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Abstract

Invasive species represent unique opportunities to evaluate the role of local adapta-

tion during colonization of new environments. Among these species, the Asian tiger

mosquito, Aedes albopictus, is a threatening vector of several human viral diseases,

including dengue and chikungunya, and raises concerns about the Zika fever. Its

broad presence in both temperate and tropical environments has been considered

the reflection of great “ecological plasticity.” However, no study has been conducted

to assess the role of adaptive evolution in the ecological success of Ae. albopictus at

the molecular level. In the present study, we performed a genomic scan to search

for potential signatures of selection leading to local adaptation in one-hundred-forty

field-collected mosquitoes from native populations of Vietnam and temperate inva-

sive populations of Europe. High-throughput genotyping of transposable element

insertions led to the discovery of more than 120,000 polymorphic loci, which, in

their great majority, revealed a virtual absence of structure between the biogeo-

graphic areas. Nevertheless, 92 outlier loci showed a high level of differentiation

between temperate and tropical populations. The majority of these loci segregate at

high insertion frequencies among European populations, indicating that this pattern

could have been caused by recent adaptive evolution events in temperate areas. An

analysis of the overlapping and neighbouring genes highlighted several candidates,

including diapause, lipid and juvenile hormone pathways.
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1 | INTRODUCTION

Biological invasions represent unique opportunities to study rapid evo-

lutionary changes, such as adaptive evolution. Settlement in a novel

area is a biological challenge that invasive species have successfully

overcome. The underlying processes can be studied at the molecular

level, particularly to gather empirical knowledge of the genetics of

invasions, a field of study that has produced extensive theoretical pre-

dictions for which there is still little evidence in nature (Colautti & Lau,

2015). Some of the main concerns are disentangling the effects of

neutral processes during colonization, such as founder events or

allele surfing at the migration front, from adaptive evolution (i.e.,

local adaptation, Colautti & Lau, 2015; Lande, 2015; Peischl &

Excoffier, 2015).

Signatures of adaptation can be tracked on genomes due to

characteristic patterns of reduced genetic diversity left by the

appearance and spread of a new beneficial mutation (Braverman,

Hudson, Kaplan, Langley, & Stephan, 1995; Fay&Wu, 2000;

http://wileyonlinelibrary.com/journal/MEC


Nielsen, 2005; Tajima, 1989; Vitti, Grossman, & Sabeti, 2013). Con-

trasting regimes of selection between populations can also leave

high levels of genetic differentiation in the vicinity of adaptive loci

(Lewontin & Krakauer, 1973; Maynard Smith & Haigh, 1974). The

strength of such signals can be influenced by the origin of the adap-

tive mutation, for example, if it arises de novo or if it spreads from

the standing genetic variation (Messer & Petrov, 2013; Pritchard,

Pickrell, & Coop, 2010). However, detection of the footprint of natu-

ral selection is dependent on the availability of informative genetic

markers, which should ideally provide substantial coverage of the

genome to allow selection scans and be easily and confidently

scored across many individuals. Unfortunately, invasive organisms

are rarely model species, making the development of a reliable and

efficient marker challenging.

The Asian tiger mosquito, Aedes (Stegomya) albopictus (Diptera:

Culicidae), is currently one of the most threatening invasive species

(Invasive Species Specialist Group). Originating from southeastern

Asia, it is one of the primary vectors of dengue and chikungunya

viruses and is also involved in the transmission of other threaten-

ing arboviruses (Paupy, Delatte, Bagny, Corbel, & Fontenille, 2009),

in particular, the newly emerging Zika virus (Chouin-Carneiro et al.,

2016; Grard et al., 2014; Marcondes & Ximenes, 2015). Nowadays,

Ae. albopictus has settled in every continent except Antarctica and

is found in both tropical and temperate climates (Bonizzoni, Gas-

peri, Chen, & James, 2013). Although this species is supposed to

have emerged from rain forests (Hawley, 1988), the acknowledged

native area of Ae. albopictus encompasses contrasting environments

including temperate regions of Japan and China, offering a large

potential of fit towards the most recently colonized environments.

For example, the induction of photoperiodic diapause in temperate

areas, which has a genetic basis in Ae. albopictus (Hanson & Craig,

1994; Hawley, Reiter, Copeland, Pumpuni, & Craig, 1987; Urbanski,

Benoit, Michaud, Denlinger, & Armbruster, 2010), is decisive to

ensure invasive success in Europe or Northern America. It allows

the susceptible populations to survive through winter at the larval

stage into eggs. Such a trait appears to be governed by a “genetic

toolkit” involving numerous genes and metabolic networks for

which the genetic polymorphism between diapausing and nondia-

pausing strains remains to be elucidated (Poelchau, Reynolds, Elsik,

Denlinger, & Armbruster, 2013a). In addition, the colonization of

new areas that appear similar to the native environment at first

glance can still involve de novo adaptation; even environments that

share climatic variables are not necessarily similar regarding edaphic

and biotic interactions (Colautti & Lau, 2015). This suggests that,

regardless of the native and settled environments, it might be pos-

sible to find evidence of adaptive evolution in invasive populations

of Ae. albopictus.

To better understand the invasive success of this species, we

genotyped 140 field individuals collected from three Vietnamese (na-

tive tropical area) and five European (invasive temperate area) popu-

lations (Figure 1), aiming to identify genomic regions involved in

local adaptation. To do so, we developed new genetic markers based

on high-throughput genotyping of the insertion of transposable

elements (TEs) that represent at least one-third of the genome of

Ae. albopictus and include recently active families that can reach

thousands of copies in one genome (Goubert et al., 2015).

Amplification of TE insertions is particularly efficient to obtain

many genetic markers throughout one genome (Bonin et al., 2008),

especially if few genomic resources are available (Monden, Yam-

aguchi, & Tahara, 2014), which was the case for the Asian tiger mos-

quito until recently. In addition, such markers represent an attractive

alternative to other methods of diversity reduction such as RAD

sequencing (Miller, Dunham, Amores, Cresko, & Johnson, 2007) that

could be less efficient in species with a high TE load (Davey et al.,

2013) and did not produce satisfying results in Ae. albopictus (Gou-

bert, Minard, Vieira, & Boulesteix, 2016). In mosquitoes, TEs have

been shown to be powerful markers for both population structure

analysis (Biedler et al., 2003; Boulesteix et al., 2007; Esnault et al.,

2008; Santolamazza et al., 2008) and genome scans (Bonin, Paris,

Tetreau, David, & Despr�es, 2009).

We hypothesized that some TE insertion sites could be located

in the neighbourhood of targets of natural selection and thus could

reach a high level of differentiation between native and invasive

populations if selective sweeps occurred during local adaptation. In

addition, some TEs could also insert near or inside coding regions

and many studies have shown their recurrent involvement in envi-

ronmental adaptation in multiple organisms (Casacuberta & Gonz�alez,

2013), eventually contributing to the success of invasive species

(Schrader et al., 2014; Stapley, Santure, & Dennis, 2015).

To distinguish between neutral demographic effects and adaptive

evolution, we first performed population genetic analyses to reveal

the global genetic structure of the studied populations. We then per-

formed a genomic scan for selection and identified 92 candidate loci

under directional selection, among which several are located within

or in a close neighbourhood of annotated genes, revealing candidate

pathways to investigate in forthcoming studies.

2 | MATERIALS AND METHODS

2.1 | Biological samples

One hundred and forty flying adult female Ae. albopictus were col-

lected in the field at eight sampling sites in Europe and Vietnam dur-

ing the summers of 2012 and 2013 (Figure 1 and Table S1).

Individuals were sampled using either a single trap or aspirators

through the sampling site within a 50 m radius. When traps were

used, live mosquitoes were collected after a maximum of 2 days.

2.2 | High-throughput transposon display (TD)
genotyping

The insertion polymorphism of the five transposable element families

(I Loner Ele1 (IL1), Loa Ele2B (L2B), RTE4, RTE5 and Lian 1) identi-

fied by Goubert et al. (2015) in Ae. albopictus was characterized

using transposon display (TD), a TE insertion-specific PCR method,

combined with Illumina sequencing of all TD amplification products



(Fig. S1). These TE families were chosen according to high copy

number estimate (from 513 to 4,203 copies), high identity between

copies and a “copy and paste” mode of transposition (all these TEs

are non-LTR retrotransposons).

2.2.1 | DNA extraction and TD adapter ligation

The total DNA was extracted from whole adult bodies following the

phenol–chloroform protocol described by Minard et al. (2015). The

TD was conducted combining methods from previous studies

(Akkouche et al., 2012; Carnelossi et al., 2014; Munroe et al., 1994;

Roy et al., 1999). First, individual extracted DNA (� 75 ng) was used

for enzymatic digestion in a total volume of 20 ll, with HindIII

enzyme (10 U/ll) and buffer R (Thermo Scientific) for 3 hr at 37°C.

The enzyme was inactivated at 80°C for 20 min. TD adapters were

then built by hybridizing Hindlink with MSEB oligonucleotides

(100 lM, see Table S2) in 209 SSC and 1 M Tris in a total volume of

333 ll after 5 min of initial denaturation at 92°C and 1 h at room

temperature for hybridization. Once ready, the TD adapters were

ligated to 20 ll of the digested DNA by mixing 2 ll of TD adapter

with 10 U T4 ligase and 59 buffer (Fermentas) in a final volume of

50 ll for 3 hr at 23°C.

2.2.2 | Library construction

For each individual and for each of the five TE families, the TE inser-

tions were amplified by PCR (PCR 1) in a Bio-Rad Thermal Cycler

(C1000 or S1000) in a final volume of 25 ll. The mixture contained

2 ll of digested-ligated DNA with 1 ll dNTPs (10 mM), 0.5 ll TD

adapter-specific primer (LNP, 10 lM, see Table S3) and 0.5 ll of TE-

specific primer (10 lM), 1 U AccuTaq polymerase (5 U/ll) with 109

buffer and dimethyl sulphoxide (Sigma). Amplification was performed

as follows: denaturation at 98°C for 30 s then 30 cycles of 94°C for

15 s, hybridization at 60°C for 20 s and elongation at 68°C for

1 min; a final elongation was performed for 5 min at 68°C. For L2B

and RTE5 TEs, a nested PCR was performed to increase specificity

under the same PCR conditions using internal forward TE primers

and LNP (Table S2). The PCR 1 primers include a shared tag

sequence that was used for hybridization of the individual indexes

by PCR 2.

F IGURE 1 Sampling sites (with abbreviations) of Ae. albopictus in Europe and Vietnam. Red numbers correspond to the total number of
individuals sampled. Supporting information on samples is available in Table S1



Multiple independent PCR 1 can be performed to avoid amplifi-

cation bias during the library preparation (Recknagel, Jacobs, Herzyk,

& Elmer, 2015). Accordingly, three independent PCR 1 were per-

formed from the same digestion product for each TE family. The

PCR 1 products (3 PCR * 5 TE per individual) were then purified

using volume-to-volume Agencourt AMPure XP beads (20 ll PCR

1 + 20 ll beads) and eluted in 30 ll resuspension buffer. After

NanoDrop quantification, equimolar pools containing the 3*5 PCR

products per individual were made using a Tecan EVO200 robot.

Individual pools were then size selected for 300- to 600-bp frag-

ments using Agencout AMPure XP beads as follows: first, the mag-

netic beads were diluted in H2O at a 1:0.68 ratio then added to

0.6259 PCR products to exclude long fragments. A second purifica-

tion was performed using a nondiluted bead:DNA ratio of 1:8.3 to

exclude small fragments.

Multiplexing samples was performed using a homemade 6 bp

index (included in SRA individual name), which was added to the R

primer (Table S2) during a second PCR (PCR 2) with 12 cycles in an

ABI 2720 Thermal Cycler. The mixture contained 15 ng PCR prod-

ucts, 1 ll of dNTPs (10 mM), 0.5 ll MTP Taq DNA polymerase (5 U/

ll, Sigma), 5 ll 109 MTP Taq buffer and 1.25 ll of each tagged pri-

mer (20 lm) in a final volume of 50 ll. Amplification was performed

as follows: denaturation at 94°C for 60 s and then 12 cycles of

denaturation at 94°C for 60 s, hybridization at 65°C for 60 s and

elongation at 72°C for 60 s; a final elongation was performed for

10 min at 72°C. The PCR 2 products were purified using an Agencout

AMPure XP bead:DNA ratio of 1:1.25 to obtain libraries. TD product

purification, library preparation and paired-end sequencing using an

Illumina Hiseq 2000 (1 lane) was performed at the GeT-PlaGe core

facility (Genome and Transcriptome, Toulouse) using a TRUSEQ PE CLUS-

TER KIT version 3 (2 9 100 bp) and a TRUSEQ SBS KIT version 3.

2.3 | Bioinformatic treatment of TD sequencing

The steps of the informatics treatment from the raw sequencing

data set to population binary (1/0) matrices for the presence/ab-

sence of TE insertions per individual are described in Fig. S2. First

(Fig. S2-A), the paired-end reads of each individual were quality-

checked and trimmed using URQT version 1.0.17 (Modolo & Lerat,

2015) with standard parameters and a t quality threshold of 10. The

reads pairs were then checked and trimmed for Illumina adapter con-

tamination using Cutadapt (Martin, 2011). The R1 reads include the

TE sequence and the R2 reads include the TD adapters followed by

the flanking sequence of the closest EcoRI site, called here the “in-

sertion locus” (Fig. S2A). Specific amplification of TE insertions was

controlled by checking for the expected 30 TE sequence on the R1

read using Blat (Kent, 2002) with an identity threshold of 0.90. Only

reads with an alignment-length/read-length ratio ≥0.90 were

retained. The R2 reads for which the R1 mate passed this filter were

then selected for insertion loci construction after removal of the TD

adapter on the 50 start using Cutadapt and removal of reads under

30 bp. Selected reads were separated in each individual according to

the TE families for loci construction.

To correct for the interindividual coverage variations, we per-

formed a sampling of the cleaned reads (Fig. S2-B). First, for each TE

family, the distribution of the number of reads per individual was

generated and individuals with fewer reads than the first decile of

the distribution were removed; then, the cleaned reads of the

remaining individuals were randomly sampled at the value of the first

decile of coverage (this value varies among TE families). For each TE,

the sampled reads of each retained individual were clustered

together using the CD-HIT-EST program (Li & Godzik, 2006) to recover

insertion loci (Fig. S2-C). In this all-to-all reads comparison, the align-

ments needed a minimum of 90% identity, the shortest sequence

needed to be 95% the length of the longest, global identity was used

and each read was assigned to its best cluster. In a second step, the

reference reads of each locus within an individual, given by CD-HIT-

EST, were clustered with all reference reads of all individuals using

the same threshold to build the locus catalog, including a list of loci

of all individuals and the coverage for each locus in each individual.

After this step, the insertion loci that matched known repeats of the

Asian tiger mosquito (Goubert et al., 2015) were discarded; align-

ments were performed with Blastn using the default parameters.

As the quality control removed a substantial number of reads for

the construction of the TE insertions catalog, the raw R2 reads (with

their TD adapter removed), which could have been discarded in the

first attempt, were then mapped over the catalog to increase the

scoring sensibility (Fig. S2-D). Before mapping, the raw R2 reads

were also sampled at the first decile of individual coverage (as

described previously). At this step, individuals who were removed

from at least two TE families for loci construction were definitively

removed from the whole analysis. Mapping (Fig. S2-E) was per-

formed over all the insertion loci of all TE families in a single run to

prevent multiple hits. Blat was used with an identity threshold of

90%. Visual inspection of alignment quality over 30 sampled loci per

TE family was performed to ensure the quality of scoring. Raw

matrices were then filtered out (Fig. S2-F) for a minimum insertion

frequency of 2.5% among all individuals and aberrant loci with

extreme (>99th centile) coverage and coverage standard deviations

were discarded. The final data sets consisted of one matrix per TE

family with information for each individual concerning the presence

(1) or absence (0) of TE for each of the selected loci.

To check if the sampling procedure would affect our results, the

read sampling procedures and subsequent analysis were performed

independently 3 times (replicates M1, M2 and M3).

2.4 | Genetic analyses and genomic scan

The population structure analyses were performed independently for

each TE family. Principal coordinates analyses (PCoAs) were per-

formed to identify genetic clusters using the ADE4 package (Dray &

Dufour, 2007) of R 3.2.1 (R Core Team 2016). The S7 coefficient of

Gower and Legendre (1986) was used as a genetic distance because

it gives more weight to shared insertions as follows: with a, b, c and

d taken from a contingency table such as a = 1/1 (shared presence);

b = 1/0; c = 0/1; and d = 0/0 (shared absence); S7 = 2a/(2a+b+c).



Shared absences were not used because they do not provide infor-

mation on the genetic distance between individuals due to the “copy

and paste” mode of transposition of the TE used (shared ancestral

state). In order to obtain a quantitative measure of the genetic dif-

ferentiation, pairwise FST between populations were computed using

ARLEQUIN 3.5 (Excoffier & Lischer, 2010); the significance of the index

was assessed over 1,000 permutations using a significance threshold

of 0.05.

The genomic scan was performed in two steps for each of the

sampling replicates of each TE. First, BAYESCAN 2.1 (Foll & Gaggiotti,

2008) was used to test for the deviation of each locus from neutral-

ity. BAYESCAN considers a fission/island model in which all subpopula-

tions are derived from a unique ancestral population. In this model,

variance in allele frequencies between subpopulations is expected to

be due either to the genetic drift that occurred independently in

each subpopulation or to selection that is a locus-specific parameter.

The differentiation at each locus in each subpopulation from the

ancestral population is thus decomposed into a b component (shared

by all loci in a subpopulation) related to genetic drift and a a compo-

nent (shared at a locus by all subpopulations) due to selection. Using

a Bayesian framework, BAYESCAN tests for the significance of the a

component at each locus. Rejection of the neutral model at one

locus is conducted using posterior Bayesian probabilities and con-

trolled for multiple testing using a false discovery rate. In addition,

BAYESCAN integrates uncertainty about allele frequency from dominant

data such as the TD polymorphism, leaving the inbreeding coeffi-

cient (FIS) to vary between 0 and 1 during the Markov chain Monte

Carlo process. BAYESCAN was used with default values except for the

prior odds, which were set to 100 (more compatible with data sets

having thousands of loci, see BAYESCAN manual) and a significance

q-value threshold of 0.05 to retain outlier loci.

In a second step, only outliers suggesting divergent directional

selection between Europe and Vietnam were considered. To identify

these, locus-by-locus analyses of molecular variance (AMOVAs) were

performed using ARLEQUIN 3.5 for each TE family. The significance of

the FCT (hierarchical analogue of the FST measuring the extent of dif-

ferentiation between groups of populations) between Vietnamese

and European populations was assessed by performing 10,000 per-

mutations between individuals among populations with a significance

threshold of 0.05. For each data set, BAYESCAN outliers were cross-

referenced with significant FCT loci as an objective threshold to

restrict the number of candidate loci.

2.5 | PCR validation and Outlier analyses

Pairs of primers were designed for each outlier locus to be used in

standardized conditions. The forward primer was located in the TE

end of the concerned family, and the reverse primer was set from

the outlier locus (Table S2). All primer pairs were first tested on a

set of 10 individuals to assess their specificity using a 1/50 dilution

of starting DNA from the TD experiment. Validated primers were

then used to check the insertion polymorphisms in 47 representative

individuals from the eight populations studied in the TD experiment

using 1/50 dilutions of the starting DNA (not all individuals could be

used because of DNA limitations). All PCRs were conducted in a

final volume of 25 ll using 0.5 ll of diluted DNA, 0.5 ll of each pri-

mer (10 lM), 1 ll of dNTPs (10 mM) and 1 U of DreamTaq poly-

merase with 19 green buffer (ThermoFisher Scientific). Amplification

was performed as follows: denaturation at 94°C for 2 min and then

34 cycles including denaturation at 94°C for 30 s, hybridization at

60°C for 45 s and elongation at 72°C for 45 s; a final elongation

was performed for 10 min at 72°C. After a 45-min migration of the

PCR product on a 19 electrophoresis agarose gel, CG and MB

assessed the insertion polymorphisms independently.

To identify the genomic environment of the outlier loci, their

sequences (reference R2 read) were mapped onto the assembled

genome of Ae. albopictus assembly AaloF1 strain Foshan (Chen et al.,

2015) using Blastn. Blastn alignments were performed with default

parameters and sorted according to their score. Additionally, each

alignment was visually inspected for consistency. Outlier loci with

multiple identical hits were discarded. To identify genes surrounding

the mapped outliers, we used annotations from VectorBase (http://

www.vectorbase.org) for the assembly or, if the Ae. albopictus gene

was missing annotation, we used the annotation of orthologues in

closely related species. In addition, we questioned whether genes

potentially involved in the diapause pathway, a critical adaptation

required in temperate environments, may be associated with outliers.

In a previous publication, Poelchau et al. (2013a) identified that dif-

ferentially expressed genes between diapause-induced and nondia-

pause-induced samples were significantly enriched in functional

categories related to diapause preparation. These functional cate-

gories are defined a priori and tested for a more significant differen-

tial expression than that expected by chance (Poelchau et al., 2013a).

Because, at the time of this previous publication, the corresponding

transcripts were associated with Ae. aegypti orthologues, we here

mapped the original transcriptome data (annotated eggs and embryo

assembly, downloaded at http://www.albopictusexpression.org) onto

the AaloF1 genome assembly using Blat with default parameters.

After alignment, one best hit was retained per transcript according to

the best alignment score. When a transcript had identical best hits,

all positions for the transcript were considered. After alignments, the

transcript positions were intersected with the AaloF1 gene set using

BEDTOOLS version 2.25.0 (Quinlan & Hall, 2010) to identify corre-

sponding Ae. albopictus genes. In addition, Chen et al. (2015)

reported 71 complete diapause-related genes that were merged to

our initial candidate set. The eventual enrichment in outliers near

these diapause-related genes was assessed using the following pro-

cedure: we first estimated the total number of base pairs covered by

diapause-related genes on the genome assembly. We then added a

fixed distance in 50 and 30 of each of these genes (up to the contig

size) corresponding to the longest distance observed between gene

and outlier among the outliers found close to diapause-related gene;

this defined the “diapause base pairs.” We then compared the ratio

of the number of outliers found within these “diapause base pairs”

over the total number of mapped outliers and the ratio of “diapause

base pairs” over the total assembly size using an exact binomial test.

http://www.vectorbase.org
http://www.vectorbase.org
http://www.albopictusexpression.org


3 | RESULTS

3.1 | High-throughput TE insertion genotyping

The presence/absence of insertions of five TE families was genotyped

in an initial number of 140 individuals using a combination of family-

specific PCR and individually labelled high-throughput sequencing.

Sequencing produced a total of 102,319,300 paired-end reads

(2 9 100 bp). After quality and specificity filtering, 24,332,715 reads

were suitable for analyses. The loss of reads was in the great majority

due to specificity filtering as quality only resulted in trimming. After

application of the read sampling procedure to control for coverage

variation between individuals, an average of 128,491 polymorphic

insertion loci was available for each of the three sampling replicates.

A final 120 individuals were retained per TE family (discarded individ-

uals vary per TE family). The mean number of loci per individual and

per TE family ranged from 1,025 � 290 SD (IL1 family, mean and SD

averaged over the three replicates) to 3,266 � 766 SD (RTE5 family).

Details are given in Table S1. Although our read sampling procedure

could have artificially lowered the mean insertion frequency of the

loci, this effect should be small because in our final data sets the TE

insertion frequencies (i.e., the number of individuals who share an

insertion) are not influenced by the mean number of reads per indi-

vidual at the considered locus (Fig. S3). Additionally, we did not

detect any bias between European and Vietnamese populations when

measuring the identity between the R1 reads (TE part) and the TE

consensus sequence of each TE family, suggesting that the relative

activity of the TE is comparable between continents (Fig. S4).

3.2 | Population structure

Principal coordinates analyses (PcoAs) were performed indepen-

dently for each of the five TEs (Figure 2). The shared absence of a

specific insertion was not considered in the distance matrices in the

PCoAs: Class I retrotransposons have a “copy and paste” transposi-

tion mechanism that allows us to infer the “absence” state as the

ancestral allele. In addition, these TE insertions segregate at very low

frequencies among individuals and thus a shared “absence” is likely

to be noninformative with regard to an individual’s co-ancestry.

Among the three main principal coordinates (PCs), individuals tend

to be grouped according to their respective populations with little

overlap between groups. However, the three main PCs represent

only a small fraction of the total variance (<10%), suggesting a weak

genetic structuring between the populations. Overall, individuals

from Vietnamese populations (HCM, TA, VT) tend to be grouped

together in a single cluster, with the exception of 13 to 14 individu-

als from HCM for the L2B and RTE5 TE families (Fig. S5) and six

individuals of VT with the RTE4 TE family (Figure 1) that cannot be

clearly distinguished from European samples. BCN individuals (Spain)

represent the most homogeneous group, well differentiated from

Vietnamese and French individuals (SP, CGN, NCE and PLV).

In agreement with the PCoAs, the analyses of molecular vari-

ance (AMOVAs) attributed little genetic variance among groups

(Vietnam–Europe) and between populations within groups (Table 1).

In the studied populations, most of the genetic variance was dis-

tributed among individuals within groups.

The measures of genetic differentiation among pairs of popula-

tions were consistent between the PCoAs and AMOVAs (File S1):

the BCN population shows the highest FST with the other popula-

tions for each of the five TEs (0.051 < FST < 0.148), whereas Viet-

namese populations were the most closely related

(0.011 < FST < 0.032). Although VT is located 100 km away from TA

and HCM (both sampled in the same city, Hô Chi Minh, Vietnam),

the FST values are very similar between the three Vietnamese popu-

lations, suggesting no influence of geography at this scale. CGN and

NCE, sampled in the same urban area (Nice agglomeration), also dif-

ferentiated little or were not significantly differentiated, depending

on the TE family. The previously identified intermediate pattern of

HCM with some European populations at the L2B and RTE5 loci

(PCoAs) is also found at the FST level, especially for the low

differentiation with the PLV population for these markers

(0.011 < FST < 0.020). Neighbor-joining trees of individuals based on

the S7 coefficient of Gower and Legendre (1986) also confirmed the

weak population structure of the sampled population of Ae. albopic-

tus (Fig. S6) and are characterized by especially long branches due to

a high amount of low frequency insertions.

3.3 | Genomic scan

Outlier loci for selection signature were searched using BAYESCAN

(nonhierarchical island model) and then sorted for a significant FCT

(between Europe-Vietnam group differentiation) to retain only candi-

date loci compatible with a differential selection between continents.

To reduce false-positive risks due to uneven mutation rates between

TE families, outlier scans were also performed independently for

each TE family (Narum & Hess, 2011; de Villemereuil, Frichot, Bazin,

Franc�ois, & Gaggiotti, 2014). We identified 92 candidate insertion

loci (Figures 3, S7 and Table S4). Most of these insertions are found

in both areas (no private allele), except for RTE4_1638 and

RTE4_1898 that were not found in Vietnam. In addition, 74% of the

outliers correspond to high-frequency insertions in Europe, which is

significantly more than expected for a 50-50 chance (chi-squared

test, X = 20.098, p < .01), whereas this 50-50 pattern is observed

comparing 92 randomly chosen loci with the same overall insertion

frequency (≥20 individuals/locus, chi-squared test, Χ = 1.837,

p = .175) between Europe and Vietnam (Figure 4).

PCR amplification of the outlier loci was carried out on a repre-

sentative panel of 47 individuals to validate the insertion pattern

detected using TD (see Materials and Methods). For loci where the

amplification was successful, the insertion pattern observed using

PCR always confirmed the TD pattern (Fig. S8).

From 92 outlier loci, 21 could be attributed to a unique position

on the Ae. albopictus genome. Annotation and distance to surround-

ing genes are reported in the File S2. Fifteen outliers mapped within

contigs with identified genes. We found that four outliers (File S2,

sheet 2, highlighted) loci are located on contigs that harbour



diapause-related genes. Two of them (Lian1_5902 and RTE4_17015)

are located in the direct vicinity, either inside or within 5,654 bp, of

these genes, which is significantly closer than expected by chance

(exact binomial test, p = .014). Lian1_5902 is located in an intron of

lac1 (longevity assurance factor 1; AALF000670), and RTE4_17015

neighbours the AALF004790 a lipophorin-coding gene. Both genes

F IGURE 2 Principal coordinates
analyses (PCoAs). Projection of individuals
over the three-first principal coordinates
(PC) of PCoAs for each of the five TE
families and for the first replicate (M1, see
Materials and Methods). The proportion of
inertia represented by each axes is noted
in %. Circles: European populations;
triangles: Vietnamese populations. The
results for other sampling replicates can be
found in Figure S5



are known to be involved in lipid metabolic pathways. Although the

other diapause-related genes are not the closest genes of the two

other outliers, they represent two singular groups of genes located

in tandem: AALF020842 and AALF00843 located 71.05 kb from

RTE5_10123 and AALF020959, AALF020960, AALF020961,

AALF020962, AALF020963 and AALF020965 located 216.6 kb from

Lian1_11252.

Three other outliers are located within other genes (outliers

Lian1_10005, Lian1_9293 and RTE4_34941), including a hemolymph

juvenile hormone-binding protein (RTE4_34941/AALF012643). The

10 remaining outliers were located 21.1–85.2 kb from their closest

gene.

4 | DISCUSSION

The goal of our study was to identify genomic regions involved in

adaptive evolution of Ae. albopictus thanks to the development of

new genetic markers. Through high-throughput genotyping of the

insertion polymorphisms of five TE families, we identified up to

128,617 polymorphic loci among more than a hundred of individuals

from eight sampling sites. The estimated genome size of Ae. albopic-

tus exceeds one billion base pairs (Chen et al., 2015; Dritsou et al.,

2015; Goubert et al., 2015). Accordingly, the number of markers

scored in this study offers a comfortable genomic density of one

marker every 10 kb.

TE-based methods have been successfully used to perform popu-

lation genetic analyses within a repetitive genomic environment,

such as in the human genome (Rishishwar et al., 2015; Watkins

et al., 2003; Witherspoon et al., 2013). Similar high-throughput

genotyping methods have been developed for a large panel of

organisms (Bridier-Nahmias et al., 2015; Iskow et al., 2010; Monden

& Tahara, 2015; Sabot et al., 2011; Witherspoon et al., 2010) but

relied on well-established reference genomes (human, rice, straw-

berry, yeast). Monden et al. (2014) recently completed such an anal-

ysis without a reference genome, to score 2,024 loci from two TE

families in sweet potato. Because of the number of available loci,

and being the first of its kind in animals, our study represents a large

improvement. We provide a cost-efficient method to generate many

polymorphic markers without extensive knowledge of a species’ gen-

ome. Specifically, this strategy appears valuable for species with a

large genome size in which the TE density could severely compro-

mise the development of more classical approaches.

Genotyping from high-throughput sequencing keeps uncertain

whether the observed absence of a TE insertion is true or is due to

a lack of coverage. However, we showed that there is no correlation

between the TE insertion frequencies and the mean coverage of loci

(Fig. S3), which should be the case if false negatives were systemati-

cally associated with a lack of coverage. Moreover, the genetic struc-

ture of the studied populations showed strong consistency between

sampling replicates of individual’s reads (Fig. S5), demonstrating the

robustness of the method despite an initial substantial coverage vari-

ation among individuals. Population genetics analyses revealed a very

low level of genetic structuring between European and Vietnamese

populations. Among the studied populations, AMOVAs showed that

most of the genetic variation is distributed between individuals

within populations (>90%), and as suggested by pairwise FST and

PCoAs, only a small part (<10%) of the genetic variance is due to dif-

ferentiation between populations. The genetic differentiation we

measured is as high among European populations as it is between

populations from Europe and Vietnam.

This singular population structure is in agreement with previous

results gathered in Ae. albopictus using different collections of allo-

zymes, mtDNA or microsatellite markers (Black, Ferrari, & Sprengert,

1988; Gupta & Preet, 2014; Kambhampati, Black, & Rai, 1991;

Manni et al., 2015; Zhong et al., 2013). Moreover, a recent analysis

performed with a set of 11 microsatellites on individuals from the

same populations (with the exception of BCN) showed a similar dis-

tribution of genetic variation among hierarchical levels (Minard et al.,

2015). These results demonstrate the reliability of our markers and

confirm that a nonhierarchical island model can likely fit the global

genetic structure. The genetic diversity observed in Europe is com-

patible with a scenario of multiple and independent introductions, as

already suggested for Ae. albopictus (Becker et al., 2013; Birungi &

Munstermann, 2002; Takumi et al., 2009; Urbanelli, Bellini, Carrieri,

Sallicandro, & Celli, 2000). However, as previously suggested, this

pattern could also be the result of founder events that may occur

during colonization and/or a restriction of gene flow between popu-

lations after their introduction. Answering such a question would

require extended sampling over the entire native area.

The outlier analysis revealed 92 loci with high posterior probabil-

ities of being under positive selection between European and Viet-

namese populations. When possible, the PCR amplification of the

outlier loci using a set of representative individuals confirmed a shift

of insertion frequencies towards either the European or the Viet-

namese sampling sites. This suggests that, despite reduced coverage,

introduced by sampling in the data set, the scored insertion polymor-

phisms are reliable. In addition, our method of analysis is likely to be

conservative: indeed, the BAYESCAN outliers were selected for their

consistency with a significant FCT between European temperate and

TABLE 1 Analyses of molecular variance (AMOVAs). The results for the three replicates (M1, M2, M3) of read sampling for the five TE
families (IL1, L2B, RTE5, RTE4, Lian1). Values are given in percentage of the total genetic variance

IL1 L2B RTE5 RTE4 Lian1

Among groups [0.59–0.70] [1.22–1.29] [1.08–1.10] [1.97–2.04] [0.67–0.74]

Among populations within groups [5.15–5.37] [3.58–3.63] [3.36–3.40] [6.67–6.78] [4.47–4.56]

Within populations [94.04–94.16] [95.08–95.18] [95.51–95.55] [91.18–91.30] [94.77–94.81]

Intervals report min and max values among the three sampling replicates.



F IGURE 3 Insertion frequencies in
Europe and Vietnam for 92 outlier loci.
Bars represent the median value from the
three reads sampling replicates, and dots
represent the values from the other
replicates (if outlier(s) found in replicates).
Colours correspond to each of the five TE
families



Vietnamese tropical populations, which avoids retaining outliers that

we were not looking for, for example those due to a population-spe-

cific event.

Interestingly, we found significantly more outlier loci with a high

frequency in Europe and low frequency in Vietnam. This was unex-

pected under our initial assumptions as follows: a favoured allele

selected in one or another environment has a priori no reason to be

more often associated with the presence or the absence of a TE

insertion at linked sites. A possible explanation is that the majority

of the sequenced TE insertions segregate at low frequencies (ap-

proximately 10% of all individuals). When considering the linked

region of one polymorphic TE insertion, if a favourable mutation

appears in an individual in which the insertion is absent, the increase

in frequency of this “absence” haplotype will thus, most of the time,

have a modest effect on the genetic differentiation at this marker

because it is already segregating at high frequency. In contrast, if a

favourable mutation appears in a TE “presence” haplotype, the

increase in frequency of the linked TE insertion would lead to high

differentiation (FCT). In absence of an alternative explanation, our

outlier loci could thus indicate in which subset of populations the

adaptive mutation occurred and in the present case this would have

occurred more frequently in the temperate populations. Additionally,

the observation of such a low global insertion frequency is expected

to reduce the risk of false-positive outliers due to negative selection

acting on potentially deleterious polymorphic insertions.

Two scenarios that are not mutually exclusive could be invoked

in the light of our data. A simple case would be a direct adaptive

evolution in European invasive populations that originated from

tropical regions of the native area. A second hypothesis could be

that invasive temperate populations came from the northernmost

territories of the native area such as northern China or Japan where

Ae. albopictus populations are already cold-adapted. It would be thus

interesting to know whether the observed signature of selection

results from more “ancient” adaptations in the native area or if it

originates from more recent fine tuning of cold-related traits in the

invasive areas. A recent study (Porretta, Mastrantonio, Bellini, Som-

boon, & Urbanelli, 2012) using new variable COI mtDNA sequences

and historical species range modelling suggested that northern terri-

tories of the native area of Ae. albopictus would be the latest to

have been colonized after a range expansion from southern refugia

after the last glacial approximately 21,000 years ago. The authors

suggested that Ae. albopictus may have followed the human popula-

tions during their expansion from south to north in this area that

began approximately 15,000 years ago. Thus, regardless of the origin

of the invasive individuals sampled in Europe, it is likely that they

are representatives of populations that had recently undergone a

shift of selective pressure from tropical to temperate climatic condi-

tions. This could explain why so many outliers are associated with

high insertion frequency in Europe and why some candidate genes

in the diapause pathway are found in the neighbourhood of some of

these outliers. An easy method to distinguish between these possi-

bilities would be to search if the same outlier insertions are present

in several temperate populations from the native area.

We were able to assign a unique position for 21 of the outlier

loci on the Ae. albopictus genome. Sixteen outliers were found inside

or in the close vicinity of annotated genes, which may allow specula-

tion on potential targets of selection. These genes encompass func-

tions related to cell structure and organization, lipid metabolism or

F IGURE 4 Comparison of outlier
frequencies with randomly selected loci.
Insertion frequencies of 92 randomly
chosen loci among those with the same
minimum insertion frequency (≥20
individuals) as outliers compared with 92
outlier loci. The random loci were taken
from the first replicate (M1), and values for
outliers are median values obtained from
the three replicates. Nonoverlapping
notches indicate a significant difference
between the true medians (dark horizontal
bars)



signal transduction. A main challenge faced by temperate popula-

tions is overwintering (Denlinger & Armbruster, 2016; Hawley, 1988;

Mori, Oda, & Wada, 1981; Takumi et al., 2009). Previous studies

have shown that the cell cycle and lipid metabolism are specifically

solicited at multiple stage of the diapause preparation and mainte-

nance (Huang, Poelchau, & Armbruster, 2015; Poelchau, Reynolds,

Elsik, Denlinger, & Armbruster, 2013b; Poelchau et al., 2013a;

Urbanski et al., 2010) to allow temperate populations to go through

winter within cold-resistant eggs. Although the genes found in our

genome scan have not been functionally associated with diapause,

two of them laf1 (AALF000670) and a lipophorin-coding

(AALF004790) are a differentially expressed between induced and

noninduced samples during diapause preparation (Poelchau et al.,

2013a) and are located closer than expected by chance from two of

our outlier loci. These genes are both involved in lipid metabolism

and could be thus strong candidates for adaptive evolution. Another

notable candidate is AALF012643, a hemolymphatic carrier of the

juvenile hormone (JH). JH appears to be critical in the maintenance

of the diapause in Ae. albopictus but its exact function remains to be

elucidated (Poelchau et al., 2013b). Although appropriate caution

should be taken regarding the sole candidate status of these genes,

it is worth mentioning that the diapause pathway has already been

shown to benefit from rapid adjustments due to local adaptation in

Ae. albopictus. For instance, Urbanski et al. (2012) showed that inva-

sive American populations originating from Japan have rapidly

evolved a new adaptive clinal response to diapause induction, inde-

pendent from that observed in the native area. Thus, adaption in the

temperate regions may have led to several selective sweeps on gene

or regulatory sequences involved in this critical pathway, allowing

the settlement of the mosquito in new temperate areas. Further

experiments, including fine-scale study of the genetic diversity of

these candidates among populations, are needed to assess their

potential implication in the adaptation of Ae. albopictus towards tem-

perate environments. Specifically, targeted resequencing of the can-

didate regions, including outliers, genes and their flanking regions

across several individuals and populations should help to determine

evidence of selective sweep, the precise extent and location of such

events, and eventually designate the causative selected mutations.

It is also important to note that the results presented here are

only restricted to a subset of the Asian tiger mosquito populations

located in temperate and tropical environments. Thus, it is probable

that some of the outliers detected could be specific to this particular

comparison and do not reflect the global pattern of differentiation

between tropical and temperate populations. Research on the same

outliers between other tropical and temperate populations from

native and non-native areas would be extremely valuable to extrapo-

late our results at a larger scale and refute possible false positive.

Should the same outlier insertions be found at high frequencies in

temperate locations—such as in USA, Japan or China—extended

investigations about the origin of invasive populations would help

clarify if those similarities are due to an ancestral sweep or parallel

sweeps that occurred independently in several populations. This

study already provides a set of functional primers for some

candidate loci that could be directly used to answer this question in

Ae. albopictus DNA samples.

As with every novel method, our study may be susceptible to

unforeseen or underrated bias; although we attempted to remove

these issues (such as controlling the relationship between loci cover-

age and insertion frequency), we identified several points that must

be taken into account for interpretation of the results. First, unlike

random SNPs, TE insertions can be more often potential targets of

purifying selection, which can sometimes mimic the diversity pattern

of a selective sweep regarding the reduction in the genetic diversity

(Charlesworth, Morgan, & Charlesworth, 1993; Stephan, 2010).

However, as reported earlier, insertions are found at low frequencies

and negative selection for the “presence” of TE is likely to produce a

slight change in the allele frequency spectrum. Another issue may be

the uncertainty related to the null model used in the genome scan;

even if we did not explicitly evaluate the fit of our data to a specific

population model, we did not find evidence to reject an island model

such as that implemented in BAYESCAN. This software is also the best

suited to handle our dominant data but is indeed restricted to mainly

detect recent, strong and monogenic positive selection (Narum &

Hess, 2011; P�erez-Figueroa, Garc�ıa-Pereira, Saura, Rol�an-Alvarez, &

Caballero, 2010; de Villemereuil et al., 2014); additionally, it should

be insightful to compare our results with more diverse genome-scan

models and we would like to emphasize that our results were pro-

duced under the specific hypothesis of the model used.

Here, we report the first information supporting adaptive evolu-

tion at the molecular level in the Asian tiger mosquito. Progress in

the annotation of published genomes and the looming availability of

supplementary genomic resources will allow the most gain from

these results. We hope that this work will contribute to unravelling

the implications of adaptive processes during the invasion of disease

vectors.
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