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Macroscopic crystal plasticity is classically viewed as an outcome of uncorrelated dislocation motions 
producing Gaussian fluctuations. An apparently conflicting picture emerged in recent years emphasizing 
highly correlated dislocation dynamics characterized by power-law distributed fluctuations. We use 
acoustic emission measurements in crystals with different symmetries to show that intermittent and 
continuous visions of plastic flow are not incompatible. We demonstrate the existence of crossover regimes 
where strongly intermittent events coexist with a Gaussian quasiequilibrium background and propose a 
simple theoretical framework compatible with these observations.
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Two contradicting pictures of dislocation-mediated plas-
tic flow are discussed in the literature [1,2]. The classical 
paradigm assumes that correlations among individual dis-
locations are weak and fluctuations are roughly Gaussian, 
which makes the homogenized description adequate. 
A different point of view emerged from the analysis of 
high resolution acoustic emission (AE) data in plastically 
deforming hcp crystals which showed that temporal fluc-
tuations may be power-law distributed in size and energy [3] 
and may be clustered in both space [4] and time [5]. These 
observations, suggesting that averages do not represent 
typical behavior, were corroborated by the study of statistics 
of slip events in micro- and nanopillars [6,7] for fcc and bcc
metals and supported by numerical models [3,8–10].
In this Letter we provide the experimental evidence that 

intermittent and continuous visions of plastic flow are not 
incompatible and that in some crystalline materials mild 
(near Gaussian) and wild (infinite variance type) fluctuations 
can coexist. It has been long noticed that AE in plastically 
deformed crystals may include both continuous background 
and discrete bursts [11]. While the continuous AE was 
thoroughly studied, the bursts were generally simply counted 
[12], or omitted as spurious even though sudden slips at 
irregular intervals could be also observed directly [13]. In this 
Letter we show that mild fluctuations, revealing uncorrelated 
dislocation motions, prevail in crystals where highly con-
strained dislocation entanglements screen long-range inter-
actions and prevent cooperative behavior. Instead, wild 
fluctuations, representing highly synchronized restructuring 
events, dominate in crystals where unconstrained long-range 
elastic interactions allow dislocations to self-organize. In the 
intermediate crossover regimes where strongly intermittent 
events coexist with a Gaussian quasiequilibrium back-
ground, the observed scaling exponents are nonuniversal.

To interpret these observations we propose a simple
stochastic mean-field model where dislocation flow is
represented by a Gibrat-type proportional dynamics [14].
Self-consistent single-site models of this type with other
types of multiplicative noise have been used before to
explain spatial scale invariance of plastic flows in the
hardening regime [15] and to describe mean field interface
depinning of dislocations [16]. However, none of these
models was able to capture statistics of avalanches observed
in our experiments, which is Gaussian for small events and
power law for large events.
Experiment.—We studied the acoustic signature of

plastic events during monotonic loading of hcp (ice, cad-
mium, Zn0.08%Al) and fcc (copper, aluminum, CuAl
alloys) macroscopic (cm to dm) single and polycrystals.
Additional cyclic tension-compression tests were performed
on pure (99.95%) aluminum polycrystals with large
(∼5 mm) grain sizes. While fcc crystals have a large number
of active slip planes, which facilitates formation of disloca-
tion junctions and leads to significant isotropic hardening
[17], hcp crystals have a small number of easy slip planes,
only the basal one for the materials tested here. The absence
of 3D entanglements in hcp crystals enables collective
effects manifesting themselves through strong kinematic
hardening induced by long-range elastic interactions. As
we show in Fig. 1, the measured AE signals consistently
substantiate these differences over a range of deformational
regimes (compression creep, uniaxial monotonic tension,
tension-compression cyclic loading). The details of the
experimental method can be found in Ref. [18].
In ice crystals (hcp), the AE has a form of an intermittent

signal with a negligible continuous background [Fig. 1(a)];
cadmium crystals (also hcp) show a similar picture
[Fig. 1(b)]. Instead, in copper crystals (fcc), the measured



acoustic signal is mainly continuous, reaching its maximum
at plastic yield, with only occasional bursts above this
background [Fig. 1(c)]. During cyclic loading of aluminum
crystals (fcc), the acoustic signal is essentially continuous
and symmetric in tension and compression, hence revealing
its plastic origin. The continuous noise, however, is inter-
rupted by bursts, on average less than 1 per loading cycle
[Fig. 1(d)].
Remarkably, for both classes of crystals, the bursts are

power-law distributed in maximum amplitude, pðA0Þ∼
A−τA
0 , and in dissipated energy, pðEÞ ∼ E−τE (Fig. 2).

The exponents, estimated from a maximum likelihood
method [20], are different for different types of crystals:
for ice τE ¼ 1.40� 0.03, for cadmium τE ¼ 1.45� 0.05,
for aluminum τE ¼ 2.00� 0.05 and for copper and
CuAl alloys τE ¼ 1.54� 0.08. The average values and
the associated standard deviations were obtained, for each
material, over several tests; in the case of ice, our previous
estimates of τE based on a least-squares fit of data [3] gave
systematically larger values 1.5–1.6. The amplitude A0,
which is a proxy of the strain associated with the avalanche,
scales as A0 ∼ E1=2 [18], meaning that τA ¼ 2τE − 1, i.e.,
τA ¼ 1.8 for ice and τA ¼ 3.0 for Al. Based on the value
of τA, plastic fluctuations in ice can be qualified as wild
with an undefined mean; for aluminum, with the variance
diverging, we are just at the border between wild and
mild fluctuations [21].

In contrast, the continuous AE signal sampled at 5 MHz
is always near-Gaussian independently of the material and
does not display any detectable intermittency or time
clustering, see Fig. 3 and Ref. [18]. This is in agreement
with the classical perspective where plasticity is viewed

FIG. 2 (color online). AE energy probability density functions
for bursts detected during: a uniaxial compression test on ice Ih
[red open symbols; constant stress σ ¼ 0.56 MPa, T ¼ −10 °C,
see Fig. 1(a)], a monotonic tension test on copper (black semi-
open symbols, T ¼ 20 °C, _ϵ ¼ const), and a cycling loading test
on aluminum under uniaxial tension compression [blue closed
symbols, cycles 1 to 2000, see Fig. 1(d)]. The PDFs have been
shifted vertically for clarity.

FIG. 1 (color online). Acoustic power recorded during plastic deformation. (a) Single crystal of ice (Ih) under uniaxial compression
(creep at constant stress σ ¼ 0.56 MPa, T ¼ −10 °C). (b) Cadmium single crystal under monotonic uniaxial tension
(_ϵ ¼ 1.3 × 10−3 s−1, T ¼ 20 °C). (c) Copper single crystal under monotonic uniaxial tension ( _ϵI ¼ 1.9 × 10−2 s−1, T ¼ 20 °C).
(d) Aluminum polycrystal (grain size ∼5 mm) under cyclic uniaxial strain control (ϵmin=ϵmax ¼ −1, Δtcycle ¼ 10 s, Δϵ ¼ 0.95%,
T ¼ 20 °C). Red curves: acoustic power sampled at 1 Hz, unless noted otherwise. Black dashed curves: strain (a) or stress (b), (c), (d).
Blue dotted lines indicate the level of instrumental noise.



as a sum of independent events similar in size and duration.
The relative contribution of plastic avalanches responsible
for bursts can be estimated by the amount of AE power
recorded above the level of continuous signal with the
acoustic power (in aJ=s) of the environmental noise first
removed. Our measurements (see Table S1 in Ref. [18])
show that ice single and polycrystals represent a paradig-
matic example of intermittent plasticity with nearly 100%
of AE power released through AE bursts. In contrast, for
aluminum, the contribution due to avalanches is small,
reaching under cyclic loading at most a few percent during
the first cycles, when the dislocation substructure has not yet
fully developed. Copper and CuAl alloys stay in between, as
it is also clear from the comparison of the exponents.
In summary, our observations show that hcp crystals

with highly anisotropic slip (ice, Cd, Zn) exhibit correlated
scale-free flows, facilitated by the dominance of long-range
elastic interactions. Instead, in the studied fcc materials
(Cu, Al, CuAl alloys), intermittent and continuous plastic
flows coexist. The continuous component signifies the
prevalence of small, uncorrelated dislocation motions
taking place inside substructural units (cells, labyrinths,
etc.) that effectively screen long-range interactions. The
large bursts can be attributed to major autocatalytic
cascades of unlocking events [17] leading to fundamental
rearrangements of the transient dislocation substructures.
This suggests that the commonly observed quasiequili-
brium dislocation patterns in fcc crystals are only margin-
ally stable and their restructuring can be triggered by
insignificant changes in the global force balance. The
intermediate behavior of Cu might be explained by a
smaller stacking fault energy compared to Al, favoring
the dissociation of dislocations and kinematic hardening.
Modeling.—A simple mean field type model, incorpo-

rating only the essentials of plausible mechanisms, pro-
vides a basic explanation for the coexistence of intermittent
and continuous fluctuations. As a point of departure, we
use a conventional mesoscopic framework and assume that
the evolution of the spatially averaged density of mobile
dislocations ρ is described (in a narrow window of stress

variation) by a kinetic equation [22], dρ=dγ ¼ a − cρ,
where a ≥ 0 accounts for the nucleation rate whereas
c ≥ 0 characterizes the prevalence of annihilation/immobi-
lization over multiplication. Here we use the local shear
strain γ as a parameter related to time through the Orowan
relation. According to this model, in the steady state regime
the average dislocation density is ρc ¼ a=c, which intro-
duces a characteristic scale.
A shortcoming of this coarse grained description is that it

is fully deterministic. Stochastic models of plasticity with
either additive [23] or multiplicative [15] noise have also
been considered in the literature. The account of noise in
the local kinetics of mobile dislocations is crucial because
the yielding system is close to the state of marginal stability
where fluctuations can be greatly enhanced and can
interfere with the macroscopic evolution. If we make the
simplest assumption that nucleation is deterministic but,
due to environmental fluctuations, the annihilation rate c is
randomly perturbed, we obtain the stochastic equation

dρ=dγ ¼ a − ½cþ
ffiffiffiffiffiffiffi
2D

p
ξðγÞ�ρ; ð1Þ

where hξðγÞi ¼ 0, hξðγ1Þ; ξðγ2Þi ¼ δðγ1 − γ2Þ and D is a
constant parameter characterizing the intensity of fluctua-
tions and introducing a second characteristic scale ρD ¼
a=D. While Eq. (1) is linear, the nonlinearity of the
microscopic dynamics is implicated through the random-
ness. In particular, the multiplicative noise describes the
autocatalytic effect when dislocation clusters react to
perturbations in a collective manner amplifying the effect
of the noise proportionally to their size [24]. Such a
cooperative response implies the presence of long-range
fields that are not explicitly resolved in our zero-
dimensional model; we also neglect quenched disorder
and diffusion, whose account would allow one to model
spatial intermittency [25] observed in microscopic models
of crystal plasticity [8]. Multiplicative stochastic closure
of the coarse grained models exemplified by Eq. (1) is
rather common in the study of marginally stable driven
systems [24,26] including turbulence [27], absorbing phase

FIG. 3 (color online). Raw AE signal recorded during the cyclic loading of a polycrystal aluminum as in Fig. 1(a). (a) The red solid
line shows the evolution of the AE power, sampled at 10 Hz. The stress is shown as a black dashed line. The inset shows the raw signal
sampled at 5 MHz during 0.1 s near the plastic yield. (b) Distribution of local extrema of the acoustic signal (in V) shown as a normal
probability plot (skewness ζ ¼ 0.02, excess kurtosis κ ¼ −0.27).



transitions [28], and depinning [29]. A direct link between
the multiplicative random walks in the cluster size space
and the emergence of criticality in systems with many
degrees of freedom was established in Ref. [30].
To find the stationary probability distribution of the

dislocation density p ¼ psðρÞ we need to solve the
corresponding Fokker-Planck equation. We interpret it in
the Stratonovich sense by assuming that ξðγÞ is a colored
noise with vanishing autocorrelation time [31]

dp
dγ

¼ d
dρ

�
½ðcþDÞρ − a�pþDρ2

dp
dρ

�
: ð2Þ

In the stationary regime [32]

psðρÞ ∼ e−ða=DρÞρ−½1þðc=DÞ�: ð3Þ

At large values of ρ this distribution exhibits a power-law
tail ρ−α with exponent α ¼ 1þ c=D. Instead, around the
maximum located at ρ ¼ a=ðcþDÞ the distribution is
Gaussian-like. When the noise is weak, c=D ≫ 1, the
fluctuations are mild, but as the strength of the noise
increases, the system undergoes a noise-induced transition
[33] with fluctuations becoming wild at ρD=ρc ¼ c=D ≤ 2.
If we use the Ito interpretation, the power-law exponent
in the tail changes to α ¼ 2þ c=D; however, the basic
structure of the stationary distribution remains the same.
To link the proposed model with our AE measurements,

we recall that the amplitude A0 is proportional to the
number of dislocations, involved in the avalanche, times
their average length [18], hence, to ρ, thus giving α ¼ τA.
This identification, which we checked to be fully compat-
ible with statistics of the dislocation density fluctuations in
the microscopic model [8], allows one to interpret observed
behaviors in terms of the values of the parameters a; c; D
First of all we note that to describe an idealized, single

plane plastic flow without considerable nucleation and
annihilation (modeled at the microlevel in Ref. [34]), we
must consider the case when both a=D and c=D are small.
Then Eq. (1) reduces to a logarithmic Brownian motion and
α ¼ τA → 1 (Zipf law). In such systems dislocation dynam-
ics is governed exclusively by elastic long-range inter-
actions and this limit is approached by our hcp crystals
where dislocation entanglements are minimal. In particular,
our identification suggests that for ice c=D ¼ 0.8 and
also explains why in the corresponding experiments the
Gaussian-like background was difficult to detect behind the
experimental noise.
In materials characterized by stronger isotropic harden-

ing, such as the fcc crystals tested here, short-range
interactions are responsible for the formation of transient
substructures that screen elastic interactions. Therefore, one
can expect that c=D ≥ 1, and accordingly, we obtain
c=D ¼ 2.0 for Al. In this case numerous independent
nucleation events originating from cell walls would lead

to continuous AE [35]. The observations also imply that the
value of a is large enough to ensure a significant presence
of the Gaussian plasticity. One can speculate that for bulk
bcc materials in the low temperature regimes, where the
Peierls stress is high, the appropriate scaling is ρD ≫ ρc
and the statistics of fluctuations should be essentially
Gaussian. This conjecture is supported by the fact that
in bcc crystals, screw dislocation segments are not
restricted to a single slip plane, thus favoring bulk multi-
plication [7], and by TEM in situ straining experiments
showing parallel screws of both signs moving rather
smoothly and experiencing quasicontinuous cross slip
without any sudden bursts [36].
While these predictions are compatible with the difference

between the fluctuation patterns in the bulk materials
analyzed here, the situation is different for nonbulk systems
such as nanopillars where power-law distribution of slip
sizes was observed in both fcc and bcc crystals with an
exponent of τA ∼ 1.5 [6,7], meaning τE ∼ 1.25. In these
tests, however, the number of dislocations was small and
their motion was limited to a single slip plane [6,37], thus
precluding dislocation entanglements and short-range inter-
actions (similar to bulk hexagonal crystals). The near critical
behavior with low values of exponents in these nonbulk
materials can be linked to the dominance of surface effects
which limited nucleation and annihilation [38]. One can then
argue that smaller is not only “stronger” but is also “wilder.”
Despite the universally critical behavior at small sizes,

one can expect for bcc and fcc crystals, a gradual transition
from strongly intermittent to near Gaussian behavior of
fluctuations as sample size increases. This is in full
agreement with observations pointing towards smaller
crossover lengths in bcc than in fcc nanopillars [7].

To conclude, we studied nonequilibrium steady state
regimes of plastic flow, when a system continuously but
unsuccessfully attempts to equilibrate by developing tran-
sient patterns with competing characteristic scales. The
equilibration is never completely successful due to brutal
rearrangements involving a broad range of scales. This
picture is contained in our Eq. (1) which can serve as a
stochastic rheological relation providing a closure for
continuum plasticity [39]. The integration of intermittent
and continuous regimes of plastic flow in a single computa-
tional framework will be an important step towards a reliable
control of plastic deformation at micro- and nanoscales.
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