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cUniversité de Tunis El Manar, Laboratoire de Modélisation Mathématique et Numérique
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Abstract

We are interested in functional linear regression when some observations

of the real response are missing, while the functional covariate is completely

observed. A complete case regression imputation method of missing data is

presented, using functional principal component regression to estimate the func-

tional coefficient of the model. We study the asymptotic behaviour of the error

when the missing data are replaced by the regression imputed value, in a ’miss-

ing at random’ framework. The completed database can be used to estimate

the functional coefficient of the model and to predict new values of the response.

The practical behaviour of the method is also studied on simulated data sets. A

real dataset illustration is performed in the environmental context of air quality.
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1. Introduction

Literature on functional data is really wide, as attested by the numerous

books on this subject these last years. The estimation and forecasting theories

of linear processes in function spaces are developed in [1]. A comprehensive

introduction to functional data analysis can be found in [26]. In the focus of5

[13] are nonparametric approaches. Computational issues are explained in [27].

Nonparametric statistical methods for functional regression analysis, specifi-

cally the methods based on a Gaussian process prior in a functional space are

discussed in [28]. In [18] inferential procedures based on functional principal

components are considered. [32] mainly focuses on hypothesis testing problems10

about functional data. Among this, the functional linear model has received a

special attention (see [25, 4, 5, 3, 16, 10, 6, 31] for main references).

In this paper, we are interested in the functional linear model

Y = 〈θ,X〉+ ε, (1)

where θ is the unknown function of the model, Y is a real variable of interest,15

ε is a centered real random variable representing the error of the model, with

finite variance E(ε2) = σ2
ε , and X is a functional covariate belonging to some

functional space H endowed with an inner product 〈., .〉 and its associated norm

‖.‖. Usually, H is the space L2([a, b]) of square integrable functions defined

on some real compact [a, b] and the corresponding inner product is defined by20

〈f, g〉 =
∫ b
a
f(t)g(t) dt for functions f, g ∈ L2([a, b]). Without loss of generality,

we consider our work on [0, 1]. Moreover, we assume that X and ε are indepen-

dent.

All the previously cited works are devoted to analyse complete data, how-25

ever, this is not the case in many interesting applications including for example

survival data analysis. For this reason, we focus in this work on the problem
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of missing data (see [20, 15] for a wide introduction in the multivariate frame-

work). This subject has been widely studied, in particular the way to impute

missing data and the accuracy of this imputation according to the types of30

missing data: Missing Completely At Random (MCAR), Missing At Random

(MAR) and Missing Not At Random (MNAR). Even if this problematic has

received a lot of attention in a multivariate framework, it is not the case for the

functional data framework. Our objective is to study the problem of combining

regression imputation, missing data mechanisms and functional data analysis.35

As far as we know, few results are available for the moment. In MAR setting,

[17] have explored this area by developing a functional multiple imputation ap-

proach modeling missing longitudinal response under a functional mixed effects

model. They developed a Gibbs sampling algorithm to draw model parameters

and imputations for missing values. Besides, [14] have considered two kinds of40

mean estimates of a scalar outcome, based on a sample in which an explana-

tory variable is observed for every subject while responses are missing (which is

the closest to our context). A weak convergence result was proved. In MCAR

setting, [24] have adapted a methodology based on the NIPALS (Nonlinear It-

erative Partial Least Squares) algorithm, which provides an imputation method45

for missing data, which have affected the functional covariates. In MNAR set-

ting, [2] adapts a specification test for functional data with the presence of

missing observations. His method is able to extract the information available in

the observed portion of the data while being agnostic about the nature of the

missing observations. In MAR and MCAR setting, [9] have recently proposed50

a nonparametric approach to missing value imputation and outlier detection

for functional data. To our knowledge, there is no existing theoretical result in

the case of functional linear model under missing assumption operating on the

response variable, this problem only being until now the subject of studies in

the multivariate framework (see for instance [21], [22]).55

We carefully distinguish the missing data problem from a simple prediction

problem. Indeed, the missing data mechanism involves a random variable (which
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indicates whether the response is missing or not) which plays a central role when

obtaining our asymptotic results. This random variable and the variable X are60

dependent in the MAR case. This is also highlighted in [14]. In this paper, we

first propose an imputation method, based on the completely observed cases, to

replace missing values in the response of the functional linear model. We get

mean square error rates for these imputed values. Secondly, once the database

is completed, we are able to estimate the unknown function θ of the model with65

the whole sample. This estimator can then be used for predicting other values

of the response on a test set.

Combining missing data and functional variables offers a very large field

of applications. Among all possible applications, environment is a core issue

interesting many people for the future of our planet, in particular in the study70

of pollution indexes. The dataset we study here deals with temperature curves

in some French cities to predict a specific pollution atmospheric index. The

atmospheric index is missing in some cities in the northwest of France, for

which the corresponding temperature curves (the explanatory variable) are mild,

and leads to consider MAR data. The main objective is to get a map of the75

atmospheric index on the whole French territory.

The rest of the paper is organized as follows. Section 2 introduces the prob-

lem of functional linear model under missing assumption operating on the re-

sponse variable and formulates our main results of the imputation method and

of the mean square error for prediction of a new observation using the complete80

dataset. A simulation study is performed in Section 3. An environmental data

illustration is presented in Section 4. Some preliminary lemmas, which are used

in the proofs of the main results, are collected in Section 5.

2. Imputation of a missing value of the response

2.1. Functional principal components regression85

Let us consider a sample (Xi, Yi)i=1,...,n independent and identically dis-

tributed with the same distribution as (X,Y ). An estimation of θ based on
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principal components analysis of the curves X1, . . . , Xn has been studied in

many papers, see for instance [4]. We recall below the construction of this es-

timator. Considering the covariance operator of X defined under the condition90

E
(
‖X‖2

)
< +∞ (which is supposed to be satisfied in the following) by

Γu = E
(
〈X,u〉X

)
,

for all u ∈ H and its empirical version

Γ̂nu =
1

n

n∑
i=1

〈Xi, u〉Xi,

we call (λj)j≥1

(
resp.

(
λ̂j

)
j≥1

)
the sequence of eigenvalues of Γ

(
resp. Γ̂n

)
and (vj)j≥1

(
resp. (v̂j)j≥1

)
the sequence of eigenfunctions of Γ

(
resp. Γ̂n

)
.

The identifiability of model (1) is ensured as long as we assume that λ1 > λ2 >95

. . . > 0 (see [4]). Moreover, assuming that λ̂1 > . . . > λ̂kn > 0 for some integer

kn depending on n, the estimator of θ is defined by

θ̂ =
1

n

n∑
i=1

kn∑
j=1

〈Xi, v̂j〉Yi
λ̂j

v̂j . (2)

A consistency result of this estimator is given in [4], while more recent results can

be found in [3, 16]. In particular, [4] give technical conditions on the decreasing

rate to zero of the eigenvalues λj ’s in order to ensure the consistency of the100

estimator.

2.2. Operatorial point of view

We notice in this subsection that the model (1) can be seen from an opera-

torial point of view. Indeed, we can write the model

Y = ΘX + ε, (3)

where Θ : H −→ R is a linear continuous operator defined by Θu = 〈θ, u〉 for105

any function u ∈ H. Let us consider ∆̂n the cross covariance operator defined by
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∆̂nu = 1
n

∑n
i=1〈Xi, u〉Yi, for all u ∈ H. Then, it is easily seen that an estimator

Θ̂ of Θ, satisfying Θ̂ = 〈θ̂, .〉, is given by

Θ̂ = 〈θ̂, .〉 = Π̂kn∆̂n

(
Π̂kn Γ̂n

)−1

, (4)

where Π̂kn is the projection operator onto the subspace Span(v̂1, . . . , v̂kn).

2.3. Imputation principle110

Now, we present the context of missing data. There can be many reasons

for which missing data can appear: breakdown in a measurement process, a

person who is not willing to answer to some question of a questionnaire, . . . We

consider that some of the observations Y1, . . . , Yn are not available. We define

the real variable δ and we consider the sample (δi)i=1,...,n such that δi = 1 if

the value Yi is available and δi = 0 if the value Yi is missing, for all i = 1, . . . , n.

The data we observe are

{(Yi, δi, Xi)}ni=1.

We consider that the missing values are MAR. The MAR assumption implies

that δ and Y are conditionally independent given X. That is,

P (δ = 1 | X,Y ) = P (δ = 1 | X) . (5)

Note that the MAR assumption is much weaker than MCAR (for which

P (δ = 1 | X,Y ) = P (δ = 1)), as it allows the missing data to possibly depend

on the observed data and may be reasonable for many practical problems. As a

consequence of this MAR assumption, the variable δ (the fact that an observa-

tion is missing) is independent of the error of the model ε, conditionally on X.

In the following, the number of missing values in the sample is denoted

mn =

n∑
i=1

11{δi=0}. (6)

Then, to impute a missing value, say Y` (where ` is a given integer between

1 and n), a simple way is to consider complete case analysis (see for instance
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[20, 7, 30, 23, 29]). This regression imputation method uses the pairs of observed115

data to define the estimator of the model coefficient. More precisely, we define

Y`,imp =
1

n−mn

n∑
i=1
i 6=`

kn∑
j=1

〈Xi, v̂j〉〈X`, v̂j〉δiYi
λ̂j

. (7)

From the operatorial point of view, the imputation of the missing value Y` comes

back to

Y`,imp = Π̂kn,obs∆̂n,obs

(
Π̂kn,obsΓ̂n,obs

)−1

X`, (8)

where Γ̂n,obs = 1
n−mn

n∑
i=1

〈Xi, .〉δiXi, ∆̂n,obs = 1
n−mn

n∑
i=1

〈Xi, .〉δiYi and Π̂kn,obs

is the projection operator onto the subspace span(v̂1,obs, . . . , v̂kn,obs) where v̂1,obs,120

. . . , v̂kn,obs are the kn first eigenfunctions of the covariance operator Γ̂n,obs.

Now we give our main results. We consider the following assumptions.

(A.1) We assume that there exists a convex function λ such that λ(j) = λj125

for all j ≥ 1 that continuously interpolates the λj ’s between j and j + 1.

(A.2) There exists a positive constant C such that

E
(
‖X‖4

)
≤ C.

Our assumptions are quite classic in this context. Assumption (A.1) is simi-

lar to an assumption from [11]. It is a mild condition that allows a large class of

decreasing rate of eigenvalues for the covariance operator Γ, for example poly-130

nomial decay or exponential decay (see example 1 below, in page 7, for more

details). Assumption (A.2) holds for many processes X (Gaussian processes,

bounded processes) and can also be found for example in [4]. Then, we give our

main results.

Remark 1. Notice that the assumptions (A.1) and (A.2) are just needed to obtain135

a convergence rate, whether there are missing data on the response or not. The

only assumption needed on missing data is actually the MAR model.
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Theorem 2.1. Assume (A.1) and (A.2) are satisfied, if, moreover λknkn goes

to zero as n goes to infinity, we have the mean square error

E
(
Y`,imp − 〈θ,X`〉

)2

=

+∞∑
j=kn+1

(
ΘΓ1/2vj

)2

+
σ2
εkn

n−mn
+ o

(
kn

n−mn

)
.

Moreover, for the aggregate mean square error of all the imputed values, we have140

n∑
`=1

(1−δ`)E
(
Y`,imp−〈θ,X`〉

)2

= mn

+∞∑
j=kn+1

(
ΘΓ1/2vj

)2

+
σ2
εknmn

n−mn
+ o

(
knmn

n−mn

)
.

In order to precise the convergence rate of the imputed value Y`,imp to the

real one 〈θ,X`〉, we need an additional notation. For a function ϕ : R?+ −→ R?+
and a positive real number L, we define

C(ϕ,L) =
{
T : H −→ R / ∀j ≥ 1, T vj ≤ L

√
ϕ(j)

}
.

Note that simple cases satisfy the fact that ΘΓ1/2 belongs to C(ϕ,L). For

example, consider the operator Θ expressed in the eigenfunctions basis (vj)j≥1145

such that Θu =
∑+∞
j=1 θj〈vj , u〉 for any u ∈ H, with θj going to zero as j goes

to infinity. Hence there exists a bound L such that θj ≤ L for any j ≥ 1 and

ΘΓ1/2vj = θj
√
λj ≤ L

√
λj .

Remark 2. We introduce two notations to compare the magnitudes of two func-

tions ũ(x) and ṽ(x) as the argument x tends to a limit ˜̀ (not necessarily finite).

The notation ũ(x) ∼
x→˜̀

ṽ(x), stands for

lim
x→˜̀

ũ(x)

ṽ(x)
= 1,

and the notation ũ(x) .
x→˜̀

ṽ(x) denotes that |ũ(x)/ṽ(x)| remains bounded as

x→ ˜̀.150

Theorem 2.2. Let L =
∥∥ΘΓ1/2

∥∥
∞ and ϕ the function defined by ϕ(j) =

(ΘΓ1/2vj)
2

L2 for all j ≥ 1 that continuously interpolates the ϕ(j)’s between j and

8



j + 1. Under assumptions (A.1)-(A.2), the operator ΘΓ1/2 belongs to C(ϕ,L)

and

E (Y`,imp − 〈θ,X`〉)2 ∼
n→+∞

2σ2
ε

k?n
n−mn

,

where k?n is the solution of the equation in x155

∫ +∞

x

ϕ(t) dt =
σ2
ε

L2(n−mn)
x. (9)

Again, for the aggregate mean square error of all the imputed values, we have

n∑
`=1

(1− δ`)E (Y`,imp − 〈θ,X`〉)2 ∼
n→+∞

2σ2
ε

k?nmn

n−mn
.

Remark 3. Notice that the equation (9) has a unique solution (the left and right

hand sides are descreasing and increasing in x, respectively). The practical res-

olution of equation (9) to get k?n seems quite complicated due to the computation

of L. In order to solve this problem, we will use other ways to select the optimal160

number of principal components (see Section 3 below).

The last result giving the convergence rate of the imputed value Y`,imp is

similar to the convergence rate obtained in [11] (who considered the case of a

completely observed functional response). The rate is simply affected by the

number mn of missing values. We precise the resulting rate of convergence in165

the following examples.

Example 1. We consider two different functions ϕ such that ϕpol(j) = Cαj
−(2+α)

and ϕexp(j) = Dα exp(−αj) where Cα and Dα are positive constants and α > 0.

Then the solution of equation (9) is
k?n,pol ∼

n→+∞

(
CαL

2

(1+α)σ2
ε

)1/(2+α)

n1/(2+α), if ϕ = ϕpol,

k?n,exp .
n→+∞

logn
α , if ϕ = ϕexp.
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For ϕ = ϕpol, the result of Theorem 2.2 becomes

E (Y`,imp − 〈θ,X`〉)2 ∼
n→+∞

2
(
σ2
ε

)(1+α)/(2+α)
(
CαL

2

1 + α

)1/(2+α)
n1/(2+α)

n−mn
,

for a single imputation and

n∑
`=1

(1−δ`)E (Y`,imp − 〈θ,X`〉)2 ∼
n→+∞

2
(
σ2
ε

)(1+α)/(2+α)
(
CαL

2

1 + α

)1/(2+α)
n1/(2+α)mn

n−mn
,

for the aggregate error of all the imputed values.

For ϕ = ϕexp, the result of Theorem 2.2 becomes

E (Y`,imp − 〈θ,X`〉)2 .
n→+∞

2σ2
ε log n

α(n−mn)
,

for a single imputation and

n∑
`=1

(1− δ`)E (Y`,imp − 〈θ,X`〉)2 .
n→+∞

2σ2
εmn log n

α(n−mn)
,

for the aggregate error of all the imputed values.

Example 2. To precise in more specific cases our convergence rates, we consider170

three different levels of missing data: (i) when the number of missing data mn is

negligeable compared to the sample size, that is mn = ann with an going to zero

as n goes to infinity, (ii) when the number of missing values is proportional to

the sample size, that is mn = ρn with 0 < ρ < 1, and (iii) when the number of

observed values is negligeable compared to the sample size, that is un := n−mn =175

o(n). We can sum up all the rates of convergence for the single imputation mean

square error (Table 1) and for the aggregate mean square error (Table 2).

We can see that missing data do not affect the convergence rate for a single

imputed value when there are not too many missing values (mn = o(n) or mn =

ρn). The rate 1/n(1+α)/(2+α) matches the usual optimal rates in this context.180

The rate log n/αn is not exact but obviously sharp since parametric up to a

logarithm. It is no more the case when the number of missing values is high

(mn ∼ n), the convergence rate is affected. For the aggregate error of several

10



Table 1: Single imputation mean square error convergence rates, where Kα :=

2
(
σ2
ε

)(1+α)/(2+α) (CαL2

1+α

)1/(2+α)
.

ϕ = ϕpol ϕ = ϕexp

mn := ann = o(n) ∼
n→+∞

Kαn
−(1+α)/(2+α) .

n→+∞

2σ2
ε logn
αn

mn = ρn ∼
n→+∞

Kα(1− ρ)1/(2+α)n−(1+α)/(2+α) .
n→+∞

2σ2
ε logn

α(1−ρ)n

un := n−mn = o(n) ∼
n→+∞

Kαu
−(1+α)/(2+α)
n .

n→+∞

2σ2
ε logn
αun

Table 2: Aggregate imputation mean square error convergence rates, where Kα :=

2
(
σ2
ε

)(1+α)/(2+α) (CαL2

1+α

)1/(2+α)
.

ϕ = ϕpol ϕ = ϕexp

mn := ann = o(n) ∼
n→+∞

Kαann
1/(2+α) .

n→+∞

2σ2
εan logn
α

mn = ρn ∼
n→+∞

Kαρ(1− ρ)1/(2+α)n1/(2+α) .
n→+∞

2σ2
ερ logn
α(1−ρ)

un := n−mn = o(n) ∼
n→+∞

Kαnu
−(1+α)/(2+α)
n .

n→+∞

2σ2
εn logn
αun

imputed values, when there are not too many missing values (mn = o(n)), the

number of missing values plays a crucial role, since the convergence depends on185

the fact that ann
1/(2+α) or an log n go to zero as n goes to infinity. In other

cases (mn = ρn or mn ∼ n), missing data affect the convergence of the aggregate

error term for several imputed values, since it cannot converge to zero.

2.4. Estimation of θ and prediction of future values

Once the database being reconstructed, we can use the full database to190

estimate the functional coefficient θ of the model (directly inspired from (2))

(see also [8]), namely

θ̃ =
1

n

n∑
i=1

kn∑
j=1

〈Xi, v̂j〉Y ?i
λ̂j

v̂j , (10)

where Y ?i = Yiδi + Yi,imp(1 − δi) for all i = 1, . . . , n. Then this estimator of θ

can be used to predict new values of the response Y on a test sample. Indeed,
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if Xnew is a new curve, the corresponding predicted response value is195

Ŷnew = 〈Xnew, θ̃〉 =
1

n

n∑
i=1

kn∑
j=1

〈Xi, v̂j〉〈Xnew, v̂j〉Y ?i
λ̂j

. (11)

We give below a result allowing to control the mean square prediction error

of Ŷnew.

Theorem 2.3. Under the assumptions of Theorem 2.1, if we additionally as-

sume that mn = o(n) (that is mn = ann with an going to zero as n goes to

infinity) and a2
nn = o(1), then200

E
(
Ŷnew − 〈θ,Xnew〉

)2

=

+∞∑
j=kn+1

(
ΘΓ1/2vj

)2

+O

(
kn
n

)
.

Remark 4. This result shows that, under the condition that there are not too

many missing values, the convergence rate of the mean square error prediction

of a new value of the covariate remains the same compared to the non missing

values case.

3. Simulations205

To observe the behavior of our estimator in practice, this section considers

a simulation study.

3.1. Models

Two models are considered:

Model1 : Y =

∫ 1

0

sin(4πt)Xt dt + ε, (12)

Model2 : Y =

∫ 1

0

(
log(15t2 + 10) + cos(4πt)

)
Xt dt + ε, (13)

where the error ε is a Gaussian noise : ε ∼ N (0, σε) and210

• in equation (12), X := {Xt}t∈[0,1] is the standard Brownian motion.
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• In equation (13), X := {Xt}t∈[0,1] is a Gaussian process where the covari-

ance function is defined as

cov(Xt, Xt′) = exp(−|t− t
′|2

0.2
).

The simulation aims at considering processes X with different regularities

(the standard Brownian motion being the case of the less smooth) in order to

see if it has an impact on the results.

215

All the procedures described below were implemented by using the R soft-

ware:

? the trajectories of Xi, 1 ≤ i ≤ n, in the two models are discretized in

p = 100 equidistant points,

? values of Y are computed using integration by rectangular interpolation,220

? the variability of noise is such that σε = τ ∗ Var
( ∫ 1

0
θ(t)X(t)dt

)
≈ 0.2.

Note that some Monte Carlo experiments are achieved to determine the

values of τ : τ ≈ 21.726 for the model1 (low level of noise) and

τ ≈ 0.048 for the model2 (high level of noise),

? the sample sizes are respectively n = 100, 300 and 1200 for the training225

sets (X1, Y1), . . . , (Xn, Yn) and n1 = 50, 150 and 600 for the test sets

(Xn+1, Yn+1), . . . , (Xn+n1 , Yn+n1).

3.2. Criteria

The criteria we used are the following. Criteria 1 and 2 are related to the

imputation step with the training samples, criteria 3 and 4 are related to the230

prediction step with the test samples, and criteria 5 is related to the estimation

step with the reconstructed database.

• Criterion 1: the mean square errors (MSE) averaged over S samples

MSE =
1

S

S∑
j=1

MSE(j),

13



where MSE(j) = 1
mn

n∑
`=1

(
Y j`,imp − 〈θ,X

j
` 〉
)2

(1− δ`) is the mean square

error computed on the jth simulated sample, j ∈ {1, . . . ,S}.235

• Criterion 2: the ratio respect to truth between the mean square prediction

error and the mean square prediction error when the true mean is known

averaged over S samples

RT =
1

S

S∑
j=1

RT (j),

where RT (j) =

n∑
`=1

(
Y j`,imp − 〈θ,X

j
` 〉
)2

(1− δ`)

n∑
`=1

(
εj`
)2

(1− δ`)
is the ratio between the

mean square prediction error and the mean square prediction error when240

the true mean is known, computed on the jth simulated sample.

• Criterion 3: the mean square errors (MSE′) averaged over S samples

MSE′ =
1

S

S∑
j=1

MSE′(j),

where MSE′(j) = 1
n1

n+n1∑
`′=n+1

(
Y j`′ − 〈θ,X

j
`′〉
)2

is the mean square error

computed on the jth simulated sample, j ∈ {1, . . . ,S}.245

• Criterion 4: the ratio respect to truth between the mean square prediction

error and the mean square prediction error when the true mean is known

averaged over S samples

RT ′ =
1

S

S∑
j=1

RT ′(j),

where RT ′(j) =

n+n1∑
`′=n+1

(
Y j`′ − 〈θ,X

j
`′〉
)2

n+n1∑
`′=n+1

(
εj`′
)2 is the ratio between the mean

square prediction error and the mean square prediction error when the250
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true mean is known, computed on the jth simulated sample.

• Criterion 5: the mean square errors (MSE′′) averaged over S samples

MSE′′ =
1

S

S∑
j=1

MSE′′(j),

where MSE′′(j) =
∥∥∥θ̃j − θ∥∥∥2

is the square error of estimation computed

on the jth simulated sample. The MSE′′ criterion is decomposed into255

variance and square bias in our results.

Notice that all the criteria tend to zero when the sample size tends to infinity.

RT and RT ′ are rescaled versions of MSE and MSE′ if we substitute the

denominator by its limit (specifically, MSE(j) = RT (j)σ2
ε ).260

3.3. Methodology

We use a smoothed version of the estimator (2) based on the Smooth Prin-

cipal Components Regression (SPCR) [5]. We use a regression spline basis with

parameters: the number κ of knots of the spline functions, the degree q of spline

functions and the number m of derivatives. Let us remark that, with appropri-265

ate conditions, all the theoretical results obtained in section 2 will also apply

to the SPCR estimation. For example, we assume that the estimator θ̃ has r′

derivatives for some integer r′ and θ̃(r′) satisfies, for some ν ∈]0, 1]

∣∣∣θ̃(r′)(t1)− θ̃(r′)(t2)
∣∣∣ ≤ C |t1 − t2|ν ,

for all t1, t2 ∈ [0, 1]. If we denote r = r′ + ν and if we assume that the degree q

of the splines is such that q ≥ r, then270

sup
t∈[0,1]

∣∣∣θ̃(t)− Sκ,q(θ̃)(t)∣∣∣ = O
(
κ−r

)
,

15



where Sκ,q(θ̃) is the spline approximation of θ̃ (see [12]). In other words, any of

the convergence results obtained in Section 2 can be transposed to the smoothed

version of the estimators.

Here, we have fixed the number of knots to be 20, the degree has been

chosen to be 3 and the number of derivatives was fixed to the moderate value275

of 2. The choice of these parameters is not the most important in our study,

especially in comparison with the choice of the number of principal components.

In this subsection, we show firstly how to determine the number of missing

data. Secondly, we present a procedure to choose the optimal tuning parameter280

(the best dimension k∗n of the projection space for the SPCR).

3.3.1. Missing data simulation scenario

To determine the number of missing data in our simulations, we have adopted

the following scenario. In the MAR case, we simulate δ according to the logistic

functional regression. The variable δ follows the Bernoulli law with parameter

p(X) such that

log

(
p(X)

1− p(X)

)
= 〈α0, X〉+ ct,

where α0(t) = sin(2πt) for all t ∈ [0, 1] and ct is a constant allowing to take

different levels of missing data. We take ct = 2 for around 12.5% of missing

data, ct = 1 for around 27.4% of missing data and ct = 0.2 for around 44.9% of285

missing data. Notice that, in the MCAR case, we simulate δ with the Bernoulli

law with parameter p(X) := p = 0.9 (10% of missing data), p(X) := p = 0.75

(25% of missing data) or p(X) := p = 0.6 (40% of missing data).

3.3.2. Criteria for optimal parameter selection290

We focus on the procedure allowing to select the optimal tuning parameter.

We consider a Generalized Cross Validation (GCV) criterion versus a Cross

Validation (CV) criterion and K-fold Cross Validation (K-fold CV) criterion

and we select the optimal tuning parameter k∗n by minimizing these criteria.

16



The GCV procedure is known to be computationally fast. The CV, K-fold CV295

and GCV criteria are respectively given as follows for imputation

CV(kn) =
1

n−mn

n∑
i=1

(Ŷ
[−i]
i − 〈θ,Xi〉)2δi,

K-fold CV(kn) =
1

K

K∑
k=1

|Bk|−1
∑
i∈Bk

(Ŷ
[−Bk]
i − 〈θ,Xi〉)2δi,

GCV(kn) =
(n−mn)

∑n
i=1(Ŷi − 〈θ,Xi〉)2δi

((n−mn)− kn)2
.

The analogous criteria are given as follows for prediction

CV(kn) =
1

n

n∑
i=1

(Ŷ ∗
[−i]

i − 〈θ,Xi〉)2,

K-fold CV(kn) =
1

K

K∑
k=1

|Bk|−1
∑
i∈Bk

(Ŷ ∗
[−Bk]

i − 〈θ,Xi〉)2,

GCV(kn) =
n
∑n
i=1(Ŷ ∗i − 〈θ,Xi〉)2

(n− kn)2
,

where Ŷ
[−i]
i and Ŷ

[−Bk]
i respectively mean that the value of Yi is predicted using

the whole sample except the ith observation or except the set of observations

indexed in Bk. In the same way Ŷ ∗
[−i]

i and Ŷ ∗
[−Bk]

i respectively mean that300

the value of Yi is predicted using the whole sample except the ith observation

or except the set of observations indexed in Bk. The data set is randomly

partitioned into K equally sized (as equal as possible) subsets ∪K
k=1Bk such

that Bj ∩ Bk = ∅ (j 6= k). In practice, often K = 5 or K = 10 are used. In

our case, the K-fold CV splits are chosen in a special deterministic way. For305

imputation, we consider

K-fold CV(kn) =
1

K

K∑
k=1

((n−mn)/K)−1

nk/K∑
i=(n(k−1))/K +1

(Ŷ
[−k]
i − 〈θ,Xi〉)2δi.

The analogous criterion is given as follows for prediction

K-fold CV(kn) =
1

K

K∑
k=1

(n/K)−1

nk/K∑
i=(n(k−1))/K +1

(Ŷ ∗
[−k]

i − 〈θ,Xi〉)2.

17



In order to illustrate the advantage of the GCV criterion, we compared the

computational times to obtain the tuning parameter with the three criteria on

a growing sequence of dimension kn = 2, . . . , 22. The characteristics of the310

computer used to perform these computations were McBook pro: Processor

2.66 GHz intel core 2 Duo, Memory 4 Gb 1067 MHz DDR3. The computational

times are displayed in Table A.11 in the appendix. The GCV criterion shows a

clear advantage with regard to computational time compared with the CV and

K-fold criteria. In addition, we see that the three criteria behave in the same315

way and select the same optimal projection dimension (see Fig. 1 and 2) for

both models (under n = 1000 and p = 100). Notice that the GCV criterion

(faster to compute) has been used in different simulations.

0
.0
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0
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1
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0
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0
2
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kn

M
S
E
'

2 4 6 8 10 12 14 16 18 20 22

GCV criterion

CV criterion

5-fold CV criterion

10-fold CV criterion

Figure 1: GCV, CV and K-fold criteria for different values of dimension kn in model1: best

dimension k∗n = 8 and MSE’ (×104) = 1.6640 (in GCV criterion case), best dimension k∗n = 6

and MSE′ (×104) = 2.3081 (in 5-fold CV criterion case), best dimension k∗n = 8 and MSE′

(×104) = 1.9584 (in 10-fold CV criterion case), best dimension k∗n = 8 and MSE′ (×104) =

1.6598 (in CV criterion case), for the model1.

We show on Fig. 3 and Fig. 4 different estimates of the slope function of

the Model1 and Model2 (under n = 1000 and p = 100) with different values of320
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Figure 2: GCV, CV and K-fold criteria for different values of dimension kn in model2: best

dimension k∗n = 5 and MSE′ (×104) = 3.7589 (in GCV criterion case), best dimension k∗n = 5

and MSE′ (×104) = 4.2132 (in 5-fold CV criterion case), best dimension k∗n = 5 and MSE′

(×104) = 3.9758 (in 10-fold CV criterion case), best dimension k∗n = 5 and MSE′ (×104) =

3.7270 (in CV criterion case), for the model2.

dimension (kn = 4, 6, 8, 12, 16) and (kn = 2, 3, 5, 7, 8), respectively, by using the

GCV criterion (used for its computational efficiency). We have chosen a per-

centage of missing values equal to 45.8518% for model1 and equal to 46.8888%

for model2 (we obtain this rate with ct = 1 for both models).

325

3.4. Analysis of results

In this subsection, we analyse the results of the criteria presented in the

previous subsection. Both MAR and MCAR context were considered. We only

show the results for MAR and the results for MCAR are available on demand.

The different results given in Appendix A. Tables A.5, A.6 give the mean and330

standard deviation errors for the imputed values on training samples for both

models. Tables A.7, A.8 give the mean and standard deviation errors for the

predicted values on test samples for both models. Tables A.9, A.10 give the
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Figure 3: Plots of the true slope function (solid black) and estimates with different values of

dimension kn in model1. The plots of estimates slope function with best dimension k∗n = 8

(solid red), with dimension kn = 4 (dotted), with dimension kn = 6 (dashed), with dimension

kn = 12 (dotdashed), with dimension kn = 16 (twodash).

mean and standard deviation errors for the estimation of θ using the fullfilled

database with imputed values for both models. We can see that the errors335

increase when the rate of missing data increases. Similarly, the errors decrease

as the size of the sample increases. When we compare the case of MAR and

MCAR, we see that the error in case of MAR is slightly higher that in the

MCAR case. Moreover, we can see that the regularity of the process X does

not have a crucial impact on the results at least on these simulated examples.340

All the results in these simulations are in accordance with what we can expect

and confirm the theoretical results obtained in the previous section.

4. Illustration

In order to illustrate the contribution of our approach in functional pre-

diction setting when the covariates are functions and some observations of the345
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Figure 4: Plots of the true slope function (solid black) and estimates with different values of

dimension kn in model2. The plots of estimates slope function with best dimension k∗n = 5

(solid red), with dimension kn = 2 (dotted), with dimension kn = 3 (dashed), with dimension

kn = 7 (dotdashed), with dimension kn = 8 (twodash).

real response are missing, we present in this section an environmental dataset

application.

We start by describing the dataset. The functional covariate X is a daily

temperature curve in some cities in France (from May 7, 2015 at 4 pm up to

May 8, 2015 at 3 pm) obtained from www.meteociel.fr. This daily continu-350

ous curve is observed at some discretization points (here, at 24 discretization

points, every hour). The graphical display of this daily temperature curves can

be observed in Fig 5. The response variable Y is an atmospheric index of air

quality called ATMO (for a detailed description of this atmospheric index, see

www.atmo-france.org). Its values range from 1 (very good quality of air) to 10355

(very bad quality of air). Though these values are discrete, we will consider that

Y is a continuous approximation. We obtained the values of the atmospheric

index on May 8, 2015, for these same cities, from www2.prevair.org. Further-

more, we added some cities for which the temperature curve is available but

21
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Figure 5: Plot of the 78 daily temperature curves (the blue curves are given when the response

variable Y is missing).

the atmospheric index is missing. Notice that the response is missing for mild360

temperature curves cities: the fact that the value of the response variable Y

is missing for these cities depends on the temperature curve X, and thus we

consider the MAR case. We also refer the reader to the paper [19] for more

discussions about missing data mechanism when dealing with air quality data.

In particular, this paper highlights the fact that air quality missing data can be365

considered as MAR. Fig 6 illustrates the selected cities in our study, the blue

cities are given when the response variable Y is missing and the red cities are

given when the response variable Y is observed. It is of primary importance to

get a map of the atmospheric index on the whole French territory, and thus to

impute missing data.370

We have built a sample of 78 pairs {(Yi, Xi)}78
i=1, where we have 8 missing
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Figure 6: Map of France locating the selected cities of our study: the cities are red when the

variable Y is observed and the cities are blue when the variable Y is missing.

values of the variable Y (the Y ′i s, i = 71, . . . , 78, are missing). Our goal is to

impute these missing values {Yi}78
i=71.

375

We have fixed the number of knots to be 20, the degree of splines has been

chosen equal to 3 and the number of derivatives was fixed to the moderate value

of 2. Then, we use the GCV criterion to find the best parameter of projection

dimension kn trying growing sequences: kn = 2, 3, . . . , 21, 22. In order to see

the impact of missing data on this dataset, we have randomly drawn 700 tests380

samples in the initial sample and computed prediction errors on these tests

samples, using the remaining of the sample as training sample. Results are

given in Table 3. Here again, the more we have missing data in the training set,

the more the prediction error on the test sample is.

Now, we come back to the initial goal, imputing the missing data. The385
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Table 3: Real data set: prediction errors over 700 drawn samples.

n = 78, 8 missing data, 70 observed data

Test sets n/4 n/3 n/2

Rate of missing data (%) 13 15 20

MSE′ × 102 24.5650 25.5172 29.7827

(8.4750) (8.1444) (15.0889)

minimum value of the GCV criterion is reached for k∗n = 5 and MSE′ (×102) =

20.791. Table 4 gives the imputed values of the missing data. We see imputed

values mainly around 4, which is a moderate value for the atmospheric index

corresponding to a good quality of air. It is in accordance with the fact that

these cities have moderate temperature curves. We can mention two particular390

cases. The highest imputed value (4.161) corresponds to the city of Angers,

and in parallel, we can see that the temperature curve of this city becomes

high at the end of May 8. On the contrary, the lowest imputed value (3.491)

corresponds to the city of Quimper, and the temperature curve of this city

presents few variations along the 24 hours.395

Table 4: Imputed values of the missing response variable.

Missing values of Y Y71 Y72 Y73 Y74 Y75 Y76 Y77 Y78

Imputed values 4.161 3.496 3.850 3.758 3.590 3.491 3.990 3.821

5. Proof of the results

5.1. Proof of Theorem 2.1

We begin with the following decomposition

∆̂n,obs =
1

n−mn

n∑
i=1

〈Xi, .〉δiΘXi +
1

n−mn

n∑
i=1

〈Xi, .〉δiεi = ΘΓ̂n,obs + Un,obs,
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with Un,obs = 1
n−mn

n∑
i=1

〈Xi, .〉δiεi. Then, ε being independent from X and δ

(MAR assumption), we deduce400

E (Y`,imp − 〈θ,X`〉)2
= E

(
ΘΠ̂kn,obsX` −ΘX`

)2

+E

(
1

n−mn

n∑
i=1

〈Xi,
(

Π̂kn,obsΓ̂n,obs

)−1

X`〉δiεi

)2

≤ 2E
(

ΘΠ̂kn,obsX` −ΘΠkn,obsX`

)2

+2E (ΘΠkn,obsX` −ΘX`)
2

+E

(
1

n−mn

n∑
i=1

〈Xi,
(

Π̂kn,obsΓ̂n,obs

)−1

X`〉δiεi

)2

,

where Πkn,obs is the projection onto the subspace span(v1,obs, . . . , vkn,obs) where

v1,obs, . . . , vkn,obs are the kn first eigenfunctions of the covariance operator Γn,obs.

For a single imputation, the end of the proof of Theorem 2.1 is based on the

following lemmas. For the aggregate error term of mn imputed values, it is just

a sum of mn terms that behave like the term for single imputation.405

Lemma 5.1. We have

E
(

ΘΠ̂kn,obsX` −ΘΠkn,obsX`

)2

= o

(
λknk

2
n

n−mn
+

kn
n−mn

)
.

Lemma 5.2. We have

E

(
1

n−mn

n∑
i=1

〈Xi,
(

Π̂kn,obsΓ̂n,obs

)−1

X`〉δiεi

)2

=
σ2
εkn

n−mn
+ o

(
kn

n−mn

)
.

Lemma 5.3. We have

E (ΘΠkn,obsX` −ΘX`)
2

=

+∞∑
j=kn+1

(
ΘΓ1/2vj

)2

.

5.2. Proof of Lemma 5.1

Writing X` in the basis (vj)j≥1, we obtain410
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E
(

ΘΠ̂kn,obsX` −ΘΠkn,obsX`

)2

=

+∞∑
j=1

+∞∑
j′=1

E
[
〈X`, vj〉〈X`, vj′〉Θ

(
Π̂kn,obs −Πkn,obs

)
vjΘ

(
Π̂kn,obs −Πkn,obs

)
vj′
]
.

Noticing that the variable X` corresponds to the missing data Y` hence inde-

pendent of Π̂kn,obs, we get

E
(

ΘΠ̂kn,obsX` −ΘΠkn,obsX`

)2

=

+∞∑
j=1

+∞∑
j′=1

〈Γvj , vj′〉E
[
Θ
(

Π̂kn,obs −Πkn,obs

)
vjΘ

(
Π̂kn,obs −Πkn,obs

)
vj′
]

=

+∞∑
j=1

λjE
[
Θ
(

Π̂kn,obs −Πkn,obs

)
vj

]2
.

Now, following the proof of Proposition 15 in [11], for any m ≥ 1 we denote Bm
the oriented circle of the complex plane with center λm and radius ρm/2 where

ρm = min (λm − λm+1, λm−1 − λm) for m ≥ 2 and ρ1 = λ2 − λ1. With the415

convexity assumption (A.1), we actually have ρm = λm − λm+1 for all m ≥ 1.

With these notations, denoting by ι the complex number such that ι2 = −1, the

difference between the projection operators Π̂kn,obs and Πkn,obs can be written

Π̂kn,obs −Πkn,obs =
1

2πι

kn∑
m=1

∫
Bm

Λ(z)
(

Γ− Γ̂n,obs

)
Λ(z)dz,

where Λ(z) = (zI − Γ)−1. Noticing that Λ(z)vj = 1
z−λj vj , we deduce

Θ
(

Π̂kn,obs −Πkn,obs

)
vj

=
1

2πι

kn∑
m=1

Θ

∫
Bm

Λ(z)
(

Γ− Γ̂n,obs

) dz

z − λj

=
1

2πι

kn∑
m=1

Θ

∫
Bm

+∞∑
j′=1

〈
(

Γ− Γ̂n,obs

)
vj , vj′〉vj′

(z − λj′)(z − λj)
dz.
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Still using the results from [11], we have

kn∑
m=1

∫
Bm

dz

(z − λj′)(z − λj)
=



0, if j, j′ > kn,

0, if j, j′ ≤ kn,

(λj − λj′)−1, if j ≤ kn < j′,

(λj′ − λj)−1, if j′ ≤ kn < j.

hence we deduce420

E
(

ΘΠ̂kn,obsX` −ΘΠkn,obsX`

)2

= E

 1

4π2

kn∑
j=1

λj

 +∞∑
j′=kn+1

〈
(

Γ− Γ̂n,obs

)
vj , vj′〉

λj − λj′
Θvj′

2


+E

 1

4π2

+∞∑
j=kn+1

λj

 kn∑
j′=1

〈
(

Γ− Γ̂n,obs

)
vj , vj′〉

λj′ − λj
Θvj′

2
 .

In the following, C corresponds to a generic constant. We denote E(A) and

E(B) the above two terms. We start with the computation of E(A). Using the

same technique as in [11], we get the following bound

E
(
〈
(

Γ− Γ̂n,obs

)
vj , vj′〉〈

(
Γ− Γ̂n,obs

)
vj , vr〉

)
≤ C

n−mn
λj
√
λj′
√
λr,

noticing that the n rate of convergence given in [11] is here transformed into

the n−mm rate because we use Γ̂n,obs with n−mm observed data. Hence we425

deduce

E

 〈
(

Γ− Γ̂n,obs

)
vj , vj′〉

λj − λj′
Θvj′

2

=

+∞∑
j′=kn+1

+∞∑
r=kn+1

E
(
〈
(

Γ− Γ̂n,obs

)
vj , vj′〉〈

(
Γ− Γ̂n,obs

)
vj , vr〉

)
(λj − λj′)(λj − λr)

Θvj′Θvr

≤ Cλj
n−mn

 +∞∑
j′=kn+1

√
λj

λj − λj′
Θvj′

2

.
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Coming back to the computation of E(A), we can write (using Lemma 12 in

[11])

E(A) ≤ C

n−mn

kn∑
j=1

λ2
jλkn+1

(λj − λkn+1)
2

 +∞∑
j′=kn+1

Θvj′

2

≤ Cλkn+1

n−mn

kn∑
j=1

(kn + 1)2

(kn + 1− j)2

 +∞∑
j′=kn+1

Θvj′

2

≤ Cλkn+1(kn + 1)2

n−mn

kn∑
j=1

1

j2

 +∞∑
j′=kn+1

Θvj′

2

.

As θ ∈ L2([0, 1]) (hence θ is integrable), we finally get

E(A) ≤ Cλknk
2
n

n−mn
an,

where (an)n≥1 is a sequence of real numbers going to zero as n goes to infinity.430

We are now interested in the computation of E(B). Beginning in the same way

as E(A) and still using Lemma 12 in [11], we get

E(B) ≤ C

n−mn

+∞∑
j=kn+1

λ2
j

 kn∑
j′=1

√
λj′

λj′ − λj
Θvj′

2

≤ C

n−mn

+∞∑
j=kn+1

λj

 kn∑
j′=1

λj′

λj′ − λj
Θvj′

2

≤ C

n−mn

+∞∑
j=kn+1

λj

(
j

j − kn

)2
 kn∑
j′=1

Θvj′

2

.

Now, again with the integrability of θ and the fact that

+∞∑
j=kn+1

λj

(
j

j − kn

)2

≤ Cknbn,

with (bn)n≥1 going to zero as n goes to infinity (see [11] p.19 in the proof of

Proposition 15), we conclude435
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E(B) ≤ Ckn
n−mn

bn,

and this achieves the proof of Lemma 5.1.

5.3. Proof of Lemma 5.2

Let us denote

Tn =
1

n−mn

n∑
i=1

〈Xi,
(

Π̂kn,obsΓ̂n,obs

)−1

X`〉δiεi.

We can write

T 2
n =

1

(n−mn)2

n∑
i=1

〈Xi,
(

Π̂kn,obsΓ̂n,obs

)−1

X`〉2δ2
i ε

2
i

+
1

(n−mn)2

n∑
i=1

n∑
i′=1
i′ 6=i

〈Xi,
(

Π̂kn,obsΓ̂n,obs

)−1

X`〉〈Xi′ ,
(

Π̂kn,obsΓ̂n,obs

)−1

X`〉δiδi′εiεi′ .

From the independence between ε and X and the MAR assumption, the expec-440

tation of the second term above is zero, hence

E
(
T 2
n

)
=

1

n−mn
E
[
〈Xi,

(
Π̂kn,obsΓ̂n,obs

)−1

X`〉2δ2
i ε

2
i

]
=

σ2
ε

n−mn
E
[
〈Xi,

(
Π̂kn,obsΓ̂n,obs

)−1

X`〉2δ2
i

]
,

the index i corresponding to an observed data in the sample (and consequently

δi = 1 for this observation). We finally get

E
(
T 2
n

)
=

σ2
ε

n−mn
E
[
〈Xi,

(
Π̂kn,obsΓ̂n,obs

)−1

X`〉2
]
.

Following the same lines of the proof of Proposition 17 and Lemma 19 in [11],

we obtain445

E
[
〈Xi,

(
Π̂kn,obsΓ̂n,obs

)−1

X`〉2
]

= kn + o (kn) ,

which achieves the proof of the Lemma.
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5.4. Proof of Lemma 5.3

The proof of this lemma is quite immediate, noticing that

E (ΘΠkn,obsX` −ΘX`)
2

= E
(
〈(Πkn,obs − I)X`, θ〉2

)
= 〈(Πkn,obs − I) Γθ, θ〉

=

+∞∑
j=kn+1

(
ΘΓ1/2vj

)2

.

5.5. Proof of Theorem 2.2

From Theorem 2.1, the last term in the asymptotic development is negligible,450

so we just have to achieve the usual trade-off between the square bias and the

variance. Given that

+∞∑
j=kn+1

(
ΘΓ1/2vj

)2

=

+∞∑
j=kn+1

L2ϕ(j),

we approximate this sum with the integral
∫ +∞
x

L2ϕ(t) dt, which gives the de-

sired result.

5.6. Proof of Theorem 2.3455

First, if we follow the same lines of the proof of Lemmas 5.1 and 5.3 in

Theorem 2.1 but with all the sample X1, . . . , Xn, we get

E
(

ΘΠ̂knXnew −ΘΠknXnew

)2

= o

(
λknk

2
n

n
+
kn
n

)
, (14)

and

E (ΘΠknXnew −ΘXnew)
2

=

+∞∑
j=kn+1

(
ΘΓ1/2vj

)2

. (15)

Now, let us denote, for i = 1, . . . , n,

εi,imp = Yi,imp − 〈θ,Xi〉,

and

ε?i = δiεi + (1− δi)εi,imp.
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We immediately can write

εi,imp = εi + Yi,imp − Yi,

and

ε?i = εi + (1− δi)(Yi,imp − Yi).

Then, following the proof of Lemma 5.2 in Theorem 2.1, we denote

Sn =
1

n

n∑
i=1

〈Xi,
(

Π̂kn Γ̂n

)−1

Xnew〉ε?i ,

whence,460

S2
n =

1

n2

n∑
i=1

〈Xi,
(

Π̂kn Γ̂n

)−1

Xnew〉2 (ε?i )
2

+
1

n2

n∑
i=1

n∑
i′=1
i′ 6=i

〈Xi,
(

Π̂kn Γ̂n

)−1

Xnew〉〈Xi′ ,
(

Π̂kn Γ̂n

)−1

Xnew〉ε?i ε?i′ .

We notice that, for i 6= i′, we have

E (ε?i ε
?
i′) ≤ 4E(Yi,imp − Yi)2 ≤ 8

[
E(Yi,imp − 〈θ,Xi〉)2 + σ2

ε

]
.

This bound and the lines of the proof of Lemma 5.2 give

E

(
1

n

n∑
i=1

〈Xi,
(

Π̂kn Γ̂n

)−1

Xnew〉ε?i

)2

= O

(
(n−mn)kn

n2
+
m2
nk

2
n

n2

)
. (16)

Now, combining relations (14), (15) and (16) and the fact that mn = o(n) and

m2
nkn = O(n) (due to a2

nn = o(1)), we get the desired result.
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[18] Horváth, L. and Kokoszka, P., Inference for Functional Data with Appli-505

cations. NY: Springer-Verlag, New York, 2012.

[19] Junninen, H., Niska, H., Tuppurainen, K., Ruuskanen, J. and Kolehmainen,

M., Methods for imputation of missing values in air quality datasets. At-

mospheric environment, 38 (2004) 2895–2907.

[20] Little, R. J. A. and Rubin, D. B., Statistical analysis with missing data510

(Second edition). NY: John Wiley, New York, 2002.

[21] Manski, C.F., Identification problems in the social sciences. Harvard Uni-

versity Press, 1995.

[22] Manski, C.F., Partial identification of probability distributions. Springer-

Verlag, 2003.515

34



[23] Mojirsheibani, M., Nonparametric curve estimation with missing data: A

general empirical process approach, Journal of Statistical Planning and

Inference, 137 (2007) 2733–2758.

[24] Preda, C., Saporta, G. and Hadj M. M. H., The NIPALS Algorithm for

Functional Data, Revue Roumaine de Mathématique Pures et Appliquées,520

55 (2010) 315–326.

[25] Ramsay, J. O. and Dalzell, C., Some tools for functional data analysis,

Journal Royal Statistical Society B, 53 (1991) 539–572.

[26] Ramsay, J. O. and Silverman, B. W., Functional Data Analysis (Second

edition). NY: Springer-Verlag, New York, 2005.525

[27] Ramsay, J. O., Hooker, G. and Graves, S., Functional Data Analysis with

R and MATLAB (Fisrt edition). NY: Springer Publishing Company, New

York, 2009.

[28] Shi, J. Q. and Choi, T., Gaussian Process Regression Analysis for Func-

tional Data. Chapman and Hall (CRC Press), London, 2011.530

[29] Van Buuren, S., Flexible Imputation of Missing Data. NJ: Chapman and

Hall (CRC Press), Hoboken, 2012.
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Table A.5: MAR (Model1): Imputed values mean errors and standard deviations for sam-

ples with different sizes discretized in p = 100 equidistant points based on 500 simulation

replications.

n+ n1 = 150

Rate of missing data (%)

Mean 12.520 27.420 44.882

Median 13 27 45

SD 3.307 4.515 5.038

Criterion 1: [MSE × 103] 2.3592 2.7845 3.2821

(1.8375) (2.0370) (2.0679)

Criterion 2: [RT × 102] 7.0001 7.5194 8.6148

(6.6216) (5.7701) (5.7158)

n+ n1 = 450

Rate of missing data (%)

Mean 12.433 27.456 45.209

Median 12.333 27.333 45.333

SD 1.877 2.487 3.041

Criterion 1: [MSE × 103] 0.8349 1.0048 1.3364

(0.5728) (0.6843) (0.9037)

Criterion 2: [RT × 102] 2.2327 2.5724 3.4547

(1.5754) (1.7245) (2.3383)

n+ n1 = 1800

Rate of missing data (%)

Mean 12.529 27.536 45.213

Median 12.500 27.500 45.250

SD 0.934 1.280 1.355

Criterion 1: [MSE × 103] 0.2326 0.2759 0.3521

(0.1321) (0.1519) (0.2018)

Criterion 2: [RT × 102] 0.5933 0.6962 0.8822

(0.3492) (0.3891) (0.5036)
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Table A.6: MAR (Model2): Imputed values mean errors and standard deviations for sam-

ples with different sizes discretized in p = 100 equidistant points based on 500 simulation

replications.

n+ n1 = 150

Rate of missing data (%)

Mean 12.912 28.026 45.472

Median 13 28 45

SD 3.524 4.493 5.118

Criterion 1: [MSE × 103] 2.4786 2.9537 3.7448

(2.0871) (2.2814) (2.8036)

Criterion 2: [RT × 102] 7.5424 7.7867 9.7596

(8.0437) (5.7674) (7.1366)

n+ n1 = 450

Rate of missing data (%)

Mean 12.924 28.018 45.277

Median 13 28 45.33

SD 1.871 2.533 2.844

Criterion 1: [MSE × 103] 0.8594 1.0189 1.2727

(0.6156) (0.6901) (0.8227)

Criterion 2: [RT × 102] 2.2861 2.6008 3.2415

(1.6605) (1.7465) (2.0856)

n+ n1 = 1800

Rate of missing data (%)

Mean 13.010 28.081 45.289

Median 13 28.083 45.250

SD 0.970 1.330 1.456

Criterion 1: [MSE × 102] 0.1958 0.2420 0.2977

(0.1262) (0.1610) (0.1852)

Criterion 2: [RT × 102] 0.5023 0.6193 0.7618

(0.3284) (0.4157) (0.4776)
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Table A.7: MAR (Model1): Predicted values mean errors and standard deviations for sam-

ples with different sizes discretized in p = 100 equidistant points based on 500 simulation

replications.

n+ n1 = 150

Rate of missing data (%)

Mean 12.520 27.420 44.882

Median 13 27 45

SD 3.307 4.515 5.038

Criterion 3: [MSE′ × 103] 2.3383 2.7173 3.1939

(1.4987) (1.8390) (2.0391)

Criterion 4: [RT ′ × 102] 5.9523 6.9769 8.2677

(3.7338) (4.9933) (5.6516)

n+ n1 = 450

Rate of missing data (%)

Mean 12.433 27.456 45.209

Median 12.333 27.333 45.333

SD 1.877 2.487 3.041

Criterion 3: [MSE′ × 103] 0.8453 0.9984 1.3046

(0.5530) (0.6729) (0.8897)

Criterion 4: [RT ′ × 102] 2.1534 2.5348 3.3255

(1.3984) (1.6629) (2.2417)

n+ n1 = 1800

Rate of missing data (%)

Mean 12.529 27.536 45.213

Median 12.500 27.500 45.250

SD 0.934 1.280 1.355

Criterion 3: [MSE′ × 103] 0.2295 0.2746 0.3474

(0.1282) (0.1512) (0.1982)

Criterion 4: [RT ′ × 102] 0.5756 0.6887 0.8699

(0.3165) (0.3753) (0.4888)
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Table A.8: MAR (Model2): Predicted values mean errors and standard deviations for sam-

ples with different sizes discretized in p = 100 equidistant points based on 500 simulation

replications.

n+ n1 = 150

Rate of missing data (%)

Mean 12.912 28.026 45.472

Median 13 28 45

SD 3.524 4.493 5.118

Criterion 3: [MSE′ × 103] 2.3556 2.9148 3.6204

(1.6157) (2.2111) (2.7093)

Criterion 4: [RT ′ × 102] 6.0704 7.4692 9.2007

(4.1999) (5.6623) (6.5708)

n+ n1 = 450

Rate of missing data (%)

Mean 12.924 28.018 45.277

Median 13 28 45.33

SD 1.871 2.533 2.844

Criterion 3: [MSE′ × 103] 0.8183 0.9882 1.2666

(0.5391) (0.6270) (0.8146)

Criterion 4: [RT ′ × 102] 2.0977 2.5322 3.2364

(1.3686) (1.5836) (2.0620)

n+ n1 = 1800

Rate of missing data (%)

Mean 13.010 28.081 45.289

Median 13 28.083 45.250

SD 0.970 1.330 1.456

Criterion 3: [MSE′ × 102] 0.1896 0.2360 0.2935

(0.1216) (0.1531) (0.1812)

Criterion 4: [RT ′ × 102] 0.4856 0.6035 0.7492

(0.3148) (0.3959) (0.4618)

39



Table A.9: MAR (Model1): Estimation of θ mean square errors, variance and square bias for

samples with different sizes discretized in p = 100 equidistant points based on 500 simulation

replications.

n+ n1 = 150

Rate of missing data (%)

Mean 12.520 27.420 44.882

Median 13 27 45

SD 3.307 4.515 5.038

Criterion 5: MSE′′ × 102 20.33993 22.84329 25.59843

V ariance× 102 16.42143 17.02001 17.58919

Bias2 × 102 3.918497 5.823277 8.009239

n+ n1 = 450

Rate of missing data (%)

Mean 12.433 27.456 45.209

Median 12.333 27.333 45.333

SD 1.877 2.487 3.041

Criterion 5: MSE′′ × 102 8.923099 10.01299 12.37846

V ariance× 102 7.636041 8.680379 10.64885

Bias2 × 102 1.287058 1.332613 1.729613

n+ n1 = 1800

Rate of missing data (%)

Mean 12.529 27.536 45.213

Median 12.500 27.500 45.250

SD 0.934 1.280 1.355

Criterion 5: MSE′′ × 102 3.268755 3.663376 4.294925

V ariance× 102 2.517848 2.870331 3.410527

Bias2 × 102 0.7509066 0.793045 0.884398
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Table A.10: MAR (Model2): Estimation of θ mean square errors, variance and square bias for

samples with different sizes discretized in p = 100 equidistant points based on 500 simulation

replications.

n+ n1 = 150

Rate of missing data (%)

Mean 12.912 28.026 45.472

Median 13 28 45

SD 3.524 4.493 5.118

Criterion 5: MSE′′ × 102 25.77594 30.94147 35.58789

V ariance× 102 17.87099 20.83862 21.5734

Bias2 × 102 7.904949 10.10285 14.01449

n+ n1 = 450

Rate of missing data (%)

Mean 12.924 28.018 45.277

Median 13 28 45.33

SD 1.871 2.533 2.844

Criterion 5: MSE′′ × 102 12.80462 14.15714 16.64587

V ariance× 102 6.696352 8.047992 10.44823

Bias2 × 102 6.108267 6.109149 6.197638

n+ n1 = 1800

Rate of missing data (%)

Mean 13.010 28.081 45.289

Median 13 28.083 45.250

SD 0.970 1.330 1.456

Criterion 5: MSE′′ × 102 7.50709 8.091252 8.477034

V ariance× 102 1.746334 2.096911 2.495418

Bias2 × 102 5.760756 5.994341 5.981616
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Table A.11: MAR (Model1): Computation times and selected dimensions of the CV, GCV

and K-fold criteria for samples with different sizes discretized in p = 100 equidistant points.

n+ n1 150 450 1800

CV

Computational times (sec.) 10.5928 74.1095 1158.8180

Best dimension k∗n (For imputation) 5 5 6

Best dimension k∗∗n (For prediction) 5 5 6

5-fold CV

Computational times (sec.) 0.7885 1.3610 4.6047

Best dimension k∗n (For imputation) 5 5 6

Best dimension k∗∗n (For prediction) 5 5 6

10-fold CV

Computational times (sec.) 1.2671 2.6702 9.9181

Best dimension k∗n (For imputation) 5 5 6

Best dimension k∗∗n (For prediction) 5 5 6

GCV

Computational times (sec.) 0.3235 0.4065 1.3558

Best dimension k∗n (For imputation) 5 5 6

Best dimension k∗∗n (For prediction) 5 5 6
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