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ON THE UNIQUENESS AND NUMERICAL APPROXIMATIONS
FOR A MATCHING PROBLEM∗

NOUREDDINE IGBIDA† , VAN THANH NGUYEN† , AND JULIÁN TOLEDO‡

Abstract. The paper deals with some theoretical and numerical aspects for an optimal matching
problem with constraints. It is known that the uniqueness of optimal matching measure does not
hold even with Lp sources and targets. In this paper, the uniqueness is proven under geometric
conditions. On the other hand, we also introduce a dual formulation with a linear cost functional on
convex set and show that its Fenchel–Rockafellar dual formulation gives right solution to the optimal
matching problem. Basing on our formulations, a numerical approximation is given via an augmented
Lagrangian method. We compute at the same time the optimal matching measure, optimal flows
and Kantorovich potentials. The convergence of the discretization is also studied in detail.

Key words. Optimal matching, optimal transport, Fenchel–Rockafellar duality, augmented
Lagrangian methods
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1. Introduction. Optimal matching problem (see [11, 9, 8] and the references
therein) deals with the problem to transport two measures of commodities into a
prescribed location and to match them there in such a way to minimize the total
cost of both transportations. The problem with uniformly convex costs is studied in
[7, 11, 9, 8] with applications in economic theory. The case where costs are governed
by the Euclidean distance is studied in [19] with connection to p−Laplacian type
equations.

Optimal constrained matching problem (see [3, 20]), which is a variant from the
optimal matching problem and the partial transport problem (see for instance [14,
18]), consists in transporting two kinds of goods and matching them into a target
set with constraints on the amount of matter at the target. For example, the target
represents the capacities of some companies, the amount of goods matching at each
company should have a predetermined bound from above. In mathematical language,
the optimal matching problem with constraints for the Euclidean costs can be modeled
as follows: Let Ω be a bounded, convex set of RN and f1, f2 ∈M+

b (Ω) represent source
measures of the same mass, i.e., f1(Ω) = f2(Ω). The constraint on the target set is
represented by a measure Θ ∈M+

b (Ω), which must satisfy

f1(Ω) = f2(Ω) < Θ(Ω).

The optimal matching problem reads

(1.1) W (f1, f2; Θ) := inf
(γ1,γ2)∈π(f1,f2;Θ)

 ∫
Ω×Ω

|x− y|dγ1 +

∫
Ω×Ω

|x− y|dγ2


with

π(f1, f2; Θ) :=
{

(γ1, γ2) ∈M+
b (Ω×Ω)2 : πy#γ1 = πy#γ2 ≤ Θ, πx#γi = fi, i = 1, 2

}
,
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where πx#γ and πy#γ are the first and second marginals of γ, respectively. An
optimal solution (γ1, γ2) is called a couple of optimal plans and ρ := πy#γ1 = πy#γ2

is called an optimal matching measure. Obviously, we can write (1.1) as follows

(OM) W (f1, f2; Θ) = inf
ρ∈M+

b (Ω)

{
W1(f1, ρ) +W1(f2, ρ) : ρ ≤ Θ, ρ(Ω) = f1(Ω)

}
,

where W1(., .) is the 1-Wasserstein distance (see e.g. [21, Chapter 6]). By definition,
given two non-negative Radon measures µ1 and µ2 with the same mass on Ω,

(1.2) W1(µ1, µ2) := min
γ∈π(µ1,µ2)

{ ∫
Ω×Ω

|x− y|dγ
}
,

where π(µ1, µ2) is the set of transport plans, i.e.

π(µ1, µ2) :=
{
γ ∈M+

b (Ω× Ω) : πx#γ = µ1, πy#γ = µ2

}
.

The problem (OM) can be also reformulated by saying that masses moving from f1 to
f2 are forced to pass through an unknown (optimal) distribution less than Θ and the
transportation cost should be optimal. In applications, f1 and f2 can be distributions
of consumers while Θ would be a distribution of commodities.

Using the direct method in Calculus of Variations, it is not difficult to prove the
existence of an optimal matching measure. Our main interest lies in the uniqueness
and numerical approximation of the solution. As we will see, the uniqueness of optimal
matching measure does not hold even with regular f1, f2,Θ. An additional geometrical
condition, as well as the absolute continuity of the measure Θ, is needed for the
uniqueness. Concerning the numerical computation, we develop the variational study
of the problem.

The optimal constrained matching problem (1.1) is recently studied theoretically
in [20] in connection with p–Laplacian type systems by using PDE techniques. In-
spiring from the work of Evans and Gangbo [13] on the optimal transport theory, the
authors in [20] show that an optimal matching measure and associated Kantorovich
potentials can be obtained from limits in p–Laplacian type equations as p → +∞.
In [3], Barrett and Prigozhin give a numerical approximation to the problem (1.1) in
the case where Θ = CLN D, i.e., Θ is a constant C on the destination set D. Their
approach based on nonlinear approximated PDEs. They use Raviart–Thomas finite
elements for discretization and solve nonlinear resulting equations.

In this paper, we focus on more variational aspects and the uniqueness of opti-
mal matching measure. We introduce some equivalent formulations for the problem
(OM). We give a sufficient condition to ensure the uniqueness of optimal matching
measure and show that a solution of the Fenchel–Rockafellar dual formulation is the
right solution to the optimal matching problem under a suitable geometric condition.
Numerical aspects are also studied with the help of the equivalent formulations. We
show the convergence of our approximation and give the details for solving the dis-
cretized problems consisting in solving linear equations (with a symmetric positive
definite coefficient matrix) or updating an explicit formula.

The paper is organized as follows: In the following section we present our main
results such as the uniqueness of optimal matching measure, dual maximization prob-
lem, connection between minimal matching flow problem and (OM), the convergence
of the discretization and a numerical example illustrating our approach. The details
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and proofs are discussed in the next sections. More precisely, section 3 is devoted to
the duality issue while the uniqueness is discussed in section 4. Numerical analysis
of the problem is given in section 5 with a study of the convergence of the discretiza-
tion. We end up the article by giving some numerical examples which validate the
approach.

2. Main results. Throughout the paper, Ω ⊂ RN is a bounded convex domain,
and f1, f2, Θ ∈M+

b (Ω) are nonnegative Radon measures such that

f1(Ω) = f2(Ω) < Θ(Ω).

It is not difficult to see that the feasible set π(f1, f2; Θ) is closed under the weak
convergence of Radons measures. This observation gives easily the existence of a
couple of optimal plans (γ1, γ2) and thus an optimal matching measure ρ := πy#γ1 =
πy#γ2. However, in general the uniqueness of optimal matching measures does not
hold. For instance, let f1 = L [0, 1], f2 = L [5, 6] and Θ = L [2, 4], where L is
the Lebesgue measure on R. We see that there are infinitely many optimal matching
measures with the total cost W (f1, f2; Θ) = 5 (one can verify this by using the duality
in Theorem 2.3 below).

Here, we prove that under additional conditions on the supports of Θ, fi, for
i = 1, 2 and the absolute continuity of Θ, there is a unique optimal matching measure.
Let us fix the assumption

(H) S(f1, f2) ∩ supp(Θ) = ∅,

where S(f1, f2) :=
{
z = (1− t)x+ ty : x ∈ supp(f1), y ∈ supp(f2) and t ∈ [0, 1]

}
.

Theorem 2.1. Assume that Θ ∈ L1 and that (H) holds. There exists a unique
optimal matching measure ρ.

Notice that the absolute continuity of Θ is necessary for the uniqueness. Indeed, taking
f1 = δ(0,−1), f2 = δ(0,1) and Θ = δ(−1,0) + δ(1,0) in R2, then S(f1, f2) ∩ supp(Θ) = ∅
and there are again infinitely many optimal matching measures of form ρ = αδ(−1,0) +
βδ(1,0) with α ≥ 0, β ≥ 0, α+ β = 1. So, the conditions in Theorem 2.1 are somehow
optimal for the uniqueness.

Now, to build a numerical computation of the solution to the optimal matching
problem (OM), our main objective is to prove rigorously all the necessary materials
to use the augmented Lagrangian method. Our approach is variational. To this aim,
we introduce a suitable dual formulation to (OM) which moves the problem into the
scope of the general formulation

(2.1) inf
u∈V
F(u) + G(Λu),

where V and Z are two Hilbert spaces, F : V −→ (−∞,+∞] and G : Z −→ (−∞,+∞]
are convex and l.s.c., and Λ ∈ L(V,Z) the space of continuous linear operators. Once
such a dual formulation is given, the ALG2 method (see section 5) can be applied to
give numerical solutions to both the problem (2.1) and the Fenchel–Rockafellar dual
problem of (2.1):

(2.2) sup
σ∈Z∗

(−F∗(−Λ∗σ)− G∗(σ)) .
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Recall that the necessary and sufficient condition for optimality of (2.1) and (2.2)
reads as

(2.3) − Λ∗σ ∈ ∂F(u) and σ ∈ ∂G(Λu).

It is expected that the Fenchel–Rockafellar dual form (2.2) will give informations on
the original matching problem. We will see that this is again true under the necessary
geometrical condition (H).

We come back to the duality issue for (OM). As usual, let us denote by Lip1(Ω)
the set of 1-Lipschitz functions on Ω. By extension, we usually identify Lip1(Ω) with
Lip1(Ω). Let us recall that the duality issue was already studied in [20] with the
following result:

Theorem 2.2 ([20]). Assume that f1, f2 ∈ L∞(Ω). One has
(2.4)

W (f1, f2; Θ) = max

{
−
∫
u1df1 −

∫
u2df2 −

∫
(u1 + u2)−dΘ : u1, u2 ∈ Lip1(Ω)

}
.

However, even if the maximization problem in (2.4) falls into the scope of (2.1),
unfortunately the corresponding F is nonlinear on its variable u := (u1, u2) and (2.4)
is not very useful for the numerical computation. Here, we introduce a new dual
formulation with the following linear cost functional:

(2.5) max

{∫
(u1 + u2)dΘ−

∫
u1df1 −

∫
u2df2 : (u1, u2) ∈ K

}
,

where
K := {(u1, u2) ∈ Lip1(Ω)× Lip1(Ω) : u1 + u2 ≤ 0} .

Using the Fenchel–Rockafellar dual theory for the maximization problem (2.5),
we also introduce the minimal matching flow (MMF) problem:

(MMF) min
{
|Φ1|(Ω) + |Φ2|(Ω) : (Φ1,Φ2, ν) ∈ Ψ(f1, f2; Θ)

}
,

where

Ψ(f1, f2; Θ)

:=
{

(Φ1,Φ2, ν) ∈Mb(Ω)N ×Mb(Ω)N ×M+
b (Ω) : −∇ · Φi = Θ− ν − fi in RN , i = 1, 2

}
.

Here, the divergence constraint is understood in the sense of distribution, i.e.,

〈∇φ,Φi〉(C(Ω)N ,Mb(Ω)N ) =

∫
Ω

∇φ · Φi
|Φi|

d|Φi| =
∫
Ω

φd(Θ− ν − fi),

for any smooth compactly supported function φ ∈ C∞c (RN ). We denote by Φ
|Φ| the

density of Φ w.r.t. the measure |Φ| and by ∇|Φ|u the tangential gradient w.r.t. |Φ|,
which is well-defined for any Lipschitz function u (see e.g. [6]).

Our main result concerning duality and quivalent formulations is summarized in
the following theorem.

Theorem 2.3. Let f1, f2,Θ be Radon measures. We have

(2.6)
W (f1, f2; Θ) = max

{∫
(u1 + u2)dΘ−

∫
u1df1 −

∫
u2df2 : (u1, u2) ∈ K

}
= min

{
|Φ1|(Ω) + |Φ2|(Ω) : (Φ1,Φ2, ν) ∈ Ψ(f1, f2; Θ)

}
.
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Moreover, we have that
• (γ1, γ2) ∈ π(f1, f2; Θ) and (u1, u2) ∈ K are optimal for the optimal con-

strained matching problem (1.1) and the maximization problem (2.5), respec-
tively, if and only if

(2.7)


u1 + u2 = 0, (Θ− ρ)-a.e., with ρ := πy#γ1 = πy#γ2

u1(y)− u1(x) = |y − x| for all (x, y) ∈ supp(γ1)

u2(y)− u2(x) = |y − x| for all (x, y) ∈ supp(γ2).

• (u1, u2) ∈ K and (Φ1,Φ2, ν) ∈ Ψ(f1, f2; Θ) are optimal for (2.5) and (MMF),
respectively, if and only if the following optimality condition holds

(2.8)


−∇ · Φi = Θ− ν − fi in RN , i = 1, 2
Φi

|Φi| = ∇|Φi|ui |Φi|-a.e. in Ω, i = 1, 2

u1 + u2 = 0 ν–a.e. in Ω.

Remark 2.4. If Θ is absolutely continuous, the optimality condition (2.8) can be
simplified by using the usual gradient instead of the tangential gradient. In fact, in
this case, it is known that Φi is also absolutely continuous (see for instance [1]) and
that u is then differentiable |Φi|-a.e.. By regularization via convolution, we can use
u as test function in the first equation of (2.8), and using the duality (2.6), we get
Φi

|Φi| = ∇ui for |Φi|-a.e. in Ω.

Roughly speaking, the dual maximization formulation (2.5), the problem (MMF)
and the system (2.8) correspond to (2.1), (2.2) and the optimality condition (2.3),
respectively. In the optimal mass transportation problem, these three formulations
contain all the informations concerning the optimal transportation. This is extensively
used to give numerical approximations for some variants of the optimal mass transport
problem (see for instance [4, 5, 17]). For the optimal matching problem, we need to
compute moreover the optimal matching measure. As an immediate consequence of
the duality equalities in Theorem 2.3, the following result shows how this can be
carried out.

Corollary 2.5. Let ρ be an optimal matching measure and Φi be optimal flows
for transporting fi onto ρ, i = 1, 2. Then (Φ1,Φ2, ν) := (Φ1,Φ2,Θ− ρ) is an optimal
solution for the associated problem (MMF). Conversely, if (Φ1,Φ2, ν) is an optimal
solution for the problem (MMF) and ν ≤ Θ, then ρ := Θ− ν is an optimal matching
measure and Φi is an optimal flow of transporting fi onto ρ, i = 1, 2.

This result shows that the connection between (MMF) and (OM) lies in the
condition ν ≤ Θ for an optimal solution (Φ1,Φ2, ν) of (MMF). Unfortunately, this
does not hold in general as shown in the following example.

Fig. 1: Example of ν 
 Θ

Example 2.6. On R, taking f1 = δ0, f2 = δ4,Θ = δ1 + δ3, where δi is the Dirac
mass at i on R (see Figure 1). Let ν = δ2 and Φ1 be the optimal flow of transporting
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f1 +ν onto Θ (the corresponding plan is described as follows: f1 = δ0 → δ1, ν = δ2 →
δ3) and Φ2 be the optimal flow of transporting f2 + ν onto Θ (the corresponding plan
is described as follows: f2 = δ4 → δ3, ν = δ2 → δ1). Then (Φ1,Φ2, ν) is an optimal
solution of the problem (MMF). Indeed, it is not difficult to see that the total cost
of matching f1 and f2 into Θ is 4. The cost of the problem (MMF) corresponding to
this choice of (Φ1,Φ2, ν) is also 4. From our duality results, we have the optimality
of (Φ1,Φ2, ν), but ν 
 Θ.

However, under the assumption (H), we prove that the constraint ν ≤ Θ is ful-
filled. More precisely, we have

Theorem 2.7. Let f1, f2,Θ ∈ M+
b (Ω) be Radon measures. Assume that (H)

holds. Let (Φ1,Φ2, ν) ∈ Ψ(f1, f2; Θ) be an optimal solution for the problem (MMF)
and set ρ := Θ− ν. Then ρ ≥ 0 and it is an optimal matching measure.

Before ending up this section let us show how we use the ALG2 method to solve
numerically the optimal matching problem (OM). For any u = (u1, u2) ∈ V :=
C1(Ω)× C1(Ω), we set

F(u) :=

∫
u1df1 +

∫
u2df2 −

∫
(u1 + u2)dΘ

Λ(u) := (∇u1,∇u2, u1 + u2),

and, for any (p, q, s) ∈ Z := C(Ω)N × C(Ω)N × C(Ω), we set

G(p, q, s) :=

{
0 if |p(x)| ≤ 1, |q(x)| ≤ 1, s(x) ≤ 0 ∀x ∈ Ω

+∞ otherwise.

Then the problem

(2.9) inf
u∈V
F(u) + G(Λu)

provides all information on the optimal matching problem. Indeed, u1, u2 give Kan-
torovich potentials and dual variables Φ1,Φ2, ν give information on optimal flows and
optimal matching measure. To solve numerically the problem (2.9) and its Fenchel-
Rockafellar dual formulation (MMF), we consider a regular triangulation Th of Ω. We
fixe an integer k ≥ 1, and we consider Pk the set of polynomials of degree less or equal
than k. Let Eh ⊂ H1(Ω) be the space of continuous functions on Ω and belonging to
Pk on each triangle of Th. We denote by Yh the space of vectorial functions such that
their restrictions belong to (Pk−1)N on each triangle of Th. Let f1,h, f2,h,Θh ∈ Eh
such that f1,h(Ω) = f2,h(Ω) < Θh(Ω) and f1,h ⇀ f1, f2,h ⇀ f2, Θh ⇀ Θ weakly* in
Mb(Ω). Set Vh := Eh × Eh and Zh := Yh × Yh × Eh. We approximate the problem
(2.9) by the following finite-dimensional problem: For any (u1, u2) ∈ Vh, we set

Λh(u1, u2) := (∇u1,∇u2, u1 + u2) ∈ Zh,

Fh(u1, u2) := 〈u1, f1,h〉+ 〈u2, f2,h〉 − 〈u1 + u2,Θh〉,

and for any (p, q, s) ∈ Zh,

Gh(p, q, s) :=

{
0 if |p(x)| ≤ 1, |q(x)| ≤ 1, s(x) ≤ 0 a.e. x ∈ Ω

+∞ otherwise.
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The finite-dimensional approximation of (2.9) is given by

(2.10) inf
(u1,u2)∈Vh

Fh(u1, u2) + Gh(Λh(u1, u2)).

Note that the cost functional does not change under the translation ũ1 := u1+C, ũ2 :=
u2 − C, for C ∈ R. In particular, the new coupleũ1 := u1 −

|Ω|
2

∫
Ω

(u1 − u2), ũ2 := u2 +
|Ω|
2

∫
Ω

(u1 − u2)


satisfies

∫
Ω

ũ1 =
∫
Ω

ũ2 and is optimal if (u1, u2) is optimal.

The next theorem shows that (2.10) is a suitable approximation of (2.9) in the
sense that primal and dual solutions converge to a solution of (2.9) (i.e. a solution of
the maximization problem (2.5)) and a solution of (MMF).

Theorem 2.8. Let (u1,h, u2,h) ∈ Vh be an optimal solution to the approximated
problem (2.10) such that

∫
Ω

u1,h =
∫
Ω

u2,h and let (Φ1,h,Φ2,h, νh) be an optimal dual so-

lution to (2.10). Then, up to a subsequence, (u1,h, u2,h) converges uniformly to (u∗1, u
∗
2)

an optimal solution of the dual maximization problem (2.5) and (Φ1,h,Φ2,h, νh) con-
verges weakly* to (Φ1,Φ2, ν) an optimal solution of (MMF).

At last, we solve the finite-dimensional problem (2.10) by using the ALG2 method.
The details of the method are given in section 5. Here, we just give an illustration
of our numerical results on the following example (see Figure 2): In R2, we take
Ω = [0, 1]× [0, 1],

f1 = 4χ[(x−0.2)2+(y−0.8)2<0.01], f2 = 4χ[(x−0.2)2+(y−0.2)2<0.01],

and
Θ = 4χ[(x−0.8)2+(y−0.2)2<0.04],

where χA(x) is the characteristic function of A.

Fig. 2: Optimal matching measure ρ and optimal flows Φ1 and Φ2
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3. Proofs of the equivalent formulations. The present section deals with the
proofs of dual formulations as well as the connection between the minimal matching
flow and the optimal constrained matching problem. To begin with, let us recall
some well-known results in optimal transport theory with the Euclidean cost. It is
well-known that the optimal transport problem (1.2) has the dual formulation

(3.1) max
{∫

Ω

ud(µ2 − µ1) : u ∈ Lip1(Ω)
}
,

i.e.,

(3.2) W1(µ1, µ2) = min
γ∈π(µ1,µ2)

{ ∫
Ω×Ω

|x− y|dγ
}

= max
u∈Lip1(Ω)

{∫
Ω

ud(µ2 − µ1)
}
.

It follows immediately from (3.2) that the 1-Wasserstein distance depends only on
the difference of its arguments. On the other hand, the Fenchel–Rockafellar dual
formulation of (3.1), called minimal flow problem, reads as

(3.3) W1(µ1, µ2) = min
Φ∈Mb(Ω)N

{
|Φ|(Ω) : −∇ · Φ = µ2 − µ1 in RN

}
.

Optimizers of (3.1) and (3.3) are called Kantorovich potentials and optimal flows,
respectively. These optimizers are completely characterized by the following PDE

(3.4)


−∇ · Φ = µ2 − µ1 in RN
Φ
|Φ| = ∇|Φ|u |Φ|-a.e. in Ω

u ∈ Lip1(Ω).

This fact can be done by using the integration by parts formula (see for instance [6]):

(3.5) ∀ψ ∈ Lip1(Ω), 〈∇ · Φ, ψ〉 =

∫
∇|Φ|ψ

Φ

|Φ|
d|Φ|.

Coming back to the optimal constrained matching problem, we start with the
Fenchel–Rockafellar duality between (2.5) and (MMF).

Lemma 3.1. Let f1, f2,Θ ∈M+
b (Ω) be Radon measures. We have

max

{∫
(u1 + u2)dΘ−

∫
u1df1 −

∫
u2df2 : (u1, u2) ∈ K

}
= min

{
|Φ1|(Ω) + |Φ2|(Ω) : (Φ1,Φ2, ν) ∈ Ψ(f1, f2; Θ)

}
.

Keeping in mind the use of augmented Lagrangian method for numerical approxima-
tions, we use the Fenchel–Rockafellar duality technique to prove Lemma 3.1.

Proof. We observe that, using the standard smooth approximation by convolu-
tion,

max

{∫
(u1 + u2)dΘ−

∫
u1df1 −

∫
u2df2 : (u1, u2) ∈ K

}
= sup

{∫
(u1 + u2)dΘ−

∫
u1df1 −

∫
u2df2 : (u1, u2) ∈ K, u1, u2 ∈ C1(Ω)

}
= − inf

(u1,u2)∈C1(Ω)×C1(Ω)
F(u1, u2) + G(Λ(u1, u2)),
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where F , G and Λ are given in section 2. Now, using the Fenchel–Rockafellar dual
theory (see for instance [12, Chapter III, Remark 4.2]), we have

(3.6)

inf
(u1,u2)∈C1(Ω)×C1(Ω)

F(u1, u2) + G(Λ(u1, u2))

= max
(Φ1,Φ2,ν)∈Mb(Ω)N×Mb(Ω)N×Mb(Ω)

{−F∗(−Λ∗(Φ1,Φ2, ν))− G∗(Φ1,Φ2, ν)} .

So, it is enough to compute explicitly the above quantities. Since F is linear, the
quantity F∗(−Λ∗(Φ1,Φ2, ν)) is finite (and is thus equal to 0) if and only if

〈−Λ∗(Φ1,Φ2, ν), (u1, u2)〉 = F(u1, u2) =

∫
u1df1 +

∫
u2df2 −

∫
(u1 + u2)dΘ

for all (u1, u2) ∈ C1(Ω)× C1(Ω), or

−〈Φ1,∇u1〉 − 〈Φ2,∇u2〉 − 〈ν, u1 + u2〉 =

∫
u1df1 +

∫
u2df2 −

∫
(u1 + u2)dΘ

for all (u1, u2) ∈ C1(Ω)× C1(Ω). This implies that (by taking (u1, u2) = (u1, 0) and
(u1, u2) = (0, u2) as test functions)

−∇ · Φi = Θ− ν − fi in RN , i = 1, 2.

Next, it is easy to see that

G∗(Φ1,Φ2, ν) =

{
|Φ1|(Ω) + |Φ2|(Ω) if ν ≥ 0,

+∞, otherwise.

Therefore the proof is completed by substituting F∗ and G∗ into (3.6).

Following immediately from (3.3), we see that

(3.7)
min

{
|Φ1|(Ω) + |Φ2|(Ω) : (Φ1,Φ2, ν) ∈ Ψ(f1, f2; Θ)

}
= min
ν∈M+

b (Ω)

{
W1(f1 + ν,Θ) +W1(f2 + ν,Θ) : ν(Ω) = Θ(Ω)− f1(Ω)

}
.

This proposes an alternative formulation of (OM) that we prove directly in the fol-
lowing lemma.

Lemma 3.2. Assume that f1, f2,Θ ∈M+
b (Ω) are Radon measures. We have

(3.8)

min
ρ∈M+

b (Ω)

{
W1(f1, ρ) +W1(f2, ρ) : ρ ≤ Θ, ρ(Ω) = f1(Ω)

}
= min
ν∈M+

b (Ω)

{
W1(f1 + ν,Θ) +W1(f2 + ν,Θ) : ν(Ω) = Θ(Ω)− f1(Ω)

}
.

Moreover, if ν is optimal for the right hand side of (3.8) then there exist 0 ≤ θ1, θ2 ≤
Θ, θ1(Ω) = θ2(Ω) = f1(Ω) such that

(3.9) W1(f1, θ2) = W1(f1, θ1) +W1(θ1, θ2),

(3.10) W1(f2, θ1) = W1(f2, θ2) +W1(θ1, θ2)

and

(3.11) W1(ν,Θ− θ1) +W1(ν,Θ− θ2) = W1(θ1, θ2).
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Proof. The existence of minimizers follows easily from the direct method. Now,
fix any ρ ∈M+

b (Ω) with ρ ≤ Θ, ρ(Ω) = f1(Ω) and set ν := Θ− ρ. We have

W1(f1, ρ) +W1(f2, ρ) = W1(f1 + ν,Θ) +W1(f2 + ν,Θ).

This shows that the left hand side of (3.8) is greater than or equal to the right hand
side. Conversely, take ν ∈ M+

b (Ω) with ν(Ω) = Θ(Ω)− f1(Ω). Consider the optimal
plan γi between fi + ν and Θ. It sends fi to some θi ≤ Θ, i = 1, 2 such that

W1(f1+ν,Θ) = W1(f1, θ1)+W1(ν,Θ−θ1), W1(f2+ν,Θ) = W1(f2, θ2)+W1(ν,Θ−θ2),

f1(Ω) = θ1(Ω) = θ2(Ω).

By triangular inequality and W1(Θ− θ1,Θ− θ2) = W1(θ1, θ2), we get
(3.12)
W1(f1 + ν,Θ) +W1(f2 + ν,Θ) = W1(f1, θ1) +W1(ν,Θ− θ1) +W1(f2, θ2) +W1(ν,Θ− θ2)

≥W1(f1, θ1) +W1(f2, θ2) +W1(θ1, θ2)

≥ max
i=1,2

{W1(f1, θi) +W1(f2, θi)}

≥ min
i=1,2

{W1(f1, θi) +W1(f2, θi)}

≥ min
ρ∈M+

b
(Ω)

{
W1(f1, ρ) +W1(f2, ρ) : ρ ≤ Θ, ρ(Ω) = f1(Ω)

}
.

Therefore, the proof of the equality (3.8) is done.
At last, if ν is optimal then all the inequalities in (3.12) become equalities. This
implies the conclusions (3.9), (3.10) and (3.11).

Proof of Theorem 2.3. The duality (2.6) follows from (3.7), Lemmas 3.1 and 3.2.
It remains to show the optimality conditions (2.7) and (2.8). Let us begin with the
proof of (2.7). For any admissible (u1, u2) ∈ K and (γ1, γ2) ∈ π(f1, f2; Θ), taking
ρ := πy#γ1 = πy#γ2, we have

(3.13)

∫
(u1 + u2)dΘ−

∫
u1df1 −

∫
u2df2

≤
∫

(u1 + u2)dρ−
∫
u1df1 −

∫
u2df2

=

∫
(u1(y)− u1(x)) dγ1 +

∫
(u2(y)− u2(x)) dγ2

≤
∫
|x− y|dγ1 +

∫
|x− y|dγ2.

From the duality equalities (2.6), we deduce that (γ1, γ2) and (u1, u2) are optimal if
and only if all the inequalities in (3.13) become equalities. The latter conditions read
as 

∫
(u1 + u2) dΘ =

∫
(u1 + u2) dρ∫

(u1(y)− u1(x)) dγ1 =
∫
|x− y|dγ1∫

(u2(y)− u2(x)) dγ2 =
∫
|x− y|dγ2.

This condition is equivalent to (2.7).
For the proof of (2.8), we see that, for any admissible (Φ1,Φ2, ν) ∈ Ψ(f1, f2; Θ), by
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the integration by parts formula (3.5), we have
(3.14)

−
∫
u1df1 −

∫
u2df2 +

∫
(u1 + u2)dΘ ≤ −

∫
u1df1 −

∫
u2df2 +

∫
(u1 + u2)d(Θ− ν)

=

∫
u1d(Θ− ν − f1) +

∫
u2d(Θ− ν − f2)

=

∫
Ω

Φ1

|Φ1|
· ∇|Φ1|u1d|Φ1|+

∫
Ω

Φ2

|Φ2|
· ∇|Φ2|u2d|Φ2|

≤ |Φ1|(Ω) + |Φ2|(Ω).

Thanks to (2.6), (u1, u2) and (Φ1,Φ2, ν) are optimal if and only if all the inequalities
in (3.14) become equalities. This is equivalent to the system (2.8).

We end up this section by giving the proof of Theorem 2.7 concerning the relation
between (MMF) and (OM).

Proof of Theorem 2.7. Assume that (Φ1,Φ2, ν) is optimal for (MMF) which im-
plies that ν is optimal for the alternative formulation of (OM) given in Lemma 3.2.
Take θ1 and θ2 given by Lemma 3.2. Then (3.9) and (3.10) mean that θ2 is on a
geodesic joining θ1 to f2 and θ1 is on a geodesic joining θ2 to f1. The assumption (H)
imposes that θ1 = θ2. To convince the reader, take γf1,1, γ1,2 and γ2,f2 the optimal
plans from f1 to θ1, from θ1 to θ2 and from θ2 to f2. Using the gluing lemma (see e.g.
[21, Lemma 7.6]), we build γf1,1,2 obtained by gluing γf1,1 to γ1,2 and γ1,2,f2 obtained
by gluing γ1,2 to γ2,f2 . Then, it holds

W1(f1, θ1) +W1(θ1, θ2) =

∫
Ω

3

|x1 − z1|+ |z1 − z2|dγf1,1,2(x1, z1, z2)

= W1(f1, θ2) ≤
∫
Ω

3

|x1 − z2|dγf1,1,2(x1, z1, z2).

By triangular inequality and the continuity of the integrands, we get
(3.15)
|x1 − z1|+ |z1 − z2| = |x1 − z2|, i.e., z1 ∈ [x1, z2] for all (x1, z1, z2) ∈ supp(γf1,1,2).

In the same way,
(3.16)
|z1 − z2|+ |z2 − x2| = |z1 − x2|, i.e., z2 ∈ [z1, x2] for all (z1, z2, x2) ∈ supp(γ1,2,f2).

If there exists (z1, z2) ∈ supp(γ1,2) such that z1 6= z2 then, using (3.15) and (3.16),
there are x1 ∈ supp(f1), x2 ∈ supp(f2) such that z1 ∈ [x1, z2], z2 ∈ [z1, x2] and
therefore z1, z2 ∈ [x1, x2] (by z1 6= z2), a contradiction with the assumption (H). This
shows that θ1 = θ2. At last, using (3.11), we obtain ν = Θ− θi ≤ Θ, i = 1, 2.

4. Uniqueness of optimal matching measure. This section concerns the
proof for the uniqueness of optimal matching measure in Theorem 2.1. Let ρ be an
optimal matching measure. By Corollary 2.5 and Theorem 2.3, setting ν := Θ − ρ,
we have

(4.1)


−∇ · Φi = Θ− ν − fi in RN , i = 1, 2
Φi

|Φi| = ∇|Φi|ui |Φi|-a.e. in Ω, i = 1, 2

u1 + u2 = 0 ν–a.e. in Ω,
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where Φi and ui are optimal flows and Kantorovich potentials, respectively. To prove
the uniqueness of optimal matching measure under the assumption (H), we establish
precise expression of ν w.r.t. Θ and ui, for i = 1, 2. More precisely, we have

Proposition 4.1. Assume that Θ ∈ L1(Ω)+, fi ∈ M+
b (Ω) i = 1, 2 and that

(Φ1,Φ2, ν, u1, u2) ∈ Mb(Ω)N ×Mb(Ω)N ×M+
b (Ω)× Lip1(Ω)× Lip1(Ω) satisfies the

PDE (4.1). Under the assumption (H), we have ν ≤ Θ and

ν = Θ [u1 + u2 = 0],

where the set [u1 + u2 = 0] := {x ∈ Ω : u1(x) + u2(x) = 0} .
The proof of this result follows as a consequence of the following lemmas.

Lemma 4.2. Let u, v be 1-Lipschitz functions on Ω such that u + v ≤ 0 on Ω.
Assume that u(y1)− u(x1) = |y1 − x1| and that u(z) + v(z) = 0 for some z ∈ [x1, y1]
the segment joining x1 to y1. Then

(4.2) u(s) + v(s) = 0 ∀s ∈ [z, y1].

Moreover, if x2 ∈ Ω is such that v(y1) − v(x2) = |y1 − x2|, then z, y1 and x2 are
aligned.

Proof. We prove first that

(4.3) v(s) = v(z)− |s− z| ∀s ∈ [z, y1].

Since u is 1-Lipschitz and u(y1)− u(x1) = |y1 − x1|, we have

(4.4) u(s) = u(z) + |s− z| ∀s ∈ [z, y1].

Using the fact that u+ v ≤ 0, we have

v(s) ≤ −u(s)

= −u(z)− |s− z|
= v(z)− |s− z| ∀s ∈ [z, y1].

Since v is 1-Lipschitz, we get the equality (4.3) and thus (4.2) (by u(z) + v(z) = 0
and (4.4)).
At last, following (4.3) with s = y1,

v(y1) = v(z)− |y1 − z|,

we get, for x2 as in the hypothesis,

|z − x2| ≥ v(z)− v(x2)

= |z − y1|+ v(y1)− v(x2)

= |z − y1|+ |y1 − x2|.

This implies that z, y1 and x2 are aligned.

Next, we need the following behaviors of fi and Φi, i = 1, 2 on the set [u1 + u2 = 0].

Lemma 4.3. Assume that f1, f2,Θ ∈ M+
b (Ω) and that (H) holds. Suppose that

(Φ1,Φ2, ν, u1, u2) satisfies the PDE (4.1). Then
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(i) f1 [u1 + u2 = 0] = f2 [u1 + u2 = 0] = 0;
(ii) LN (supp(Φ1)∩ [u1 +u2 = 0]) = LN (supp(Φ2)∩ [u1 +u2 = 0]) = 0, where LN

is the Lebesgue measure on RN .

Proof. (i) Thanks to Theorem 2.7, we have ν ≤ Θ. Let us first show that
f1 [u1 + u2 = 0] = 0. Assume on the contrary that the conclusion is not true. Then
there exist x1 ∈ [u1 + u2 = 0] and y1 ∈ supp(Θ − ν) such that (x1, y1) ∈ supp(γ1),
where γ1 is the optimal plan from f1 to Θ − ν. Since u1 is a Kantorovich potential
for W1(f1,Θ− ν) (as explained in the characterization PDE (3.4)), we get

u1(y1)− u1(x1) = |x1 − y1|.

Similarly, since y1 ∈ supp(Θ−ν), there is x2 ∈ supp(f2) such that (x2, y1) ∈ supp(γ2)
and

u2(y1)− u2(x2) = |x2 − y1|.

Using Lemma 4.2, we deduce that x1, y1, x2 are aligned which contradicts with (H).
In the same way, we get f2 [u1 + u2 = 0] = 0.
(ii) Now, we prove that

(4.5) LN (supp(Φ1) ∩ [u1 + u2 = 0]) = 0.

Thanks to [1, Corollary 6.1] or [2, Theorem 6.2], we know that the set E of right
endpoints of maximal transport rays w.r.t. the Kantorovich potential u1 satisfies
LN (E) = 0. To prove (4.5), it is enough to show that

supp(Φ1) ∩ [u1 + u2 = 0] ⊂ E.

Assume on the contrary that there exists z ∈ supp(Φ1) ∩ [u1 + u2 = 0] such that
z /∈ E. Then there exists (x1, y1) ∈ supp(f1)× supp(Θ− ν) such that z ∈ [x1, y1[ and
u1(y1) = u1(x1) + |y1 − x1|. On the other hand, since y1 ∈ supp(Θ− ν), there exists
x2 ∈ supp(f2) such that

u2(y1)− u2(x2) = |y1 − x2|.

Since u1(z)+u2(z) = 0, using Lemma 4.2, we deduce that z, y1 and x2 are on a straight
line. Thus x1, y1 and x2 are aligned (by z ∈ [x1, y1[). This is again a contradiction
with (H).

Proof of Proposition 4.1. We use notations of the above lemmas. By Theorem 2.7,
we have ν ≤ Θ. Following directly from the PDE (4.1), we have

−∇ · (Φ1 + Φ2) = 2(Θ− ν)− (f1 + f2).

This implies that

the measure 2(Θ− ν)− (f1 + f2) is concentrated on supp(Φ1 + Φ2).

In particular, 2(Θ − ν) [u1 + u2 = 0] − (f1 + f2) [u1 + u2 = 0] is concentrated on
[u1 + u2 = 0] ∩ supp(Φ1 + Φ2). Thanks to Lemma 4.3 (i), we deduce that 2(Θ −
ν) [u1 +u2 = 0] is concentrated on [u1 +u2 = 0]∩supp(Φ1 +Φ2). Since (Θ−ν) ∈ L1,
using Lemma 4.3 (ii) and the fact that supp(Φ1 + Φ2) ⊂ supp(Φ1)∪ supp(Φ2), we get

(Θ− ν) [u1 + u2 = 0] = 0.
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Since u1 + u2 = 0 ν–a.e. in Ω, we deduce that

ν = Θ [u1 + u2 = 0].

We can now conclude the proof of the uniqueness of optimal matching measures
with the following arguments.

Proof of Theorem 2.1. We fix a maximizer (u1, u2) of the maximization problem
(2.5). Then if ρ1 and ρ2 are optimal matching measures then νi := Θ − ρi, i = 1, 2
satisfies the PDE (4.1). Thanks to Proposition 4.1, we get

ρ1 = Θ− ν1 = Θ [u1 + u2 < 0] = Θ− ν2 = ρ2.

Remark 4.4. Following from the proof, the unique optimal matching measure has
the form

ρ = Θ [u1 + u2 < 0],

for any maximizer (u1, u2) of the dual problem (2.5).

5. Numerical analysis for the problem. The present section concerns on
numerical aspects of the matching problem.

5.1. Convergence of the discretization.

Proof of Theorem 2.8. The optimality condition of (2.10) is (see for instance [12])

−Λ∗h(Φ1,h,Φ2,h, νh) = ∂Fh(u1,h, u2,h) in V ∗h

(or equivalently, −〈(Φ1,h,Φ2,h, νh),Λh(u, v)〉 = Fh(u, v) ∀(u, v) ∈ Vh), and

(Φ1,h,Φ2,h, νh) ∈ ∂Gh(Λh(u1,h, u2,h)).

Writing these in details, we have
(5.1)
−〈Φ1,h,∇u〉−〈Φ2,h,∇v〉−〈νh, u+v〉 = 〈f1,h, u〉+ 〈f2,h, v〉−〈Θh, u+v〉 ∀(u, v) ∈ Vh,

and 
Φ1,h ∈ ∂IB(Yh,‖.‖∞)

(∇u1,h)

Φ2,h ∈ ∂IB(Yh,‖.‖∞)
(∇u2,h)

νh ∈ ∂I{z∈Eh:z≤0}(u1,h + u2,h).

Choosing test functions u ≡ 1, v ≡ 0 in (5.1) and using the fact that f1,h(Ω) < Θh(Ω),
we have that νh 6= 0 and {νh} is bounded in L1(Ω). Since νh ∈ ∂I{z∈Eh:z≤0}(u1,h +

u2,h), we get νh ≥ 0 and 〈u1,h + u2,h , νh〉 = 0. Since νh 6= 0, there exists xh ∈ Ω
such that u1,h(xh) + u2,h(xh) = 0. Combining this with the fact

∫
u1,h =

∫
u2,h, we

imply that {u1,h} and {u2,h} are bounded in C(Ω). Since u1,h, u2,h are 1-Lipschitz
functions, up to a subsequence (using the Ascoli–Arzela Theorem),

u1,h ⇒ u∗1, u2,h ⇒ u∗2 uniformly on Ω.

It is clear that u∗1, u
∗
2 are 1-Lipschitz and u∗1 + u∗2 ≤ 0 on Ω.
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On the other hand, using the optimality of (u1,h, u2,h), (Φ1,h,Φ2,h, νh) and the
duality equality for (2.10), we have

Fh(u1,h, u2,h) + Gh(Λh(u1,h, u2,h)) = −F∗h(−Λ∗h(Φ1,h,Φ2,h, νh))− G∗h(Φ1,h,Φ2,h, νh),

or more explicitly,

(5.2)

〈f1,h, u1,h〉+ 〈f1,h, u2,h〉 − 〈Θh, u1,h + u2,h〉

= − sup {〈Φ1,h, q〉 : q ∈ Yh, |q(x)| ≤ 1, a.e. x ∈ Ω}

− sup {〈Φ2,h, q〉 : q ∈ Yh, |q(x)| ≤ 1, a.e. x ∈ Ω} .

Using the boundedness of (u1,h, u2,h), we obtain that Φ1,h and Φ2,h are bounded in
L1(Ω)N . Thus, up to a subsequence,

(Φ1,h,Φ2,h, νh) ⇀ (Φ1,Φ2, ν) weakly* in Mb(Ω)N ×Mb(Ω)N ×Mb(Ω).

Then (Φ1,Φ2, ν) is feasible for the problem (MMF). Indeed, thanks to (5.1) and the
nonnegativity of νh, we obtain that

〈Φ1,∇u〉+〈Φ2,∇v〉+〈ν, u+v〉 = −〈f1, u〉−〈f2, v〉+〈Θ, u+v〉 ∀(u, v) ∈ V := C1(Ω)×C1(Ω),

and
ν ≥ 0,

i.e., the feasibility of (Φ1,Φ2, ν).Now, we show the optimality of (u∗1, u
∗
2) and (Φ1,Φ2, ν).

Thanks to Theorem 2.3, it is sufficient to show that

(5.3) − 〈f1, u
∗
1〉 − 〈f2, u

∗
2〉+ 〈Θ, u∗1 + u∗2〉 ≥ |Φ1|(Ω) + |Φ2|(Ω).

To this aim, let q1, q2 ∈ C(Ω)N be such that |q1(x)| ≤ 1, |q2(x)| ≤ 1 ∀x ∈ Ω and
q1,h, q2,h ∈ Yh be such that ‖qi,h − qi‖L∞(Ω) → 0 as h→ 0, i = 1, 2. By the fact that

|qi,h(x)| = |qi(x)|+ |qi,h(x)| − |qi(x)| ≤ 1 +O(h) a.e. x ∈ Ω,

and, taking
qi,h

1+O(h) if necessary, we can assume that

qi,h ∈ Yh, |qi,h(x)| ≤ 1 a.e. x ∈ Ω and ‖qi,h − qi‖L∞(Ω) → 0 as h→ 0, i = 1, 2.

We see that

〈Φ1, q1〉 = 〈Φ1,h, q1,h〉+ 〈Φ1 − Φ1,h, q1〉+ 〈Φ1,h, q1 − q1,h〉
≤ sup {〈Φ1,h, q〉 : q ∈ Yh, |q(x)| ≤ 1 a.e. x ∈ Ω}+O(h).

Similarly,

〈Φ2, q2〉 ≤ sup {〈Φ2,h, q〉 : q ∈ Yh, |q(x)| ≤ 1 a.e. x ∈ Ω}+O(h).

Combining these with (5.2),

−〈f1,h, u1,h〉 − 〈f2,h, u2,h〉+ 〈Θh, u1,h + u2,h〉+O(h) ≥ 〈Φ1, q1〉+ 〈Φ2, q2〉.

Letting h→ 0 and taking supremum in q1, q2, we get the desired inequality (5.3).
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5.2. Solving the discretized problem. Our task is now to solve the finite-
dimensional problem (2.10). We recall first the ALG2 method. Let V and Z be two
Hilbert spaces. Let us consider the problem

(5.4) inf
u∈V
F(u) + G(Λu)

where F : V −→ (−∞,+∞] and G : Z −→ (−∞,+∞] are convex, l.s.c. and Λ ∈
L(V,Z). The Fenchel–Rockafellar dual problem is

sup
σ∈Z

(−F∗(−Λ∗σ)− G∗(σ)) .

Introducing new variable q ∈ Z to the primal problem (5.4), we rewrite it in the form

inf
(u,q)∈V×Z : Λu=q

F(u) + G(q).

Consider the augmented Lagrangian w.r.t. the quadratic term

L(u, q;σ) := F(u) + G(q) + 〈σ,Λu− q〉+
r

2
|Λu− q|2, r > 0.

The ALG2 algorithm (see e.g. [10, 15]) is a primal-dual method (i.e., providing
numerical solutions of both primal and dual problems) consisting of 3 steps. Known
qi, σi, the next step (ui+1, qi+1, σi+1) is computed as follows: Fix any parameter r > 0
(in practice r = 1, 2),

• Step 1: Minimizing inf
u
L(u, qi;σi), i.e.

ui+1 = arg min
u∈V

{
F(u) + 〈σi,Λu〉+

r

2
|Λu− qi|2

}
.

• Step 2: Minimizing inf
q∈Z

L(ui+1, q;σi), i.e.

qi+1 = arg min
q∈Z

{
G(q)− 〈σi, q〉+

r

2
|Λui+1 − q|2

}
.

• Step 3: Update the multiplier σ,

σi+1 = σi + r(Λui+1 − qi+1).

Now, apply the ALG2 to our discretized problem (2.10). To simplify the nota-
tions, let us drop out the subscript h in u1,h, u2,h,Φ1,h,Φ2,h, νh. We denote by
Φi1,Φ

i
2, ν

i, ui1, u
i
2, p

i, qi, si the values at iteration i. Known (pi, qi, si), (Φi1,Φ
i
2, ν

i),
• Step 1:

(ui+1
1 , ui+1

2 ) = arg min
(u1,u2)∈Vh

Fh(u1, u2) + 〈(Φi1,Φi2, νi),Λh(u1, u2)〉+ r
2
|Λh(u1, u2)− (pi, qi, si)|2

= arg min
(u1,u2)∈Vh

〈u1, f1,h〉+ 〈u2, f2,h〉 − 〈u1 + u2,Θh〉+ 〈Φi1,∇u1〉+ 〈Φi2,∇u2〉

+〈νi, u1 + u2〉+ r
2
|∇u1 − pi|2 + r

2
|∇u2 − qi|2 + r

2
|u1 + u2 − si|2.

• Step 2:

(pi+1, qi+1, si+1) = arg min
(p,q,s)∈Zh

Gh(p, q, s)− 〈(Φi1,Φi2, νi), (p, q, s)〉+ r
2
|Λh(ui+1

1 , ui+1
2 )− (p, q, s)|2

= arg min
(p,q,s)∈Zh

IB(Yh,‖.‖∞)
(p) + IB(Yh,‖.‖∞)

(q) + I{s∈Eh: s≤0}(s)− 〈Φi1, p〉 − 〈Φi2, q〉 − 〈νi, s〉

+ r
2
|∇ui+1

1 − p|2 + r
2
|∇ui+1

2 − q|2 + r
2
|ui+1

1 + ui+1
2 − s|2.
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• Step 3:

(Φi+1
1 ,Φi+1

2 , νi+1) = (Φi1,Φ
i
2, ν

i) + r(∇ui+1
1 − pi+1,∇ui+1

2 − qi+1, ui+1
1 + ui+1

2 − si+1).

Let us give more details of the above iteration. Overall, Step 1 is a quadratic pro-
gramming. Step 2 can be calculated explicitly and Step 3 updates obviously. We
denote by ProjC(.) the projection onto a closed convex subset C.
• In Step 1: We split variables u1 and u2, i.e., first minimizing w.r.t. u1 and using
ui+1

1 to calculate ui+1
2 .

1. For ui+1
1 ,

ui+1
1 = arg min

u∈Eh

〈u, f1,h −Θh〉+ 〈Φi1,∇u〉+ 〈νi, u〉+
r

2
|∇u− pi|2 +

r

2
|u+ ui2 − si|2.

This is a quadratic problem with the associated linear equation:

r〈∇ui+1
1 ,∇φ〉+r〈ui+1

1 , φ〉 = 〈Θh−f1,h−νi, φ〉+〈rpi−Φi1,∇φ〉+r〈si−ui2, φ〉 ∀φ ∈ Eh.

2. Similarly for ui+1
2 ,

r〈∇ui+1
2 ,∇φ〉+r〈ui+1

2 , φ〉 = 〈Θh−f2,h−νi, φ〉+〈rqi−Φi2,∇φ〉+r〈si−ui+1
1 , φ〉 ∀φ ∈ Eh.

• In Step 2: Since the function G(p, q, s) has the form of G1(p) + G2(q) + G3(s), we
solve them separately.

1. For si+1, if we choose P2 finite element for si+1,

si+1 = arg min
s∈P2

{
I[s≤0] − 〈νi, s〉+

r

2
|ui+1

1 + ui+1
2 − s|2

}
= Proj{s∈P2:s≤0}

(
ui+1

1 + ui+1
2 +

νi

r

)
.

This is computed in pointwise, i.e., at vertices xk of a given grid,

si+1(xk) = Proj[r∈R: r≤0]

(
ui+1

1 (xk) + ui+1
2 (xk) +

νi(xk)

r

)
.

2. For pi+1 and qi+1, similarly, at each vertice xl,

pi+1(xl) = ProjB(0,1)

(
∇ui+1

1 (xl) +
Φi1(xl)

r

)
and

qi+1(xl) = ProjB(0,1)

(
∇ui+1

2 (xl) +
Φi2(xl)

r

)
.

6. Numerical experiments. We base on [4, 5, 17] and on FreeFem++ [16] to
give some numerical examples. We use P2 finite element for ui1, u

i
2, s

i, νi and P1 finite
element for Φi1,Φ

i
2, p

i, qi.

6.1. Stopping criterion. The measures f1, f2 and Θ are approximated by non-
negative regular functions that we denote again by f1, f2 and Θ. We use the PDE of
optimality condition as stopping criteria:
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1. MIN := min

{
min

Ω
(−u1(x)− u2(x)) ,min

Ω
ν(x)

}
.

2. Lip := max

{
max

Ω
|∇u1(x)|,max

Ω
|∇u2(x)|

}
.

3. DIV := Div1+Div2
2 , where

Div1 := ‖∇ · Φ1 + Θ− ν − f1‖L2 , Div2 := ‖∇ · Φ2 + Θ− ν − f2‖L2 .

4. DUAL := Dual1+Dual2
2 , with

Dual1 := ‖|Φ1(x)| − Φ1(x) · ∇u1‖L2 , Dual2 := ‖|Φ2(x)| − Φ2(x) · ∇u2‖L2 .

We expect that MIN ≥ 0,Lip ≤ 1; DIV and DUAL are small.

6.2. Some examples. In all the examples below, we take Ω = [0, 1]× [0, 1] and
work on a grid 60× 60. Computation time for each example is about 8 minutes on a
PC Mac OSX 10.9.

Example 6.1. We take

f1 = 4χ[(x−0.2)2+(y−0.8)2<0.01],

f2 = 2χ[(x−0.8)2+(y−0.8)2<0.01] + 2χ[(x−0.2)2+(y−0.2)2<0.01],

Θ = 4χ[(x−0.5)2+(y−0.5)2<0.04].

The optimal matching measure and optimal flows are given in Figure 3. Stopping
criterion is given in Figure 4.

Fig. 3: Optimal matching measure and optimal flows
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Fig. 4: Stopping criterion

Example 6.2. The results are given in Figures 5 and 6 for

f1 = 2χ[(x−0.2)2+(y−0.8)2<0.01] + 2χ[(x−0.8)2+(y−0.2)2<0.01],

f2 = 2χ[(x−0.8)2+(y−0.8)2<0.01] + 2χ[(x−0.2)2+(y−0.2)2<0.01],

Θ = 4χ[(x−0.5)2+(y−0.5)2<0.04].

Fig. 5: Optimal matching measure and optimal flows
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Fig. 6: Stopping criterion

Example 6.3. We take

f1 = 4χ[(x−0.1)2+(y−0.9)2<0.01],

f2 = 4χ[(x−0.7)2+(y−0.3)2<0.01],

Θ = 4χ[(x−0.2)2+(y−0.2)2<0.04] + 4χ[(x−0.6)2+(y−0.6)2<0.0064].

The results are given in Figures 7 and 8.

Fig. 7: Optimal matching measure and optimal flows
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Fig. 8: Stopping criterion
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