
a Kalman filter algorithm [8]. With this technique, location
and size are estimated at the same time. Indeed, we know
the object’s shape and position informations, both contained
in the measured currents, to be intimately related to each
other in a non-linear relationship. It is clearly shown by the
Rasnow’s potential perturbation model for a sphere of radius
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a and of center O [9]:

δφ(M) = χ
(a
r

)3
E0.r (1)

where δφ(M) is the potential perturbation evaluated at M
point, χ is the contrast factor, representing the relative
object conductivity with respect to that of the water, E0 is
an external and uniform electric field in the whole sphere,
r =

−−→
OM and r = ‖r‖. A recent work [10] showed the

feasibility, in the case of an ellipsoidal object, of location and
geometrical informations extraction using the U-U technol-
ogy SensorPod probe. The algorithm estimates the object’s
features in a sequential process, by an active alignment of
the sensor with respect to the object’s main axis and suitable
models for parameters estimation. Ellipsoidal objects are in
fact of particular interest. The ellipsoid is the next shape
after the sphere (and including it) in term of complexity.
Moreover, [11], [12] showed that the response of a compact
object to a uniform electric field can be approximated, at
first order, by that of an ellipsoid. We propose here a
new method for estimating the geometrical parameters of a
prolate ellipsoid (one long axis and two shorter axis), using
our U-I technology probe. It consists in the estimation of
three parameters. The two first ones are those which uniquely
define the ellipsoid. They can either be the major semi-axis a
and the minor semi-axis b, or the aspect ratio η = a/b and the
volume V . The third parameter is the pose angle between the
sensor main axis and the ellipsoid semi-major axis, denoted
θ0 (see figures 1b and 1c). The approach is based on methods
recently introduced in the field of applied mathematics [13],
in which electrolocation and shape recognition is numerically
addressed with a dense array of electroreceptors. It consists
in separating position and geometry informations from the
sensor’s input currents. This is performed in two steps :
1) locate the object independently of its intrinsic properties
using the MUSIC (MUltiple SIgnal Classification) algorithm
[14], [15] ; 2) knowing the position, estimate its geometrical
properties with a least square optimization algorithm and
a suitable equations system solving method. See a scheme
of the process on figure 3. The results introduced in this
paper, obtained in simulation, demonstrate that the method
can be implemented with our sensor, even though it has
much less electrodes compare to [13]. These results are
particularly encouraging and constitute a first step before
their experimental implementation. After having described in
details the sensor and the test bed in section II, the currents
models in section III and the assumptions about the sensor
and the objects in section IV, results on localization are
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Fig. 1: (a) The sensor with the polarization and measure-
ment schematic and dimensions in meters. R denotes the
sensor radius. (b) The ellipsoid and its related local frame
(Oo,u,v). Oo coincides with the geometrical center of the
object. Vectors u and v are aligned with the semi-major axis
(a), and the semi-minor axis (b), respectively. (c) The sensor,
the object and their respective frames. The coordinates of
the geometrical center of the object are denoted (xc0, y

c
0) in

the sensor frame. Its orientation relative to the sensor axis
is θ0 . Vector V is the longitudinal velocity and vector Ω
is the rotation velocity about the vertical axis. The macro-
electrodes are numbered from E1 to E4

presented in section V and on shape recognition in section
VI. Section VII deals with future works for improvements
and experimental implementation of the approach.

II. THE ELECTROLOCATION TEST BED

A. Sensor

The sensor is called slender probe due to its large aspect
ratio and is composed of four macro-electrodes spaced
by cylindric insulating parts, see figure 1a. Each macro-
electrode can be set under an electric potential with respect
to the others and this potential difference leads to an elec-
tric current flowing through all the conducting medium. In
particular, the electric current flowing through the individual
electrodes that compose each of the macro-electrodes can
independently be measured with a remote Dspace R© acqui-
sition device (12 bits resolution, 5Hz sampling frequency).

B. Tank and Cartesian robot

The probe described above is immersed into a 1m sided
cube tank. On the top of this tank, a Cartesian robot allows
controlled translations along horizontal x and y axes and

Fig. 2: The water tank topped with the Cartesian robot, per-
mitting a planar motion of the sensor. A scene is composed
of the sensor and objects lying in the same plane.

rotation about the vertical z axis, see figure 2. The motion
control is performed with a DSpace R© system with custom
program. The sensor being linked to this robot thanks to
a rigid epoxy fiber tube, its motion in a plan can be con-
trolled. For a complete description of the robot (electronics
schematics, noise level, positioning precision, sensitivity to
temperature) refer to [5]. A scene can be composed by
placing some objects of different shapes, sizes and materials
at different locations in the tank.

III. CURRENTS MODELS

The model of currents describes the direct problem, which
consists in knowing the electric currents flowing through
the electrodes for a given scene, defined by the sensor’s,
the objects’ and the medium’s characteristics. In fact, we
have at our disposal two models for the direct problem.
They are both entirely described in [4] and we briefly
present them in this section. The first one, called BEM
(standing for Boundaries Elements Method), is derived from
the electrostatics theory and the currents are computed thanks
to a discretization in finite elements of all the boundaries
of the scene. It provides a numerical solution of the direct
problem [16], which will be used as the sensor input currents
in this paper (input data of the process, as shown on figure
3). The second one, known as the analytical model, describes
the measured currents with simple explicit mathematical
expressions deduced from a reduction process described
in [4]. The methods used for the localization and shape
recognition are based upon this analytical model, see figure
3.

A. BEM Formulation of the direct problem

An electric potential difference is imposed between the
electrodes of the sensor, so there exists an electric potential
φ in the surroundings, satisfying Laplace equation : ∆φ =
0. All over the scene, Ohm’s law is locally described by
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Fig. 3: Scheme of the process. The BEM computed currents
are used as input. The methods for localization and shape
recognition are based upon the analytical model.

j = γ∇φ, j being the current density (A/m2) and γ
the medium conductivity (S/m). Boundary conditions on
the sensor and the objects are known, depending on their
material dielectric properties (conducting or insulating). The
current flowing through the boundaries of each electrode
is defined as the flux of the normal (with respect to the
surface) current density. Thanks to the discretization of all
the boundaries of the scene, the currents flowing through
each electrode is numerically computed. BEM computed
currents faithfully estimate the measured currents with the
true sensor’s geometry [4]. BEM computed currents will
serve as input currents in this paper, in preparation to their
substitution by future experiments.

B. Analytical model

Let us now add some assumptions: 1) the sensor has the
slender shape and the electrodes are arranged as described
in section II-A ; 2) each object is small enough to assume
the electric field to be uniform over its whole volume. In
practice, constraint 2) is justified when the lateral distance
between sensor main axis and object’s center is equal or
greater than three sensor radius (yc0 ≥ 3R on figure 1) and
when the size of the object is at most of the order of the
sensor radius (a ≤ R) [4]. Under these assumptions, the
following analytical model for the currents is established.
It describes a linear relationship between the vector U ∈
R4, being defined as the electric potentials we can set onto
macro-electrodes, and two currents vectors denoted Iax ∈ R4

and Ilat ∈ R4

Iax =
(
C0 + δC

)
U (2)

Ilat =
1

4π
P⊥HP

cGTC0U. (3)

Each component of the vector Iax (resp. Ilat) is the ”axial
current” (resp. ”lateral current”) of the corresponding macro-
electrode [4]. In particular, the model of the Iax vector (2)
shows a decomposition into two independent contributions.
First, I0 = C0U is the axial currents vector measured in the
case where there is no object in the scene. The 4 × 4 real
matrix C0 represents the conductivity of the surroundings
which with no object only depends on the sensor’s geometry
and the medium’s conductivity γ. It is obtained once for all
either by numerical computation or by a calibration phase.
Second, δIax = δCU is the axial perturbation vector induced
by the presence of the object and the 4 × 4 real matrix
δC is the conductance variation matrix that encodes the
surroundings’ conductance variation due to the presence of

the object. A model for δC is given in [4] and here rewritten
as

δC =
1

4πγ
C0GP cGTC0. (4)

The 4 × 3 real matrix G is a non-linear function of the
object’s coordinates in the sensor frame, whereas the matrix
P c depends on object’s properties only (detailed in section
IV). In the signal array processing literature [15], δC is
known as the multistatic response matrix. On the other hand,
the analytical expression (3) of the Ilat vector handles a 4
× 4 real matrix P⊥ which depends on the sensor’s only. It
describes how the macro-electrodes are laterally polarized
under the effect of the electric field reflected by the object.
The 4 × 3 real matrix H , which, as the matrix G, is a
non-linear function of the object’s coordinates in the sensor
frame. In practice, the components of Iax (resp Ilat) are
obtained by computing the sum (resp. the difference) of the
currents flowing across the two corresponding left and right
electrodes. Thus, a numerical value of the matrix δC for a
given scene can be obtained. Remarking that the measured
vector δIax for a polarization vector U = (1 0 0 0)T equals
to the first column of δC, the four columns can be recovered
by successively setting each macro-electrode to 1V and the
three others to 0V .

IV. HYPOTHESES AND REQUIREMENTS

A. Additional assumptions

In addition to the basic assumption of the analytical model
(previous section), let us add further restrictions on the sensor
motion and on the objects’ features : 1) the sensor always
moves in straight line, along its main axis : rotation velocity
Ω shown on figure 1c is set to zero ; 2) there is only one
object at each time in the scene and it lies in the same plan
as the sensor ; 3) the object’s material properties (perfectly
conducting or perfectly insulating) and the side of the sensor
on which the object is, are determined by an algorithm that
use the signs of the currents δIax and Ilat, described in [17]
; 4) the object is assumed to be ellipsoidal (or cubic, in order
to assess the robustness of the method for other shapes) ; 5)
the ellipsoids used in this paper are supposed to be prolate,
that is, their rotation axis corresponds to their semi-major
axis ; 6) the aspect ratio is η = a/b, a being the semi-major
axis, and b, the semi-minor axis, ranging from 1 (sphere) to
2.5 ; 7) all the objects’ surfaces are smooth, with no cracks.
The objects used in this paper are described in table I. The
problem being symmetric with respect to the sensor’s main
axis, the objects are placed on the left side of the sensor
only.

B. A model for the object’s electrical response

According to [11], [12], the response of an ellipsoidal
object to a uniform electric field is characterized by the
first order polarization tensor which, in the object’s principal
basis, can be written as a 3 × 3 diagonal matrix, denoted P .
An analytical expression of P is given in [12]. For objects
with large conductivity (conducting) or small conductivity
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Number 1 2 3 4 5 6
Shape Cube Cube Ellipsoid Ellipsoid Ellipsoid Sphere
x0

(cm) 0 11 7 -4 13 ± 20

y0
(cm) 6 8 7 9 5 3 to 10

a (cm) 1 1 0.8 1 1 1
b (cm) 1 1 0.67 0.5 0.4 1
η 1 1 1.2 2 2.5 1
V

(cm3) 8 8 1.5 1.05 0.67 4.2

Material Insul. Cond. Cond. Insul. Cond. Cond.
θ0

(deg) 30 0 -20 -70 35 -

TABLE I: The objects’ representations and their correspond-
ing features. (x0, y0) are the coordinates of the object in the
fixed frame. For the cubes, semi-axis a and b are defined as
half of the edge length.

(insulating) compare to that of the water, P only depends on
the object’s volume and aspect ratio through the expression

P = V

f(η) 0 0
0 g(η) 0
0 0 g(η)

 , (5)

{
f = 1

A , g = 1
B for a conducting object

f = 1
A−1 , g = 1

B−1 for an insulating object

with functions A and B being defined as

A,B : R→ R

A(η) = η−2
∫ +∞

1

1

t2 (t2 − 1 + η−2)
dt,

B(η) = η−2
∫ +∞

1

1

(t2 − 1 + η−2)
2 dt.

Relatively to the sensor main axis, the ellipsoid is rotated of
an angle θ0 about the vertical axis. So, in the sensor frame,
the matrix P becomes

P c = Rθ0PR
T
θ0 , (6)

the subscript T denoting the transposition and Rθ0 being
the rotation matrix of angle θ0 about the vertical axis. The
matrix product (6) leads to the following expression for the
components of P c

pc11 = p11 cos2(θ0) + p22 sin2(θ0), (7)
pc12 = (p11 − p22) cos(θ0) sin(θ0), (8)

pc22 = p11 sin2(θ0) + p22 cos2(θ0)., (9)

The component pcij (reps. pij) denotes the ith row and jth

column component of P c (resp. P ). With the symmetry
properties of the problem, we have pc21 = pc12, while
pc33 = p33 and plays no role in the problem. The others
components equal to zero. For a straight line motion of
the sensor sweeping past the object 5 (table I), and with
a constant polarization vector U = (0 0 0 1)T, the BEM
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Fig. 4: Currents Ilat (top) and δIax (bottom) for a straight
line motion of the sensor, with constant polarization vector
U = (0 0 0 1)T, going past the object numbered 5 in table I.
Solid lines : BEM currents. Dashed lines : currents calculated
with the analytical model.

currents (solid lines) and the currents computed with the
analytical model (dashed lines) are superimposed on figure 4.
Even though there are amplitudes differences, the analytical
model faithfully describes the BEM computed currents. Now
the context of the study being fixed, the description of the
shape recognition process can start.

V. LOCALIZATION

As explained in introduction, the first step before shape
recognition is the localization of the object independently of
its intrinsic properties. This is in agreement with biologists’
studies who showed the ability of the fish to localize objects
independently of their shapes [18]. Moreover, recent results
on electric fish numerical modeling showed the feasibility of
object’s localization separately from of its intrinsic properties
by using the MUSIC algorithm [13], [19]. This section details
the implementation of the MUSIC algorithm to our sensor.

A. Model-based localization : the MUSIC algorithm

MUSIC is a model-based sensor array signal processing
algorithm [20]. It has been developed since the 80’s to
estimate the direction of arrivals of electromagnetic and
sound waves onto a passive antenna network [14]. In the
2000’s, [15] showed that the principle could be extended
to an active antenna network in order to localize scatterers
in an homogeneous medium. By sequentially emitting a
polarization wave with each antenna of the network and by
measuring the polarized scatterers’ responses with the whole
network , the multistatic response (MSR) matrix is computed.
In our case, the MSR matrix is the conductance variation
matrix δC (4). Then, a Singular Value Decomposition (SVD)



Fig. 5: Geometric representation of the MUSIC principle
in dimension 3 (inspired by fig.1 in [14]). A basis of the
noise subspace N is obtained with the SVD of the measured
matrix δC. A set of steering vectors, corresponding to a
set of candidate space coordinates are computed, defining
trajectories represented in dotted lines. In virtue of the
orthogonality between S and N , the steering vectors which
projection onto N is 0 belong to S. The corresponding space
coordinates are taken as an estimation of the object’s center
location.

of this matrix is performed [21]. The singular vectors asso-
ciated to non-zero singular values form a basis of the signal
subspace S whereas the singular vectors associated to zero
eigen values form a basis of its orthogonal complement, the
noise subspace N . Figure 5 represents these two subspaces
in dimension 3 (the dimension is in fact 4 in our case
because we have 4 components currents vectors). On the
other hand, from the analytical model of the MSR matrix,
one can exhibit particular vectors, called steering vectors
in the literature [15]. In fact, they correspond to the Green
function vectors of the background medium. Steering vectors
have two important properties: first, they are functions of
the three space coordinates and they are independent of
scatterers’ intrinsic properties ; second, when evaluated in
the scatterers’ coordinates they are known to lie in the
subspace S. So, in virtue of the orthogonality between the
subspaces S and N , the projection onto N of the steering
vectors evaluated in the object’s coordinates tends toward
0. Figure 5 describes how MUSIC makes good use of this
fact in practice. Moreover, an implementation of the MUSIC
algorithm is precisely described in [22] for the localization
of buried unexploded ordnance. Even though the information
carrier is a magnetic (not electric) field and the sensor array
is planar (not linear), the analytical model for our respective
MSR matrices are of identical structures. So, by using a
similar process, we implemented the MUSIC algorithm with
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Fig. 6: MUSIC localization error map in percentage of sensor
length (22cm) for a 1cm radius conducting sphere placed
inside the green dashed line delimited area. Blue dotted line
roughly defines an area in which the error is less than 5%.

our sensor model according to the main following steps:
• Measure the MSR matrix δC by switching the polarized

macro-electrode one after the other, as described in
section III-B.

• Compute the SVD of the matrix δC.
• Select the singular vectors associated with the lowest

singular values in order to form a basis of the noise
subspace N .

• A set of candidate coordinates are defined by discretiza-
tion of an area around the sensor, in the plan in which
the sensor and the object lie.

• For each node of this grid, evaluate the steering vectors
in the coordinates of that node and compute the inverse
of their orthogonal projection onto N .

• Once all nodes have been treated, select the node for
which the inverse of the projection is the highest and
take as the object location the coordinates of that node.

B. MUSIC algorithm localization performances

To evaluate the performance of the MUSIC algorithm for
localization, an error map was computed for a 0.01m radius
conducting test sphere (object 6 in table I), see figure 6.
This map is obtained in the following manner. First, the
sensor is placed so that the sensor’s frame and the fixed
frame coincide. An area of size 0.4m × 0.07m is defined
on the left side of the sensor (see green dashed rectangle on
figure 6). Then, this area is discretized by a 0.01m square grid
and the sphere is placed at each node of this grid. For each
sphere position on the grid, the MUSIC algorithm is applied
with a 1mm square discretized search area. Finally, for each
sphere position a relative location error ε, in percentage of
the sensor’s over all length is computed according to

ε = 100.
√

(x̂c0 − xc0)2 + (ŷc0 − yc0)2/0.22, (10)

(xc0, y
c
0) and (x̂c0, ŷ

c
0) being the true and the estimated co-

ordinates of the center of the object in the sensor’s frame,
respectively. One can observe that the best results are ob-
tained in a longitudinal area ranging from -0.02m to -0.08m,
in which the error is less than 2%. More generally, the area
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delimited by the blue dashed line defines a zone in front of
the sensor where the localization error is less than 5%. Recall
that a 5% error corresponds to an absolute error of 1.1cm. If
the sphere is outside of this area, the error can reach 10% or
more (white zones). Then we have tested the algorithm with
the other objects described in table I. The results on figure 7
and in table II show that the location errors are of identical
magnitude compare to the case of the sphere. This confirms
the ability of the MUSIC algorithm to estimate the position
of the center of an object independently of its shape with our
sensor design. In other terms, the location and geometrical
informations have been separated, as expected.

VI. SHAPE RECOGNITION

Once the object is located with the method described
above, the purpose of this section is the estimation of the
objects properties. The strategy for shape recognition will
consists of two steps : first, we estimate the components
of the matrix P c with measured currents ; second, we
estimate the parameters θ0, η and V using the model of the
components of P c, described in (7) to (9).

A. Matrix P c estimation

As mentioned in [23], [13], our typical structure for the
analytical model of δIax and Ilat (section III-B) allows
rewriting the currents vectors as a system of equations linear
with respect to the components of P c. In the literature [24],
this model structure is known as linear regression, and a
solution for the components of P c can be estimated with an
optimization algorithm such as the well known least squares.
This method requires a collection of measurement points.
For the sake of simplicity, the straight line trajectory have
been chosen, because it doesn’t require any other motion
but constant forward speed. The trajectory is 0.4m long
sweeping past the object and at a constant lateral distance.
The polarization vector is constant along this trajectory: U =
(0 0 0 1)T and the currents vector Ilat is measured every
centimeter. Let us denote P̂ c the estimate of P c obtained
this way. A comparison between BEM currents (solid lines)
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Fig. 8: Currents Ilat (top) and δIax (bottom) for a straight
line motion of the sensor, with constant polarization vector
U = (0 0 0 1)T, going past the ellipsoid represented with
black line in table I . Solid lines : BEM currents. Dash-dot
lines : currents calculated with the analytical model in which
P c = P̂ c, P c being estimated with the least squares method.

and modeled currents using the estimated matrix P̂ c (dash-
dot lines) is shown in figure 8. The identification process
provides a P̂ c matrix that makes the model to fit the input
data (BEM) very well. In next section, we will see how the
object’s properties estimation can be performed, given an
estimated matrix P̂ c.

B. Object’s parameters estimation

Having an estimation P̂ c, the parameters θ0, η and V
can be computed by solving the system of three nonlinear
equations in three unknowns (7) to (9). For this, any numer-
ical system as the function fsolve of the Matlab R© software
is appropriate. However, our intention being to implement
this algorithm on autonomous system in the future, we
propose another method requiring no particular computing
software. The idea is to extract and estimate, by using the
analytical model of P c, each unknown one after the other.
First, according to equations (7) to (9), and supposing the
component pc12 6= 0 in a first step, the ratio pc11−p

c
22

pc12
is

independent of η and V . We have pc11−p
c
22

pc12
= h(θ0), h being

defined as

h :
]
−π

2
; 0
[
∪
]
0;
π

2

[
→ R , θ0 7→

1− tan2(θ0)

tan(θ0)
.

Function h having two solutions over
]
−π2 ; 0

[
∪
]
0; π2

[
(see figure 9), the sign of the component pc12 is used to
resolve this indetermination. In the particular case where the
estimated component p̂c12 is null, the matrix P̂ c is diagonal
and corresponds to either a sphere or an ellipsoid with an
angle of 0 or π/2. As a result, the simple following algorithm
ensures the discrimination between the three cases:
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Fig. 9: Functions f , g and f/g for a conducting object (top
left) and an insulating object (top right) over the interval
[1; 2.5]. Function h over the interval [−π2 ; π2 ] (bottom).

• If p̂c11 = p̂c22 ⇒ object is a sphere ⇒ η = 1.
• If p̂c11 > p̂c22 ⇒ object is an ellipsoid with θ0 = 0.
• If p̂c11 < p̂c22 ⇒ object is an ellipsoid with θ0 = π/2.

Then, a rotation matrix R̂θ0 is estimated and one can recover
an estimation P̂ of matrix P , by computing the matrix
product

P̂ = R̂T
θ0 P̂

cR̂θ0 . (11)

Next, from the tensor model (5), the ratio p11
p22

is a function
of the aspect ratio η only, and is independent of the volume
V . Function f/g having only one solution over the range
[1; 2.5] (see figure 9), the aspect ratio can be unambiguously
estimated from this function (remind that the conductivity is
already known, as mentioned in section IV, so there is no
doubt about which curve has to be used). Finally, volume V
can be estimated using p̂11 or p̂22

V =
p̂11
f(η̂)

or V =
p̂22
g(η̂)

. (12)

The shape recognition results are presented on figure
10 in the case where the localization error have not been
introduced in the process. The cubes are approximated by
ellipsoids with aspect ratios close to 1, ie. spheres with a
radius roughly equal to the half-diagonal of the cube face
(ie. a radius of

√
2 ≈ 1.41 cm). This is in accordance with

[11] in which a 2 cm sided cube is theoretically estimated
by a 1.32 cm radius sphere. In spite of an over estimation of
the sizes (except for the sphere), the ellipsoidal objects are
faithfully estimated. This proves, at least in simulation, that
the geometrical parameters estimation algorithm works if the
location is well known. The over estimated volumes for the
ellipsoids and cubes can be attributed to the purely dipolar
object’s response hypothesis of the analytical model. The
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Fig. 10: Comparison between real objects (solid lines) and
estimated objects (dashed lines) with no localization in the
shape recognition process. Colors correspond to those of the
table I. All dimensions in meter.
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Fig. 11: Comparison between real objects (solid lines) and
estimated objects (dashed lines and dash-dot lines) with
MUSIC algorithm localization error taken into account in
the shape recognition process. Dashed lines represent same
ellipses as the dotted ones but placed at the true object’s
location for shape recognition error visualization only. Colors
correspond to those of the table I. All dimensions in meter.

BEM formulation does not make such assumption, resulting
into BEM currents that contain additive and more complex
components. This is depicted by the amplitude difference
between BEM and analytical currents on figure 4. Thus,
because the shape recognition process estimates the tensor
components that makes the model to best fit the measured
data (BEM), it necessarily over estimates them. It directly
impacts the volume V that is factored out, as shown in (5).
To complete this discussion, the shape recognition results
including the localization errors of the MUSIC algorithm are
shown on figure 11 and in table II. The ellipsoidal objects
(numbered 3 to 6 in table I) are faithfully estimated. This
shows the ability of the algorithm to estimate the geometrical
properties of such objects. On the other hand, the ellipsoids
that estimate the cubes are more significantly effected by the
localization error.
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x̂c0 (cm) 0 11.1 7 -4 13 4.1
ŷc0 (cm) 5.5 7.1 6.4 8.7 4.3 6.5
η̂ 1.4 1.2 1.4 2.4 2.9 1.1

V̂ (cm3) 8.6 6.9 1.1 1.2 0.49 3
θ̂0 (deg) 81.9 5.8 -12.3 -74 29.2 -

TABLE II: Absolute values of all estimated parameters. For
parameters, η̂, V̂ and θ̂0, values correspond to estimation
with localization errors in the shape recognition process. For
the sphere, the true location is (xc0, y

c
0) = (4cm, 7cm).

VII. CONCLUSION

We have applied to our U-I technology sensor a method
proposed in the field of applied mathematics for estimating
the location and the geometrical properties of an ellipsoidal
object with the electric sense [13]. The simulation results
show the applicability of this method in the context of
robotics with a very few measurements. Indeed, the prin-
ciple of localization and geometrical informations separation
works. It follows that the ellipsoidal objects’ locations and
intrinsic properties are well estimated. To a lesser extent,
more complex shapes objects can also be estimated by
an ellipsoid. Moreover, compare to the algorithm proposed
in [10], the method describe in this paper doesn’t require
any iterative motion loops. Also, it is based on analytical
models, instead of numerically identified abacus. Now, these
encouraging results have to be confirmed in experimental
conditions. In addition, many other alternatives exist for
the application of the method and have to be studied. For
example, we could use the model of Ilat instead of that
of δIax for the localization with the MUSIC algorithm.
Other trajectories that the straight line for the identification
phase could also be studied. The estimated positions and
geometrical properties of an object with this method could
serve as an initial values for a filter in the context of object
tracking.
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