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Emmanuel Lassalle, Alexis Devilez, Nicolas Bonod, Thomas Durt, and Brian Stout∗

Aix Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, Marseille, France
(Dated: April 5, 2018)

It is now well established that radiative decay of quantum emitters can be strongly modified by
their environment. In this paper we present an exact — within the weak-coupling approximation —
multipole expression to compute the Lamb (frequency) shift induced by an arbitrary set of resonant
scatterers on a nearby quantum emitter, using multi-scattering theory. We also adopt a Quasi-
Normal Mode description to account for the line shape of the Lamb shift spectrum in the near-field
of a plasmonic nanosphere. It is then shown that the Lamb shift resonance can be blue-shifted as the
size of the nanoparticle increases, suggesting that nanoparticles may be used to tune this resonant
interaction. Finally, a realistic calculation of the Lamb shift is made for a dimer configuration.

I. INTRODUCTION

Control of the decay properties of quantum emitters
via modifications of their local electromagnetic environ-
ment is being actively pursued due to the rich perspec-
tives it offers for both fundamental and practical appli-
cations [1]. In the weak-coupling regime, the exponential
decay in time of the excited state is characterized by the
decay rate, for which it is well known that it can be
either enhanced [2] or inhibited [3] by the local electro-
magnetic (EM) environment. With the convergence of
communities such as near-field optical microscopy, semi-
conductors, plasmonics, and metamaterials, engineering
the quantum vacuum allows tailoring the decay rate in
unprecedented ways [4, 5]. A less often discussed effect
of spontaneous emission is that the surrounding environ-
ment also induces level shifts of the excited atomic states,
resulting in a frequency-shift for the emitted photons, in
comparison with the bare resonance frequency. This is
the so-called Lamb shift, which originally refered to level
shifts of atoms in free space [6, 7], also called radiative
frequency-shift or Casimir-Polder frequency-shift. This
effect has been theoretically studied in the case of perfect
reflectors [8], partially reflecting surfaces [9, 10] and pho-
tonic crystals [11–13]. Multipole formulas of the Lamb
shift have been derived in the case of a dielectric mi-
crosphere without [14, 15] and with [16] absorption, and
for dielectric or metallic prolate spheroids [17]. How-
ever, there is no such formulas in multi-scattering config-
urations, except in the case of two-dimensional photonic
crystals [18].

In this article, we derive — using the generalized Mie
theory [19, 20] — a multipole formula for the Lamb shift
of a quantum emitter induced by an arbitrary set of scat-
terers. This formula is exact within the weak-coupling
approximation and does not take into account non-local
effects which come into play for emitter - particle dis-
tances below one nanometer [21].

Section II justifies the use of a classical formalism to
study the Lamb shift induced by the presence of mat-
ter by showing, in the weak-coupling approximation, its
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equivalence to the fully quantum result. An exact mul-
tipole formula for the Lamb shift is then derived in sec-
tion III and illustrated in section IV by computing the
Lamb shift in the vicinity of a silver nanosphere, where we
also show that the spectral line shape of the Lamb shift
can be accounted for in the context of a “Quasi-Normal
Mode” description. In section V, we study the influence
of the nanoparticle’s size on the environmentally induced
Lamb shift, and we predict a displacement of the emit-
ter’s Lamb shift resonance as the size of the nanoparticle
changes. Finally, as a practical calculation, we compute
the Lamb shift in the case of a dimer nanoantenna.

II. ENVIRONMENTALLY INDUCED LAMB
SHIFT

A. Classical approach

An excited two-level atom with transition frequency
ω0 and natural linewidth γ0 can be modeled by a har-
monically oscillating point dipole, whose electric dipole
moment p(r0, t) obeys, in the case of small damping
(γ0 � ω0) [22]:

d2p(r0, t)

dt2
+γ0

dp(r0, t)

dt
+ω2

0p(r0, t) =
q2

m
Es(r0, t) , (1)

where {ω0, γ0, q, m} are the characteristics of the clas-
sical dipole (the natural frequency of the oscillator, the
damping constant in the homogeneous background, the
charge and the mass respectively) and Es(r0, t) is the
field scattered by the environment at the dipole position
r0. Adopting the following ansatz :{

p(r, t) = p0e
−iΩt

Es(r0, t) = Es(r0, ω0)e−iΩt where

{
Ω = ω0 + ∆ω − i γ

2
∆ω = ω − ω0

,

(2)

with γ and ω respectively indicating the new decay rate
and resonance frequency, together with the weak-coupling
approximation in a classical context,

q2

m
|Es| � ω2

0 |p| , (3)

one finds the following expression for the frequency-shift
of the light emitted by the dipole due to the environment
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[22]:

∆ω

γ0

∣∣∣∣
ω0

= −3πε0εb
k3

× 1

|p0|2
× Re(p∗0 ·Es(r0, ω0)) , (4)

where k = nb(ω0/c) is the wave-number of the nonab-
sorbing homogeneous background medium of refractive
index nb =

√
εb. In this classical picture, one can see

from Eq. (4) that the environment contribution to the
frequency-shift is due to the dipole interacting with its
own electric field scattered back by the environment.

To link this expression with the quantum one, one can
derive the dipole fields using the Green-function formal-
ism (for the sake of simplicity, we consider the dipole
emitter to be in vacuum: εb = 1). The field produced
at r by a point dipole located at r0 and with natural
frequency ω0 is [22]:

E(r, ω0) = ω2
0µ0

↔
G(r, r0, ω0) · p0 , (5)

where
↔
G denotes the dyadic Green tensor. By separat-

ing the Green tensor into an “unperturbed”
↔
G0 plus a

“scattering”
↔
Gs contributions [22],

↔
G =

↔
G0 +

↔
Gs , (6)

Eq. (4) can be cast in terms of the scattering Green ten-
sor:

∆ω

γ0

∣∣∣∣
ω0

= −3πc

ω0
× up · Re(

↔
Gs(r0, r0, ω0)) · up , (7)

with up being the unit vector in the direction of the dipole
moment: p0 = p0up.

B. Quantum approach

In a quantum approach, the excited two-level atom is
modeled by its state vector |e〉, and its interaction with
the electromagnetic field is represented by an interaction
Hamiltonian ĤI . The weak-coupling approximation in a
quantum context consists of considering that the matrix
elements of the interaction Hamiltonian are small com-
pared to those of the non-interacting Hamiltonian Ĥ0.
Therefore, the energy level shift ∆E of the excited atomic
state is calculated by using the usual perturbation the-
ory to second order in the perturbation ĤI . Besides, by
using the fluctuation-dissipation theorem, one can show
that the energy-shift of the first excited state |e〉 of bare
frequency ω0 is [10]:

∆E|ω0
= − ω2

0

πε0c2
pipj P

[∫ +∞

0

dω
Im (Gij(r0, r0, ω))

ω − ω0

]
,

(8)
where P denotes the principal value of the integral,
p = 〈g| p̂ |e〉 (p̂ being the dipole moment operator and |g〉
the ground state vector) is the transition dipole matrix

element, and Gij is the previous classical Green tensor

(let us note that the notation
↔
G used in [10] is the field

susceptibility that we call
↔
F, and which is related to the

Green tensor by
↔
F(r, r′, ω) ↔ ω2µ0

↔
G(r, r′, ω)). By us-

ing the Kramers-Kronig relations for the Green tensor,
and separating as previously the Green tensor into two
contributions, one can cast the frequency-shift resulting
from the energy level shift induced by the presence of
matter, in the form:

∆ω|ω0
= − ω2

0

~ε0c2
pipj Re ((Gs)ij(r0, r0, ω0)) + QC . (9)

Except for the non-resonant quantum correction term
QC which is negligibly small [16], this expression has
the same form as the classical formula provided that one
normalizes by the quantum decay rate in free space

γ0 =
ω3

0 |p|2

3πε0~c3
, (10)

because the normalization eliminates the dependency on
p and provides a safe link between quantum and classical
formalisms.

Thus, in the weak-coupling regime, the quantum treat-
ment gives the same result as the classical treatment
when considering the normalized frequency-shift — that
we will call Lamb shift in the following — between the
ground state and the first excited state (to consider other
atomic levels, the classical treatment and the two-level
atom model fail, and one must refer to the general
formula derived in [10]). Note that for an absorbing
medium, characterized by an imaginary part of its per-
mittivity, this equivalence still holds, because on one
hand, in the classical approach developed in terms of the
Green tensor, the permittivity can become complex, and
in a quantum context, the link between the ground-state
fluctuations of the electric field and the classical Green
tensor remains the same [16, 23, 24].

III. MULTIPOLE FORMULA FOR THE LAMB
SHIFT

Now we move to the derivation of the exact multipole
formula for the Lamb shift induced by an arbitrary set of
resonant scatterers on a nearby quantum emitter. One
can see from Eq. (4) that the Lamb shift induced by the
surrounding environment is embodied in the field scat-
tered by the environment Es, which can be calculated

from the scattering part
↔
Gs of the total Green tensor

through Eqs. (5) and (6). The determination of
↔
Gs is

thus the chief obstacle to the calculation of the Lamb
shift. From a classical viewpoint, the scattering Green

tensor
↔
Gs must take into account the multiple scattering

of the incident radiation from all the scatterers. There-
fore, for the purpose of calculation, it is advantageous
to express the scattering Green tensor in terms of the
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multiple-scattering T-Matrix [25], where the T-Matrix is
defined in operator notation as

↔
Gs =

↔
G0

↔
T
↔
G0 =

↔
G0

 N∑
i=1,j=1

↔
T

(i,j)

 ↔
G0 , (11)

and has been split into N2 operators
↔
T

(i,j)

(that rep-
resent all multiple-scattering events from a multiple-
scattering viewpoint [19]), i and j being the particle la-
bels, and N the total number of scatterers.

In order to calculate the
↔
T

(i,j)

operators, we will make
use of the multipolar fields — also called multipolar
modes or multipoles — which are a set of basis EM modes
that are especially useful in describing EM scattering for
particles with spherical symetries [26]. We will denote a
multipolar field as |Ψq,n,m〉, each mode being specified
by three discrete numbers: q accounts for the parity of
the field, and q = 1 for a magnetic mode and q = 2
for an electric mode; n = 1, 2, ...,∞ and will be called
the ”multipolar order”; and m = −n, ..., n and will be
called the ”orbital number”. Explicit representations of
these modes can be found in [26], and here the fields and
operators will be expressed in the basis of the multipolar
fields satisfying the outgoing boundary conditions (called
the Hankel multipolar fields in [26]), that we will note
Mnm(kr) for the magnetic modes (q = 1) and Nnm(kr)
for the electric modes (q = 2) in the real space represen-
tation.

The
↔
T

(i,j)

operators are then expressed in the multi-
pole basis [25]:

↔
T

(i,j)
=

2∑
q,q′=1

∞∑
n,n′=1

n∑
m=−n

n′∑
m′=−n′

|Ψq,n,m〉T
(i,j)

q,n,m;q′,n′,m′
〈Ψ

q′,n′,m′ | ,

(12)

and can be calculated from the infinite dimensional T (i,j)

matrices, that can be rendered finite by truncating the
multipolar order n to some finite dimension ncut (the
choice of ncut for which the summation with respect to
the multipolar order n converges will depend on particle
size and interaction strengths). Several methods exist for
calculating the T (i,j) matrices, and we use the analytical
balancing techniques detailed in [20] and implemented
in an in-house code used for the numerical simulations
of this article. Once the on-shell T (i,j) matrices have
been determined, one can compute the expression of the
electric field Es(r0, ω0) scattered by the environment by
employing Eq. (11) in Eqs. (6) and (5):

Es(r0, ω0) =
ip0kω

2
0

ε0c2

N∑
i,j=1

[
[M(kri),N(kri)]

tT (i,j)H(j,0)f
]
,

(13)

where [M,N] is a column matrix composed of the Mnm

and Nnm functions, f represents the dipolar source and
denotes a column matrix containing the emitter coeffi-
cients in the multipole space, and H(j,0) is the irregular
translation-addition matrix between the emitter position
at r0 and the position of particle j (for more details, see
the derivation of Eq. (19) in [25]).

Finally, the expression of Es(r, ω0) can be utilized in
Eq. (4) to obtain the multipole expression for the normal-
ized Lamb shift induced by the presence of N scatterers:

∆ω

γ0
= 3π × Im

 N∑
i,j=1

f tH(0,i)T (i,j)H(j,0)f

 . (14)

In the case of a single particle (N = 1), Eq. (14) takes
the form:

∆ω

γ0
= 3π × Im

(
f tH(0,1)tH(1,0)f

)
, (15)

where t is the single-particle T-Matrix. In the case of
a spherical Mie scatterer, t is a diagonal matrix com-
posed of the Mie coefficients of the sphere (given in Ap-
pendix VII A), and Eq. (15) is then equivalent to ex-
pressions previously derived for a single sphere [15, 16].
Exact analytical expressions of the first two multipolar
contributions to the Lamb shift can be found in Ap-
pendix VII B.

IV. MULTIPOLAR ANALYSIS

A. Multipole contributions to the Lamb shift

Let us first calculate the Lamb shift in the case of a sil-
ver nanosphere of radius a = 20 nm in vacuum (nb = 1).
Based on Eq. (15), we compute using an in-house code
the Lamb shift of a quantum emitter radially oriented
and located at a distance d = 10 nm from the nanopar-
ticle, as a function of the bare transition wavelength
λ0 = 2πc/ω0 (black curve in Fig. 1). We analyze this
Lamb shift spectrum by plotting separately the differ-
ent multipolar contributions (plotted in colors in Fig. 1:
n = 1 corresponds to the contribution of the dipolar
mode, n = 2 to the contribution of the quadrupolar mode
and so on). One can thus see that in the near-field of
the nanoparticle, the total Lamb shift is due to the con-
tribution of several multipolar modes and the fact that
the dipole approximation to model the response of the
nanoparticle (corresponding to the red curve in Fig. 1)
fails to account for the Lamb shift. In other words, in the
near-field region, the atom couples to several plasmon
modes of the silver nanoparticle (see also [27]), which
gives rise to the complex pattern of the Lamb shift spec-
trum.

In order to account for the spectral line shape, we will
make use of the analytical expressions of the dipolar and
quadrupolar contributions derived in Appendix VII B, in
the case of a radially oriented dipole. In the non-retarded
regime kd � 1 (which is fulfilled here), the analytical
expression of the dipolar contribution (n = 1) reduces
to,

∆ω⊥1
γ0

=
9

2

1

(kd)6
Im[a1] +O

(
(kd)−6

)
, (16)
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FIG. 1. Numerical simulations of the total Lamb shift ∆ω
(black curve) and its multipolar contributions n = 1, 2, 3, 4, 5
(colored curves) as a function of the transition wavelength
λ0 = 2πc/ω0 for a perfect electric dipole emitter with radial
orientation and located at d = 10 nm from a silver nanosphere
with a = 20 nm radius (red arrow). The Lamb shift is normal-
ized to the dipole’s decay rate in free space γ0. The refractive
index of the homogeneous background is nb = 1. A Drude-
Lorentz model for the silver permittivity is used according to
[28]. The total Lamb shift is computed by taking ncut = 10.

while the quadrupolar contribution (n = 2) reduces to,

∆ω⊥2
γ0

=
405

2

1

(kd)8
Im[a2] +O

(
(kd)−8

)
, (17)

where the subscript ⊥ indicates a dipole perpendicular
to the particle surface (radially oriented), and a1 (a2) is
the electric dipolar (quadrupolar) Mie coefficient whose
expression can be found in Appendix VII A. The ex-
planation of the spectral behavior of the Lamb shift is
thus found in the imaginary part of the Mie coefficient.
In Fig. 2, we plot the modulus ((b) and (e)) and phase
((c) and (f)) of the electric dipolar and quadrupolar Mie
coefficients a1 and a2 respectively as a function of the
excitation wavelength, together with the first two multi-
polar contributions n = 1 and n = 2 of Fig. 1 ((a) and
(d) in Fig. 2 plotted with the same color code). One can
see that the inflection point of the Lamb shift spectrum
(around 376 nm for n = 1 and 358 nm for n = 2) corre-
sponds to a resonance maximum of the modulus of the
associated Mie coefficient accompanied by a strong phase
change (the resonance of the Mie coefficients around
250 nm is a spurious resonance peculiar to the model of
permittivity used [29]). This clearly shows the multipolar
origin of the plasmon resonance enhanced Lamb shift.

B. Quasi-normal mode description

Another interpretation of the shape of the Lamb shift
spectrum can be given using a Quasi-Normal Mode
(QNM) description [30] (also called “Resonant State” ex-
pansions). By expanding the scattered field Es(r0, ω0) in
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FIG. 2. (a) and (d): Lamb shift dipolar (red curve) and
quadrupolar (green curve) contributions of Fig.1 (same color
code) normalized by γ0. (b) and (e): Modulus of the as-
sociated electric dipolar (red curve) and quadrupolar (green
curve) Mie coefficients a1 and a2 as a function of the excita-
tion wavelength λ0. (c) and (f): Argument of the associated
electric dipolar (red curve) and quadrupolar (green curve) Mie
coefficients a1 and a2 as a function of λ0. A Drude-Lorentz
model for the silver permittivity is used according to [28].

Eq. (4) onto a small set of QNMs of the plasmonic res-
onator as in [31], we obtain:

∆ω

γ0

∣∣∣∣
ω0

'
∑
α

Aα

(
ω′α
ω0

)2
ω′′α
2

ω′α − ω0

(ω′α − ω0)2 + ω′′2α
+Bα(ω0) ,

(18)
where ωα = ω′α + iω′′α is the complex frequency of
the QNM labeled α, while Aα is a dimensionless fac-
tor and Bα(ω0) a function of ω0 (for the qualitative
analysis which follows, we will consider it as constant:
Bα(ω0) ≡ Bα). An equivalent expression in term of the
wavelength is obtained by extending the relation between
ω and λ to complex numbers. Adopting λα ≡ 2πc/ωα,
where λα = λ′α + iλ′′α is the complex wavelength asso-
ciated with the complex frequency, ωα = ω′α + iω′′α, we
find:

∆ω

γ0

∣∣∣∣
λ0

'
∑
α

−Aα
(
λ′α

λ̃0

)2
λ′′α
2

λ′α − λ̃0

(λ′α − λ̃0)2 + λ′′2α
+Bα ,

(19)

where λ̃0 ≡ |λα|2/λ0. Note that Eqs. (18) and (19)
are generally valid for any resonator shape, and shows
that the total Lamb shift can be given by the sum of
independent contributions of the QNMs.

For a spherical Mie resonator, the QNMs are the mul-
tipolar modes, labeled by three numbers {q, n,m}, whose
associated complex eigenfrequencies ωq,n,m are the poles
of the Mie coefficients [32]. In order to find the QNM
resonances in play in the previous configuration, we only
look at the poles of the electric Mie coefficients, because
the dipole emitter is radially oriented and therefore only
couples to electric modes (see discussion at the end of
Appendix VII B). This consists in solving the transcen-
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FIG. 3. Comparison between numerical simulations and analytical calculations of the Lamb shift. (a): Total Lamb shift of
Fig. 1 (black curve) compared to the Lamb shift calculated with Eq. (21) using the five QNM resonances displayed in Table I
(dotted curve). (b) to (f): Fit of each multipole contribution of Fig. 1 (full lines, same color code) with the corresponding
QNM contribution calculated with Eq. (21) (dotted lines) with An and Bn the fitting parameters (displayed in Table I).

dental equation (see Eq. (A1)):

(εs/εb)jn(ksa)ξ′n(ka) = ψ′n(ksa)hn(ka) , (20)

where all the functions and parameters are defined in
Appendix VII A. First note that Eq. (20) does not de-
pend on m, which means that multipolar modes with the
same multipolar order n but different orbital number m
are degenerate (i.e. have the same eigenfrequency ωn).
Therefore, the Lamb shift in Eq. (19) can be expressed
as a sum running on the multipolar order n,

∆ω

γ0

∣∣∣∣
λ0

'
∑
n

−An
(
λ′n

λ̃0

)2
λ′′n
2

λ′n − λ̃0

(λ′n − λ̃0)2 + λ′′2n
+Bn .

(21)
For each n, we find one solution ωn of Eq. (20) corre-
sponding to the dominant pole, whose associated com-
plex wavelength λn is given in Table I for n = [1; 5] (we
still take the same Drude-Lorentz model for the permit-
tivity of the silver nanosphere [28] as for the previous
numerical simulations). The corresponding An and Bn
terms are left as free parameters and they are set by
fitting each multipole contribution n of Fig. 1 with the

formula −An
(
λ′n
λ̃0

)2
λ′′n
2

λ′n−λ̃0

(λ′n−λ̃0)2+λ′′2n

+Bn , in Fig. 3 (b)-

(f). The discrepancy out of resonance that can be seen
in Fig. 3 (b)-(f) is due to the fact that Eq. (18) is valid
only in the vicinity of the resonance frequencies ωα and
that we ignored the ω0 dependency of Bα. The values
of the An and Bn parameters that result from the fit are
given in Table I for n = [1; 5]. Note that the value of
the amplitude An decreases as n increases, showing that
the resultant coupling between the emitter and the QNM
resonance n is less and less important.

In Fig. 3 (a), we compare the Lamb shift given by
Eq. (21) using the five QNM resonances n = [1; 5] with
the previous total Lamb shift calculated by computing

Eq. (15) (black curve in Fig. 1). We can see that the an-
alytical formula Eq. (21) based on the QNM resonances
of the plasmonic resonator qualitatively reproduces the
Lamb shift resonance when only a few dominant reso-
nances are taken into account, but the convergence could
be further improved by increasing the number of QNM
resonances (see also [33, 34] where it is shown that a
few set of QNM resonances is enough to reproduce the
scattering properties of a particle). Moreover, this sim-
ple analytical formula clearly evidences that the Lamb
shift resonance results from the coupling of the quantum
emitter to the resonant modes of the nanoparticle.

Finally, it is interesting to note that this resonant cou-
pling induces a positive Lamb shift ∆ω = ω − ω0 > 0
(around 340 nm in the configuration under study, see
Fig. 1 or Fig. 3 (a)), which was first predicted in the
case of silver [9] and sodium [10] surfaces (see also [15]
where a similar effect was reported in the case of a di-
electric microsphere). This positive Lamb shift leads to
a repulsive van der Waals potential as long as the atom
remains in its excited state, which was shown experi-
mentally with excited cesium atoms in the presence of a
sapphire surface [35, 36].

TABLE I. QNM complex wavelengths and fitting pa-
rameters.

n λn(nm) An Bn

1 375.6 + 15.5i 95.7 −7.6

2 358.2 + 14.0i 57.8 −8.2

3 353.7 + 14.1i 38.3 −6.1

4 351.7 + 14.2i 24.5 −4.1

5 350.5 + 14.2i 15.0 −2.6
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V. PREDICTIONS ABOUT THE LAMB SHIFT

A. Blue-shift of the resonance

In this section, we show how the size of the nanoparti-
cle affects the position of the Lamb shift resonance. We
still consider the case of a silver nanosphere. We plot
in Fig. 4 the normalized Lamb shift as a function of
the transition wavelength for different particle radii (full
lines). The asymptotic case of a planar surface is also
plotted (dashed line) according to the following expres-
sion [9, 10]:

∆ω⊥

γ0
= − 3

16k3

|εs|2 − 1

|εs + 1|2
1

d3
, (22)

which is valid in the non-retarded regime and for an emit-
ter oriented perpendicular to the surface. In this case, the
dipole emitter couples to the surface plasmon mode which
comes from the infinite density of states of the high order
modes (around λ0 ' 340 nm for a planar silver surface).

In sharp contrast with a nanosphere characterized by
a purely dipolar response, we predict in the near-field
of the nanosphere a blue-shift of the Lamb shift reso-
nance as the radius of the nanosphere increases (see Fig.
4). To understand this feature, let us recall that as the
radius increases, each plasmon resonance is red-shifted
and the dipole emitter couples to higher-order multi-
poles [27]. The displacement (blue-shift) of the Lamb
shift resonance then results from the interference be-
tween these different modes. Therefore, this effect will
only exist if the dipole emitter is located in the near-field
of the nanoparticle, so that it will be able to excite sev-
eral modes and to get this interference effect, resulting
then in a blue-shift of the resonance.

Thus, it can be observed in Fig. 4 that in the near-
field of the nanoparticle, a precise engineering of this res-
onant coupling between the quantum emitter and the
plasmon resonances is possible. For instance, the transi-
tion wavelength at which the Lamb shift is suppressed
is λ0 = 363 nm > λ0 = 357 nm > λ0 = 350 nm >
λ0 = 342 nm > λ0 = 339 nm for the radii a = 2.5 nm,
a = 5 nm, a = 10 nm, a = 50 nm and the case of the
planar silver surface respectively. The tuning of this in-
teraction is of current interest [37, 38], and we suggest
that thanks to their highly tunable optical properties,
metallic nanoparticles can also be used to tune and shape
the Lamb shift of a nearby quantum emitter through a
control of their geometry, but also spatial organization
and environment, which can all be investigated through
Eq. (14).

B. Gold dimer nanoantenna

In order to make a realistic calculation of the Lamb
shift, let us now consider a gold dimer with a dipole
emitter located at the center of the nanogap. This con-
figuration is now experimentally realizable using DNA
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/ 
γ 0

λ0 [nm]

a=2.5nm

a=5.0nm

a=10.0nm

a=50.0nm

planar surface

FIG. 4. Numerical simulations of the normalized Lamb shift
∆ω/γ0 as a function of the transition wavelength λ0 for a per-
fect electric dipole emitter with radial orientation and located
at d = 5 nm from a silver nanosphere (red arrow), for differ-
ent radii a (full lines). The asymptotic case of a planar silver
surface (Eq. (22)) is also plotted (dashed line). The refractive
index of the homogeneous background is nb = 1. A Drude-
Lorentz model for the silver permittivity is used according to
[28]. The Lamb shift is computed by taking ncut = 10 except
for the case a = 50 nm where ncut = 50 in order to converge.

templates [39, 40]. To compute the Lamb shift, we take
the parameters corresponding to [41]: the nanoparticles
radius is 40 nm, the nanogap is 6 nm, and the effective re-
fractive index surrounding the nanoparticles is neff = 1.5;
the fluorescent molecule is an Alexa Fluor 647 dye, which
presents an emission peak around λ0 = 670 nm with
40 nm width; its total decay rate in the homogeneous
solution is measured at γ0 = 2.63 ns−1 [42].

The Lamb shift spectrum of such a configuration with
a dipole emitter of parallel orientation is shown in Fig.
5. At λ0 = 670 nm, the normalized Lamb shift computed
with Eq. (14) is ∆ω/γ0 = −8200, which is outside of the
range of the radiative linewidth, and therefore suitable
for direct observation (the numerical simulations — not
shown here — give a radiative decay rate enhancement
γr/γ0 = 1700 at λ0 = 670 nm). In order to find the Lamb
shift of the dye, one needs to multiply the value given by
the numerical simulations by the reference quantum yield
φ0 = 0.08 in open solution (i.e. without the antenna):
∆ω = φ0×(−8200)×γ0. The corresponding shift in terms
of wavelength is given by the following formula (valid if
∆ω/ω0 � 1): ∆λ/λ0 = −∆ω/ω0 where ∆λ = λ − λ0

with λ the new wavelength of the emitted photon. Thus,
for the Alexa Fluor 647 dye, the relative shift is ∆λ/λ0 =
3.8× 10−3, corresponding to a shift ∆λ = 2.5 nm.

Such a shift could be detected at room temperature,
by fitting the entire emission spectrum of the molecule
(see for instance [43] where a shift of ∆λ ' 0.3 nm has
been detected — for the resonance spectrum of a gold
nanorod — between neighboring Gaussian peaks with
width of about 50 nm which is similar to our case here).
One should also ensure that the spectral dependence of
the Lamb shift, decay rate enhancement and quantum
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yield enhancement, do not vary appreciably in the range
used for fluorescence detection (the decay rate enhance-
ment and quantum yield enhancement spectra for the
same configuration can be found in [41], Fig. 3). In the
future, it could be interesting to test the validity of the
weak-coupling approximation to quantify the Lamb shift
in such a configuration, by employing an other formalism
suitable for investigating the strong-coupling regime such
as the one presented in [44].
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∆
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/ 
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FIG. 5. Numerical simulations of the normalized Lamb shift
∆ω/γ0 as a function of the transition wavelength λ0 for a
perfect electric dipole emitter with parallel orientation and
located in the center of a gold dimer antenna of radius 40 nm
and 6 nm gap (red arrow). The refractive index of the ho-
mogeneous background is nb = 1.5. A Drude-Lorentz model
for the gold permittivity is used according to [28]. The Lamb
shift is computed by taking ncut = 40.

VI. CONCLUSION

In this paper, we derived an exact multipole formula,
Eq. (14), to compute the Lamb shift induced by an ar-
bitrary set of resonant scatterers on a nearby quantum
emitter. In the case of a single silver nanoparticle, our nu-
merical simulations show that the dipole approximation
fails to account for the total Lamb shift spectrum in the
near-field region, and that one must include higher mul-
tipolar contributions. We furthermore adopted a Quasi-
Normal Mode description of this phenomenon, which pro-
vides a more physically intuitive understanding of the
induced Lamb shift as resulting from the coupling be-
tween the quantum emitter and the resonances of the
nanoparticle, and shows that the total Lamb shift can be
given by the sum of the independent resonance contribu-
tions. These formulas also predict a displacement of the
Lamb shift resonance in the near-field to higher frequen-
cies (blue-shift). Finally, a calculation of the Lamb shift
in a physically realistic configuration indicates that a di-
rect detection may be possible for fluorescent molecules
embedded in a gold dimer nanogap.

VII. APPENDIX

A. Mie coefficients

In this Appendix, we give the expressions of the Mie
coefficients in a slightly different way then in [45] (where
they are called the scattering coefficients). By intro-
ducing εs (µs) and εb (µb) as the relative permittivity
(permeability) of the sphere and the homogeneous back-

ground respectively, ks =
√
εs(ω)ω/c and k =

√
εbω/c,

the Mie coefficients of a sphere of radius a take the form:

an =
(εs/εb)jn(ksa)ψ′n(ka)− ψ′n(ksa)jn(ka)

(εs/εb)jn(ksa)ξ′n(ka)− ψ′n(ksa)hn(ka)
(A1)

for the electric Mie coefficient of order n, and

bn =
(µs/µb)jn(ksa)ψ′n(ka)− ψ′n(ksa)jn(ka)

(µs/µb)jn(ksa)ξ′n(ka)− ψ′n(ksa)hn(ka)
(A2)

for the magnetic Mie coefficient of order n, where jn(x)
and hn(x) are respectively the spherical Bessel functions
and the first-type (outgoing) spherical Hankel functions,
and ψn(x) and ξn(x) are the Ricatti-Bessel functions de-
fined as:

ψn(x) ≡ xjn(x) (A3)

ξn(x) ≡ xhn(x) . (A4)

B. Analytical expressions of the dipolar and
quadrupolar Lamb shift

In this Appendix, we derive from Eq. (15) analytical
expressions for the Lamb shift dipolar and quadrupolar
contributions for a sphere. We consider the sphere placed
in the +z direction with respect to an electric dipole
emitter oriented either perpendicular to the surface of
the sphere (orbital number m = 0, dipole moment ori-
ented on the z axis) or parallel to the surface (m = 1,
dipole moment oriented on the x axis). Due to spherical
symmetry, the T-Matrix of the single sphere is a diagonal
matrix t composed of the Mie coefficients of the sphere
multiplied by −1. With a quadrupolar assumption [46]:

t = −Diag(a1, a2, b1, b2) , (B1)

with a1 (a2) the electric dipolar (quadrupolar) Mie co-
efficient and b1 (b2) the magnetic dipolar (quadrupolar)
Mie coefficient defined in Appendix VII A,

f = [e1, 0, 0, 0]t , (B2)

with e1 the incident electric dipole coefficient, and

H(0,1) =


A1,m,1,m A1,m,2,m B1,m,1,m B1,m,2,m

A1,m,2,m A2,m,2,m B1,m,2,m B2,m,2,m

B1,m,1,m B1,m,2,m A1,m,1,m A1,m,2,m

B1,m,2,m B2,m,2,m A1,m,2,m A2,m,2,m

 ,

(B3)
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where An,m,n′,m′ (Bn,m,n′,m′) the coupling coefficient
from the electric (magnetic) multipole order n with or-
bital number m, to the multipole order n′ with orbital
number m′. Note that H(1,0) is the same as H(0,1) with
all the B coefficients multiplied by −1. Employing the
expressions of the coefficients A and B calculated in [46]
in Eq. (15), one gets for an electric dipole oriented per-
pendicular to the particle surface (m = 0):

∆ω⊥1
γ0

=
9

2
Im

[
a1
e2ikd

(kd)6
(1− ikd)2

]
(B4)

for the dipolar contribution and

∆ω⊥2
γ0

= − 9

10
Im

[
a2
e2ikd

(kd)8

(
−15i− 15(kd)− 25(kd)2

)2]
(B5)

for the quadrupolar contribution. In the case of an elec-
tric dipole emitter oriented parallel to the particle surface
(m = 1), the dipolar and quadrupolar contributions to

the Lamb shift read:

∆ω
‖
1

γ0
=

9

8
Im

[
a1
e2ikd

(kd)6

(
1− 2i(kd)− 3(kd)2 + 2i(kd)3 + (kd)4

)]
− 9

8
Im

[
b1
e2ikd

(kd)4
(i + (kd))

2

]
(B6)

∆ω
‖
2

γ0
=− 15

8
Im

[
a2
e2ikd

(kd)8

(
6i + 6(kd)− 3i(kd)2 − (kd)3

)2]
+

15

8
Im

[
b2
e2ikd

(kd)6

(
3− 3i(kd)− (kd)2

)2]
(B7)

It is interesting to note in the case of a dipole emitter
with parallel orientation the presence of the magnetic Mie
coefficients b1 and b2, which traduce the cross-coupling
between the electric dipole emitter and the magnetic mul-
tipole resonances. This is not the case for a dipole per-
pendicularly oriented whose multipolar Lamb shift con-
tributions only depends on the electric Mie coefficients,
since the magnetic field produced by an electric dipole is
null along the dipole axis.
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