
HAL Id: hal-01573563
https://hal.science/hal-01573563

Submitted on 25 May 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Reverse engineering highlights potential principles of
large gene regulatory network design and learning.

Clement Carre, André Mas, Gabriel Krouk

To cite this version:
Clement Carre, André Mas, Gabriel Krouk. Reverse engineering highlights potential principles of
large gene regulatory network design and learning.. npj Systems Biology and Applications, 2017, 3,
pp.17. �10.1038/s41540-017-0019-y�. �hal-01573563�

https://hal.science/hal-01573563
https://hal.archives-ouvertes.fr

ARTICLE OPEN

Reverse engineering highlights potential principles of large
gene regulatory network design and learning
Clément Carré 1,2, André Mas 1 and Gabriel Krouk 2

Inferring transcriptional gene regulatory networks from transcriptomic datasets is a key challenge of systems biology, with potential
impacts ranging from medicine to agronomy. There are several techniques used presently to experimentally assay transcription
factors to target relationships, defining important information about real gene regulatory networks connections. These techniques
include classical ChIP-seq, yeast one-hybrid, or more recently, DAP-seq or target technologies. These techniques are usually used to
validate algorithm predictions. Here, we developed a reverse engineering approach based on mathematical and computer
simulation to evaluate the impact that this prior knowledge on gene regulatory networks may have on training machine learning
algorithms. First, we developed a gene regulatory networks-simulating engine called FRANK (Fast Randomizing Algorithm for
Network Knowledge) that is able to simulate large gene regulatory networks (containing 104 genes) with characteristics of gene
regulatory networks observed in vivo. FRANK also generates stable or oscillatory gene expression directly produced by the
simulated gene regulatory networks. The development of FRANK leads to important general conclusions concerning the design of
large and stable gene regulatory networks harboring scale free properties (built ex nihilo). In combination with supervised
(accepting prior knowledge) support vector machine algorithm we (i) address biologically oriented questions concerning our
capacity to accurately reconstruct gene regulatory networks and in particular we demonstrate that prior-knowledge structure is
crucial for accurate learning, and (ii) draw conclusions to inform experimental design to performed learning able to solve gene
regulatory networks in the future. By demonstrating that our predictions concerning the influence of the prior-knowledge structure
on support vector machine learning capacity holds true on real data (Escherichia coli K14 network reconstruction using network and
transcriptomic data), we show that the formalism used to build FRANK can to some extent be a reasonable model for gene
regulatory networks in real cells.

npj Systems Biology and Applications (2017) 3:17 ; doi:10.1038/s41540-017-0019-y

INTRODUCTION
Gene regulation plays a key role in the control of fundamental
processes in living organisms, ranging from development, to
nutrition and metabolic coordination. Genes are regulated at several
levels of integration but one key step is the control of gene
transcription. Determining the fundamental structure of transcrip-
tional Gene Regulatory Networks (GRNs, considered here as the
relationships of transcription factors (TFs) and their targets) is a major
challenge of systems biology.1–4 Understanding GRNs has tremen-
dous implications ranging from medicine to agriculture. Indeed,
being able to learn GRNs may enable manipulating the cell as a
system and potentially control and coordinate many physiological
events that are related to GRN activity (diseases, biotechnological
applications, crop production, and more). The quest of systems
biology is thus to determine GRN structure using machine-learning
algorithms applied on transcriptomic datasets [considered as the
most exhaustive level measurement of the system to date
(commonly assayed by microarrays or next generation sequencing)].
Furthermore, recent high throughput experimental approaches

are now drafting the GRNs backbones for many different species,5

ranging from prokaryotes, yeast, plants to humans. We can
distinguish two complementary types of approaches. The first
type is TF-centered, such as Chromatin Immuno-precipitation

followed by high-throughput sequencing [ChIP-seq, DAP-seq6–12

or TARGET procedures [Transient Assay Reporting Genome-wide
Effect of TF].13–16 In these cases, one aims at investigating the
binding activity of a particular TF across the genome or its
capacity to activate its targets upon entrance in the nucleus. The
second type of approach is target-centered, such as enhanced
yeast-one hybrid (eY1H) approaches that decipher GRNs control-
ling a particular set of genes.17–22 These approaches, TF-centered
and target-centered, can be understood as the closest proxy to
experimentally determining actual GRN in living organisms.23

Interestingly, these experimental data on GNR connections are
often used to validate algorithms predictions, but it can also be
used as potential knowledge to train machine-learning proce-
dures.24 Hence, the purpose of the current work is to understand:
(i) how valuable is this GRN prior-experimental-knowledge, (ii)
which characteristics of this prior-knowledge are potentially better
in training or supervising machine-learning procedure to learn
large GRNs from transcriptomic data? In other words can we, in
the near future, possibly train algorithms to decipher real
regulatory connections by combining ChIP-seq, DAP-seq, eY1H,
or TARGET results with transcriptomic datasets?
Since no GRN is known with sufficient precision to be used as

gold standard, we undertook a reverse engineering path. Indeed,
training machine learning algorithms on real biological networks

Received: 27 January 2017 Revised: 24 May 2017 Accepted: 31 May 2017

1Institut Montpelliérain Alexander Grothendieck, Université de Montpellier, Montpellier, France and 2Laboratoire de Biochimie et Physiologie Moléculaire des Plantes, Institut de
Biologie Intégrative des Plantes ‘Claude Grignon’, UMR5004 CNRS, INRA, SupAgro, UM, Place Pierre Viala, Montpellier 34060, France
Correspondence: André Mas (andre.mas@umontpellier.fr) or Gabriel Krouk (gkrouk@gmail.com)

www.nature.com/npjsba

Published in partnership with the Systems Biology Institute

http://orcid.org/0000-0003-3693-6735
http://orcid.org/0000-0003-3693-6735
http://orcid.org/0000-0003-3693-6735
http://orcid.org/0000-0003-3693-6735
http://orcid.org/0000-0003-3693-6735
http://orcid.org/0000-0002-1674-1781
http://orcid.org/0000-0002-1674-1781
http://orcid.org/0000-0002-1674-1781
http://orcid.org/0000-0002-1674-1781
http://orcid.org/0000-0002-1674-1781
http://orcid.org/0000-0003-3693-6735
http://orcid.org/0000-0003-3693-6735
http://orcid.org/0000-0003-3693-6735
http://orcid.org/0000-0003-3693-6735
http://orcid.org/0000-0003-3693-6735
http://dx.doi.org/10.1038/s41540-017-0019-y
mailto:andre.mas@umontpellier.fr
mailto:gkrouk@gmail.com
www.nature.com/npjsba

poses fundamental problems because these networks are not
perfectly defined. This kind of approach is now routinely used,
in particular during the DREAM challenges [http://dream
challenges.org/; Dialog on Reverse Engineering Assessment and
Methods].3, 25–27 This work demonstrated that learning GRNs even
from in silico simulated transcriptional data is not trivial but can still
provide significant results. During the several DREAM challenges
that focused on GRNs inference, the machine learning procedures
are trained on simulated gene expression, on mutant versions of
the networks, as well as on perturbed networks, where expression
of several genes is modified to simulate external influencing factors.
Here, we use an approach which is quite different, since as
mentioned above, we focus on using experimentally probed TF→
target as prior-knowledge. Our rationale is very close to what has
been proposed before by Cerulo and colleagues,24 but quite
different regarding the size of the simulated networks as well as the
biological questions that we ask and answer.
Indeed, we decided to develop our own GRN-simulating

algorithm called FRANK for Fast Randomizing Algorithm for Network
Knowledge, which is able to (i) simulate very large networks
(potentially containing as many genes as real eukaryotic genomes
~104 genes including ~103 TFs); (ii) simulate gene expression over
several thousands of simulated time points or system levels (see
below), (iii) in a relatively short computation time (several minutes).
The decision to work on very large networks comes with trade-off
concerning mathematical formalism fully discussed thereafter.
Indeed, it is worth noting that several network simulators are
already available with different characteristics including the most
popular: Netsim28 SynTReN29, and GeneNetWeaver.30, 31 But in our
experience, their simulating engine based on ordinary differential
equations (ODEs) resolution is quite slow when solving very large
network dynamics and steady states. We thus undertook (i) a
different and simpler formalism to routinely simulate and infer large
networks, and (ii) to answer very biologist-driven questions.
In this work we use FRANK to simulated GRNs and related gene

expressions and use machine learning algorithms to learn back
the simulated network structure to benchmark the quality of the
reconstruction. However, instead of studying the machine
learning algorithms themselves, we rather focused on the impact
of the structure of the network, as well as the characteristics of the
data needed to perform good reconstruction. In this sense, our
work is a very much biologically oriented and proposes math-
derived hypothesis to answer the following questions: To what

extent prior-knowledge of a given GRNs would be able to improve
machine-learning procedures? What amount of prior knowledge is
needed to properly infer a GRN of a given size? Which kind of
expression data (dynamic, steady state, mixed) are the most
valuable to infer a given GRN? Which kind of prior-knowledge (TF-
centered or Target-centered) would be best suited to supervise
inference of GRNs? What proportion of TF or target gene
expression are needed to properly infer GRNs? Are machine
learning procedures resilient to bad quality prior knowledge in
inferring GRNs from it? Herein, we propose answers to these
questions derived from our in silico simulations.
This paper presents the results into two complementary parts. The

first one describes FRANK the simulator and the machine learning
procedure according to a mathematical/computer science perspec-
tive. The second one is biologically oriented and proposes to answer
the abovementioned questions. The second part has been built to
be independently read by biologists when the first part will require
more mathematical skills (except the two first paragraphs describing
FRANK general concept related to Fig. 1, see below).

RESULTS
Part I: Mathematical and computational simulation
Preview of FRANK: a large network simulator. To quickly simulate
GRNs of very large size, as well as to control any aspects of the
algorithm for further work, we created a simulation algorithm
using the C++ language. FRANK formalism is meant to be simple
and deterministic to quickly calculate gene expression for very
large simulated GRNs (Fig. 1, see FRANK manual for full description
provided in Sup. Info. 1).
FRANK is a software that produces (i) GRNs with features

considered as crucial in GRN literature (ii) synthetic gene
expression values drawn semi-randomly in accordance with the
previously built network. Several input parameters (essentially
parameterizing probability distributions related to the network
features and detailed below) are tuned by the user or provided
with default values. The outputs are files containing (i) the
simulated network (.csv), (ii) gene expression levels generated by
this network (.csv) and heatmaps (.png).
FRANK was designed to quickly generate several hundreds of

different large networks having different tunable parameters and
their corresponding simulated expression. We have in mind to
proceed further with machine learning algorithms, and evaluate the

Fig. 1 Overall organization of the FRANK algorithm (Fast Randomizing Algorithm for Network Knowledge). a Network graph for four genes
(two transcription factors [TF]) and two targets (TA). Because of its simple architecture FRANK is able to simulate very large networks
(accepting several thousands of TF and TA) and associated gene expression. The model accepts positive, negative and auto-regulations of TFs.
b The Network graph in panel A is formalized as a network matrix named N made of two sub-matrices: A (TF effect on each others) and B (TF
effect on TA). Gene expression at step 0 is then randomized (E0) made of two sub-vectors: V0 (being the expression values of TF) andW0 (being
the expression values of TA). c Formulas used to iteratively simulate gene expressions across iterative “time points” t. Gaussian noise
simulating experimental transcriptomic measurements is added

Gene regulatory network design and learning
C Carré et al.

2

npj Systems Biology and Applications (2017) 17 Published in partnership with the Systems Biology Institute

effect of changing GRNs parameters on their learning capacity
(second part of the work below).

Network and dynamical model. The network is considered here as
a directed graph (potentially weighted) and modeled as a large
dimensional sparse matrix. This means that each gene is seen as a
vertex and interaction between two genes appear as an edge with
either a positive (+) or a negative (−) sign depending on the
nature of this influence. Depending on the kind of model required,
we may then consider two situations: purely directed graphs
(edges take values ±1); or weighted graphs (edges are drawn
randomly from a Gaussian distribution; for details see Sup File 1
Manual). The network graph (Fig. 1a) is encoded by a network
matrix named N, containing two sub-matrices named A and B
(Fig. 1b). The sub-matrix A contains TF→TF edges and is squared. B
contains TF→TA (Stands for target) edges and is not squared. All
the vertices of the graph appear as the row names of the matrix N.
Thus N contains null, positive and negative coefficients. A null cell,
at line TG (TG can be a TF or a TA) and column TF means that no
connection exists from TF to TG. The non-null cells correspond to
the edge of the graph mentioned above and are drawn from a
Gaussian distribution N(β,1) where parameter β is given.
Additional properties of the network are commented below.
Once the network is designed, we can turn to generating the

expression levels for the genes through a dynamical process that
should be simple for computational reasons but likely to mimic
the reality of biological complexity. Let X(t) be the vector of gene
expression at time t decoupled in two subvectors X(t) = (XTF(t),
XTG(t)) where XTF(t) denotes the vector of TF expressions and XTG(t)
stand for the expression of TG. We then assume that the margins
of X are all log-normally distributed with mean µ and standard
deviation σ2 and perturbed by a measurement error denoted ɛ
following a centered Gaussian distribution and decomposed in
accordance with X hence:

XTF tð Þ ¼ exp V tð Þð Þ þ εTF tð Þ

XTG tð Þ ¼ exp W tð Þð Þ þ εTG tð Þ;
where V(t) and W(t) are log of gene expression (see Fig. 1b), with N
(µ, σ2) distribution and follow in addition the evolution equations:

V t þ 1ð Þ � V tð Þ ¼ A � V tð Þ
W t þ 1ð Þ �W tð Þ ¼ B � V tð Þ Model½ �
Here the square matrix A plays the role of an infinitesimal

generator hence contains the information needed to ensure the
stability of the system, especially through its eigenvalues.32

Designing A and B is consequently at the core of FRANK. The
system is fully determined by initial value V(0) and W(0) or
equivalently X(0) (we take ε(0) = 0) that may be either provided by
the user or randomly generated by FRANK. In the sequel the word
“iteration” stands for the operation X(t)→ X(t + 1).

Main features and calibration. The network structure can be
parameterized for several features. In particular the user can
choose a given sparsity, a minimum and a maximum number of
TFs controlling a given gene. The network structure is also
constrained to harbor scale free properties (see Manual). In silico
experiments are then computed in parallel (following the simple
formula Fig. 1c) by using a fast exponentiation algorithm based on
the dyadic decomposition of the power number (see Manual for
full details, Sup. Info. 1). Figure 2 reports some examples of FRANK
outputs for a simulated network containing 100 TF and 1000 TA.
First, FRANK simulated GRNs display the required network
parameters including in and out-scale free properties (Fig. 2b). It
is important to note here that, even if the network is built to
comply with defined parameters (as mentioned above), its
coefficient filling is randomized. Thus, for any raw matrix N built
by FRANK, the probability of having a network whose gene

expression will be stable across iterations is extremely low. We
however assume that network expression stability is a prerequisite
to sustain a viable organism. We thus implemented an algorithmic
correction of the matrix N to have it generate stable gene
expression. This implementation is related to the complex
eigenvalues of A (nth eigenvalue arranged in a decreasing order
of moduli is termed λn). More specifically the location of the
eigenvalues with respect to the unit circle in the complex plane is
crucial: all the eigenvalues should be inside the disk to ensure
convergence, at least one must be on the unit circle to ensure
stability and more than one located in the unit circle if one seeks for
oscillations and periodicity of the system. But this stability condition
has to be managed within a sparse matrix framework. We found no
specific work that addresses the issue of complex eigenvalue
location (within the unit disk) for large sparse matrices arising in
gene regulatory network. Our solution consists of a small
perturbation of the (m-sparse) matrix constructed earlier with IN
and OUT-scale free properties. First, all coefficients are standardized
so that ρ(A) = 1 with ρ(A) the spectral radius of matrix A.
This does not change sparsity or any initial properties of the matrix.
Then we compute its eigenvalues. Since A is real, these eigenvalues
are real or conjugate. We select an integer say p < 10 that accounts
for the complexity required in the network. We pick the 2p
conjugate eigenvalues closest to the unit disk (they are necessarily
inside the circle) and move them vertically-up for the one with
positive imaginary part and down for the other-until they reach the
unit disk. This operation leads to a new matrix, say, A′ with A′ = A +
Ep, where Ep depends only on the eigenvectors related to the 2p
conjugate eigenvalues considered above and on the small purely
imaginary perturbation that projects the eigenvalues onto the unit
circle. The resulting A′ is still a real matrix bit loses its sparsity in a
strict mathematical sense. Switching from A to A′ leads to new
coefficients with very low but non-null values (see Fig. 3a). We
observe a clear gap between these new network connections of low
influence and the coefficients of the original network. These new
connections are likely to be necessary to observe stable oscillatory
behavior in gene expression. This observation is further discussed
below for its potential biological consequences (see Part II).

Learning versus inference. Along the past 20 years, statistical
science provided several reliable methods for studying gene
regulatory network. The standard statistical tools used to address
this problem are based on the reconstruction of the network using
gene expression data. We mention here that ODE systems,
standard in GRN modeling, stem from distinct areas of mathe-
matics and with different goals.
Network reconstruction may be split into two different

approaches. Most of the techniques infer the network: roughly
speaking they try to discover all the edges simultaneously from
gene expression.26, 33 Our approach here differs substantially.
Indeed, we do not apply inference algorithm but rather intend to
literally learn the network (even if the word “learning” is now
abusively used for inference methods such as LASSO).
More specifically we assume here, that we are given the exact

structure of a piece of the network (prior knowledge). We then
train a learning algorithm on the known part and finally try to
predict the unknown part of the network. The dichotomy between
inference and learning that we underline here is important for us
not just because it involves different techniques, but also because
it opposes interpretability and predictability. We do not seek an
easy-to-understand (sparse or causal) model but the best possible
network prediction. The price to pay relies on using black-box
methods and also on concerns in calibrating/tuning the para-
meters. FRANK appears as a useful tool to carry out pure learning
procedures. We describe now shortly four learning algorithm
known for their reliability (LASSO, decision trees, deep neural
networks (NN), support vector machine (SVM)) and explain the
reasons why we lastly selected the SVM.

Gene regulatory network design and learning
C Carré et al.

3

Published in partnership with the Systems Biology Institute npj Systems Biology and Applications (2017) 17

Four benchmarks methods for gene network inference and learning:
reasons for selecting SVM. The LASSO is a penalized mean square
program with l1 penalty (see the historical reference).34

minβ
Xn
i¼1

yi � βTXi
� �2 þ γ βj j1;

where γ is the regularization parameter. The LASSO consequently
estimates a linear regression model with an additional constraint

on the 11 norm of the slope vector. It has well-known threshold-
ing properties: the selected slope parameter usually features
several zero coefficients. In other words when the tuning
parameter γ is chosen to be large enough, β may have a large
number of null coordinates. The LASSO is very well suited to the
sparse data encountered in gene regulation network and may be
computed with low complexity algorithm but has some draw-
backs. Indeed, an underlying model is assumed and this model is

Fig. 2 Example of a FRANK outputs (100 TF, 1000 TA). a Cytoscape view of a FRANK simulated network having scale free properties. The nodes
represent the genes the edges represent the connections in the network (Blue: repressive, Yellow: inductive). b Example of in-degree and out-
degree distributions harboring scale-free properties of 100 simulated networks containing 1000 TF and 1000 TA each. c Heatmap
representations of simulated gene expression from a network (100 TF, 1000 TA) having one Eigen value forced to be equal to 1, d Heatmap
representations of simulated gene expression from a network (100 TF, 1000 TA) having two Eigen values equal to 1. This heatmap exactly
corresponds to the expression of the network depicted in (a)

Gene regulatory network design and learning
C Carré et al.

4

npj Systems Biology and Applications (2017) 17 Published in partnership with the Systems Biology Institute

linear, the LASSO estimate, although providing nice interpretation
properties, has poor prediction power and is suited for network
inference, whereas, as explained earlier, we are fundamentally
going through a learning approach (refer to35 for deeper
information about the LASSO).
Classification trees and random forests are other robust

methods. Briefly speaking, a classification is a tree where each
node provides a combination of input variables and each leaf is
associated with a class of the output variable (here y). At each
step, for each node, an input variable is selected according to its
ability to split the sample in the best possible way. This ability is
measured by quantitative criteria such as Gini impurity, entropy or
variance deflation. The inherent complexity of the resulting trees
is balanced by pruning the tree. Pruning is usually carried out by
examining the cross-validation error. Several extensions to
decision trees were proposed in order to improve their
performances: bagging, boosting, and random forests are the
most popular.36 Conversely to the LASSO, classification trees and

their extensions by ensemble methods were designed for learning
and for use in a prediction approach. However in our framework,37

of the original data was definitely a stumbling stone and we could
not carry out decision tree or random forests correctly on data
with sparsity levels as observed in biological networks. Indeed,
these approaches happen to run for several days on our servers
without leading to any interesting results.
NN are more and more popular since they proved their efficiency

in image analysis. They consist in building a sequence of nonlinear
processing (each element of this sequence is called a layer) to
detect informative features in the data. The layer N processes the
features computed at stage N−1 and is expected to refine them.
The final result may be viewed as a hierarchy of representation for
the data and may be carried out either for clustering or
classification purposes. In our framework we tested several
architectures of deep (with fewer neurons) or non-deep (with
many neurons) NN. We also carried two classical strategies for
pretraining: Stacked Denoising AutoEncoder and restricted Boltz-
man machines. Our experience shows that deep networks do not
outperform single layers networks whenever a sufficient number of
neurons is involved. Besides it is not clear to us that NN are the best
tool to cope with the sparse information structure of GRN.
Another issue arises. Indeed when supervised learning is carried

out, these NN need large amounts of data. Since here we intend to
address the question of reconstructing the network from a minimal
prior knowledge, NN were outperformed by the fourth and last
method presented below.
At last we introduce SVM slightly more deeply than the three

previous methods. SVM are another popular method for classifica-
tion by machine learning.38, 39 Consider a two class problem and
suppose that we are given a training dataset {(X1, y1),(X2, y2),…,(Xn,
yn)} where Xi is a vector in Rp and yi is either −1 or +1 depending on
the class Xi belongs to.
We can state first the mathematical setting in the simplest

framework. Imagine that the training dataset may be perfectly
separated by a hyperplane (Sup. Fig. 1[SvmPlot.pdf]) the sample
depending on two variables x1 and x2. For red triangle points the
class is (y = −1) and for blue circles the class is (y = +1). Here the
SVM computes the equation of the straight line that splits the two
groups in an optimal way. Optimal here means that the corridor
(dotted lines) around the straight line is the largest possible. The
three filled points are called “support points” because the
computation of the optimal hyperplane depends only on the
points located on the edge of their groups.
We can write now the SVM program with mathematical symbols:

minb0;b1 b1k k; subject to yi b1
TXi þ b0

� � � 1;

where y ¼ b1 TX þ b0 is the hyperplane equation. It can
be shown then that 1/||b1|| is proportional to the “corridor
width”. The constraints appearing on the right hand side of the
equation above just reads “points such that y = +1 are on
one side of the hyperplane and points such that y = −1 are on
the other side.
The description of the classification problem above is very

specific at least for three reasons. First, we assumed that two groups
are strictly separated which is not true in general. Second, we take it
for granted that both groups may be linearly separated. It is not
hard to think of situation, where the frontier between the two
groups may be a quadratic or exponential function or equations of
other kinds. Third, if we turn back to the gene network problem, we
should consider three possible valued for y, namely 0 (no edge), +1
(activation) and −1 (inhibition).
When the groups are not strictly separated—which means that

some points of, say group (y = −1) are mixed with points of group
(y = +1)—the program above may be adapted by relaxing
the constraint. It suffices to replace yi b1 TXi þ b0ð Þ � 1 by
yi b1 TXi þ b0ð Þ � 1� ci where ci stands for the gap between the
current point and its group’s margin.40

Fig. 3 Low TF influences/connections are predicted to be important
to drive network expression oscillations. a Plot of the coefficient
values of the matrix N (the network) before (x-axis) and after (y-axis)
modification (see text) to force 3 Eigen values to be on the unit circle
the other one being inside it. b Simulated gene expression across
100 iterations (E0 to E100) of a FRANK simulated network (100 TF,
1000 TA) displays oscillatory behavior

Gene regulatory network design and learning
C Carré et al.

5

Published in partnership with the Systems Biology Institute npj Systems Biology and Applications (2017) 17

The non-linear generalization of SVM is surprisingly not that
intricate, and it essentially relies on the use of specific kernels and
on Reproducing Kernel Hilbert space (RKHS) theory. Let K(. , .) be a
positive kernel defined on the design space (here Rp) and denote H
the RKHS associated to K.
The general and abstract SVM program is given below.

minb0;f fk kH 2 þ θ
Xn
i¼1

ci

()
ject

yi f Xið Þ þ b0ð Þ � 1� ci; ci>0 SVM½ �

Above all the ci and θ are positive, the latter being a tuning
parameter. Given a new design point x, the decision rule stems
from y(x) = sgn(f(x)+b0) where f is a solution of the program above
and may always be written under the form:

f xð Þ ¼
X
i2S

aiyiK x; xið Þ;

where S denotes the set of active points (i.e., the points that match
the constraints in [SVM]). The SVM program comes down to
estimating the coefficients ai above subject to the dual program of
[SVM].
Although the choice of the kernel is rarely crucial we tested

Gaussian (RBF) kernel vs. several other kernel types: polynomial of
order 1 and 2, Bessel, etc. We kept the latter in all our work because
it involves a single-bandwidth or variance-parameter. This band-
width is selected by a cross validation approach.41 The other tuning
parameter is the Lagrange multiplier interpreted as the cost for
constraint violation. It was set to 1 in accordance with strategies
often carried out with SVM.
Finally the connection with multi-classes SVM, that is when y

takes more than two values, is achieved by specific algorithm that
reduces this issue to multiple binary problems.42

Learning on FRANK generated data. After choosing a proper
model and selecting the best method (SVM) the last step in our
methodology consists in evaluating the learning process. To that
aim we consider here essentially two scores that have a biological
meaning and are insightful and classical for practitioners: the
percentage of true positive (non-null edge detected as non-null
including the direction of the regulation [positive or negative]),
and the percentage of false positive (null edges detected as
positive or negative) (see Part II).

A trick for data selection. In our early investigations we faced a
problem stemming from the sparse structure of the data. The
learning algorithm mentioned above was not designed to cope
with sparse data. The output values may possibly take values −1, 0
and 1 but we observed that whatever the method at work the
predictions are essentially null. As a consequence we often faced
the issue of constant (null) predicted values that is a very low rate
of true positive. Improving the ability of the methods to detect
vertices was a challenge. We introduced a trick that is inspired
from boosting that artificially increases the proportion of positive
(vertices) in the learning sample.
-Simulate a n-sample of data and collect the output values

(y1, y2, …, yn),
-Keep those yi′s that are −1 or + 1, denote n≠ the cardinal of this

set of output values V� ¼ y�1 ; y
�
2 ; ¼ y�n≠

� �
;

-Select at random n≠ amongst the n−n≠ remaining null y data
denoted

V0 ¼ y01 ; y
0
2 ; ¼ y0n≠

� �
;

-Perform the learning algorithm on V0∪V*.
The four steps above tend to remove the sparsity in the learning

data at the expense of a serious decrease of the sample size.
Clearly the proportion of 50% zeros/50% non-zeros may be tuned

to other values.
This somewhat unusual though pragmatic change turns out to

enhance predictions and meet the goals of increasing the true
positive rate (Sup Fig. 2).

Part II: Biological insights using FRANK and SVM
Benchmarking the role and the characteristics of prior knowledge
and transcriptomic data to improve supervised machine learning of
GRNs. In Part I, we defined FRANK (Fig. 1) as a rapid and effective
large network simulator. FRANK provides (i) network modules
having the characteristics that are observed in eukaryotic systems
(Figs. 1 and 2) and (ii) simulated gene expression in a large
number of conditions (Fig. 2).
The challenge then was to learn the network module using SVM

applied on: (i) simulated transcriptomic data generated by the
network and (ii) a set of given connections of the network (prior-
knowledge, called alpha in the following Figures). Indeed, as
defined in the introduction, many techniques are now available to
actually experimentally probe GRNs (eY1H, ChIP-Seq, TARGET,
DAP-seq…) that may be used to improve our GRN learning
capacities. The particularity of our approach was also, not to prove
that prior-knowledge was important (it as already been demon-
strated),24 but rather study the characteristics of this prior-
knowledge as well the characteristics of the transcriptomic data.
We develop this point in following sections. For each section we

evaluate the accuracy of SVM learning according to its capacity to
uncover connections and their directions (positive or negative
corresponding to positive or negative sign of the coefficient in the
network N). In this work, we only evaluate if a particular TF
controls a particular gene, which is so far what is needed in
biology. Mathematically, this corresponds to reconstructing the
support of the network N plus the direction of the edges and not
the coefficient value per se. This evaluation is made base on two
metrics: the % true positive, and the % of false positive (see for
example Fig. 4a). The first one corresponds to the percentage of
the correct non-null predicted edges. The second corresponds to
the percentage of non-null predicted edges that are actually equal
to 0. These two values are respectively expressed throughout the
manuscript as a surface reporting their relationship between the
number of experimental data points (understand simulated
transcriptomic experiment) and the prior knowledge needed
expressed in % of the network N (Fig. 4a). When discrete changes
are evaluated such as in Figs 5–10, an additional metric is
computed which corresponds to the volume under the surface
(VUS) which is conceptually close to the popular area under the
curve (basically, a two-dimensional extension).

Oscillatory phenomena at a whole network scale are predicted to
require a decrease in network sparsity and widespread influence of
TFs genome wide. Before starting with the machine learning
procedure, we first emphasize a discovery made when developing
FRANK itself. Indeed, Fig. 3a presents the relationship between the
coefficients of the network matrix (N) before and after Eigen value
correction that produces gene expression stability in an oscillatory
mode (Fig. 3b). It is stunning to observe that the overall correction
does not dramatically affect the coefficient values of N. Indeed, we
observed a very low dispersion around the diagonal. However, it
may be interesting to note that the correction leading to
oscillation is creating new connections of very low influences
that seem needed to maintain the stable oscillatory behavior.
Furthermore, these new connections of low influence can still be
distinguished from the pre-existing connections (before Eigenva-
lue correction). Mathematically, as evoked above, this means that
strictly speaking, the high degree of sparsity of the network N
seems to be incompatible with the generation of the oscillatory
gene expression at the whole genome level. Biologically, this
would mean that TFs involved in the oscillatory modules,

Gene regulatory network design and learning
C Carré et al.

6

npj Systems Biology and Applications (2017) 17 Published in partnership with the Systems Biology Institute

controlling large networks (up to 80% of the genome display
oscillations in plants for instance),9 should display a high degree of
connectivity but with potentially very low influence on many
genes. This prediction may find some echoes in the recent
experimental ChIP-seq investigations of the central regulatory TF
controlling circadian oscillations in plants, named CCA1. Indeed,
CCA1 ChIP-seq results demonstrated that this TF is bound to more
than 1000 genomic regions representing approximately 4–5% of
the genes in the genome.9 Our model may explain to some extent
such an important widespread influence of a key oscillator. This

may experimentally reveal mathematical constraints on overall
network structure to reach stable oscillations.

TA oriented prior knowledge is predicted to be superior to supervised
SVM machine learning procedures to learn GRNs. To begin with,
we asked whether (i) prior knowledge is likely to improve GRNs
learning and (ii) what kind of prior knowledge is the most
appropriate to supervise SVM. To do this, we simulated network
containing 100 TFs and 1000 TAs. For each network gene
expression was simulated following a “multistart” logic (fully
explained and studied below for its effect on learning). Surfaces

Fig. 4 TA-oriented prior knowledge is superior to TF-oriented prior in order to supervise SVM machine learning on simulated data. a Surfaces
exploring the SVM accuracy (% of True positive on left and % False positive in right) to predict the connections in a FRANK generated network
(100 TF, 1000 TA) using an increasing number of simulated gene expressions (nb experiment; y-axis) and an increasing fraction of the network
as prior knowledge (alpha; x-axis). Percentage of true positive and false positive are evaluated based on predictions of the presence of an edge
and its positive or negative influence. Simulated gene expression data kind: A1. b Schematic of the selection of data for supervision of
machine learning procedure (here SVM). In blue, columns are selected to serve as prior knowledge to supervise SVM. This may correspond to
experimental techniques using one TF that explore its exhaustive activity (binding via ChIP-Seq, or GR-fusion studies for instance). In red, rows
are selected to serve as prior knowledge to supervise SVM. This may correspond to experimental techniques using one particular target gene/
promoter that explores its exhaustive attractiveness (i.e., Y1H studies). Yellow and Green arrows are used to explain the process of machine
learning (see text)

Gene regulatory network design and learning
C Carré et al.

7

Published in partnership with the Systems Biology Institute npj Systems Biology and Applications (2017) 17

Fig. 4a are computed to report true positive and false positive as a
function of the number of experiments (ranging from 1000 to
10,000) needed and a fraction of the prior-knowledge on the
network (varying from 0.1 to 0.7).
What we observe here is that, as expected, the accuracy of

network learning increases with the number of data points
provided (Fig. 4a, Sup Fig. 2A, 2B). More interestingly, prior
knowledge has a strong effect on SVM learning capacity not only
by improving the percentage of true positive (left hand side) but
also by strongly decreasing the level of false positive. This
observation opens very important perspectives when it comes to
solving real GRNs using experimental data.
Furthermore, we observe that the prior knowledge quality also

strongly influence the learning capacity of SVM (compare the two
top surfaces to the two bottom one Fig. 4a). Indeed, two kinds of
prior knowledge can exist (see Introduction). The first one is TF
oriented, where a TF is used to probe its overall genomic activity
or binding (ChIP-Seq, TARGET or DAP-seq). Herein, we will refer to
this as TF oriented or prior knowledge on columns (because it
uncovers a column in the Network N, Fig. 4b). The second kind is
TA oriented, where one can find the TFs that bind or regulate a
particular promoter (eY1H screens for instance). We will refer here
to this as TA oriented or prior knowledge on rows (because it
uncovers a row in the Network N, Fig. 4b). Strikingly, we have
found that the TA oriented prior knowledge is largely superior to
the TF oriented prior knowledge when it comes to supervised SVM
learning (Fig. 4a). This was rather counterintuitive at the first look,
but can be easily explained as follows. In Fig. 4, we schematized
the learning process that we applied. We can see that the SVM
machine learning process is seeking for commonalities in the gene
regulation. If two genes display a strong correlation such as TFi
and TFn, or TAn and TF1 in Fig. 4b, the machine learning process
will look for the prior knowledge available for these particular
genes and apply this knowledge to infer the missing information
(N′) (follow yellow or green arrows in Fig. 4b). If this prior
knowledge is TF or column oriented a lot of missing information
will appear for a particular gene (Fig. 4b). Conversely, if the prior
knowledge is TA or row oriented, one can imagine that the prior
knowledge is quite complete to fill in the inferred network N′.
To our knowledge this observation was original and we wanted

to evaluate if this predicted influence of the prior-knowledge
structure was also evident when SVM are provided with real data
(real network and real transcriptome). To this end, we decided to
use one of the currently “best electronically encoded regulatory
network of any free-living organism”, E. coli K-12. We retrieved the
network from the database http://regulondb.ccg.unam.mx/, (Reg-
ulon v9.3) and several thousands of transcriptomic data points
(http://m3d.mssm.edu/norm/) as described in Fu et al. work.43 The
network was recoded to be compatible with our pipeline of
analysis. We built a N matrix with −1.0 + 1 influences. The
reformatted network contains 171 TF, 1493 TA, connected by
4195 regulatory edges (Fig. 5a). Following the same pipeline of
analysis as before on simulated data (Fig. 4 for example), we ran
SVM on real network and real transcriptomic data (Fig. 5b).
Despite the fact that here, we used the entire transcriptomic
dataset and that the provided network may still holds imperfec-
tions, we observed that TA-oriented prior knowledge is indeed
more useful than TF-oriented prior to train SVM (Fig. 5b). We
applied bootstrap techniques in order to evaluate the fact that %
of True positive are systematically higher than the % of False
positive in the case of TA-oriented prior knowledge, as reported
by VUS (Fig. 5c). This demonstrates that prior structure influences
SVM learning even on real datasets.
In conclusion, from simulation (Fig. 4) and from real network

and transcriptome data (Fig. 5), we believe that for the same
amount of data points the eY1H or similar TA oriented approaches
are likely more powerful to train machine learning than TF
oriented techniques. Of course, we believe that having more data

Fig. 5 TA-oriented prior knowledge is superior to TF-oriented prior
in order to supervise SVM machine learning on real data. a
Cytoscape display of the current E. coli network (version 9.3
retrieved from http://regulondb.ccg.unam.mx/) b Surfaces exploring
the SVM accuracy (% of true positive on left and % false positive in
right) to predict the connections in E. coli network (171 TF, 1493 TA)
using an increasing number of real gene expressions (nb experiment;
y-axis) and an increasing fraction of the network as prior knowledge
(alpha; x-axis). Percentage of true positive and false positive are
evaluated based on predictions of the presence of an edge and its
positive or negative influence. c Bootstrap results for ten learning
processes as the one described in b. For each bootstrap cycle 90% of
the network has been resampled and genes expression randomized.
The panel represents the boxplot of VUS for the ten learning
procedures

Gene regulatory network design and learning
C Carré et al.

8

npj Systems Biology and Applications (2017) 17 Published in partnership with the Systems Biology Institute

http://regulondb.ccg.unam.mx/
http://m3d.mssm.edu/norm/
http://regulondb.ccg.unam.mx/

points will always improve learning when this will be applied to
real datasets and that mixed (TA and TF-oriented) prior knowledge
will finally be used to decipher GRNs. But if one needs to invest in
having more data to supervise GRN machine learning, our results
show that it might be more helpful to carry out TA oriented
techniques.

The first steps in gene expression preceding stable regime contain the
information needed to learn GRNs. In this part, we also evaluated
the kind of gene expression that contains the more information to
best learn GRNs using prior knowledge. Indeed, FRANK uses an
iterative process to generate gene expression data (See part I,
Fig. 1). Here, this iterative process starts with the randomization of
the gene expression E0 at step 0. Then the model is applied once
to reach E1 (expression of the genome at step 1). Here, we can
distinguish between two ways of simulating genome expression.
The first one is named “multistart” (close to Monte Carlo in

spirit), where the above process is repeated n times by sorting out
a new E0 each time.
The second one is named “dynamic”, where E1 is used to reach

E2 and so on and so forth up to En (this progression is the one
being displayed in Figs. 2c, d, 3b). These two concepts will be used
right below.
To understand what are the characteristics of the transcriptome

that may contain the most information for GRN learning, we
decided to build gene expression datasets containing values of
multistart process reaching the step En (Fig. 6). For instance for
n = 10 the experiments provided to the SVM learning are a
compilation of E10 genome expression for many different E0. What
has been observed here is that the smallest increments in gene
expression are the most useful to learn the network. Indeed,
Fig. 6a shows that the learning capacity of a supervised SVM is

clearly more efficient if one uses E1 instead of E10. This is clearly
exemplified by the VUS progression in response to increasing n
values presented Fig. 6b. Indeed, we recorded a very marked
decrease in the SVM capacity to learn the GRN from n = 1 to n = 10
that is manifest at the same time because of a decrease in the true
positive as well as an increase in the false positive (Fig. 6b). This
means that the most useful information in the transcriptomic
dataset for GRNs learning lies in the fast response following gene
expression perturbation. When the gene expression reaches its
steady state it would be very difficult to learn the underlying
GRNs. This is a pretty intuitive result but we believe that our
approach provides a clear measurement and simulation of such
phenomenon.
Starting from this above observation, we wanted to simulate

gene expression that may resemble more to the dynamics that are
provided by real transcriptomic datasets. In other words, it is quite
unusual to perturb cellular networks and harvest a particular time
point many times (such as in Fig. 6). Actually biologists usually
perform kinetics.44–47 This means that perturbation is applied once
and then samples are harvested across time. This is what we wanted
to explore next. Thus, in Fig. 6 we performed dynamics of different
sizes and measure what is the most useful to train supervised SVM.
Again we observe that dynamics can be used to solve the network
with a pretty good accuracy (Fig. 6) in particular with shorter
dynamics (Fig. 6b). Interestingly, when a dynamic including the first
16 iteration steps (corresponding to the stabilization regime in
Fig. 2c, d) is used, the supervised SVM still performs with a good
accuracy (Figs. 6a and b). This result (i) opens very interesting
perspectives concerning the applicability of this supervised learning
on real datasets (ii) provides a good entry point to the relationship
between the mathematical iteration and the real life time scale (see
Discussion) and has been discussed and studied by others.44–47

Fig. 6 Small increment in gene expression are more powerful to properly learn the network with SVM and prior knowledge than steady
states. a Surfaces exploring the SVM accuracy (% of true positive on left and % false positive in right) to predict the connections in a FRANK
generated network (100 TF, 1000 TA) using an increasing number of simulated gene expressions (nb experiment; y-axis) and an increasing
fraction of the network as prior knowledge (alpha [rows are used as prior knowledge]; x-axis). Percentage of true positive and false positive are
evaluated based on predictions of the presence of an edge and its positive or negative influence. b Progression of the volume under the
surface (as in a) computed for a progression in (A + I)n for the % of true positive (red) and the % of False positive (blue) predicted connections
in the network. Simulated gene expression data kind: multistart (A1, …, A100); prior knowledge data kind rows

Gene regulatory network design and learning
C Carré et al.

9

Published in partnership with the Systems Biology Institute npj Systems Biology and Applications (2017) 17

TF/TA ratio matters in supervised GRN learning. The network
named N is virtually built of two sub networks named A and B
(Fig. 1). A contains all the TF to TF relationships, whereas B
contains all the TF to TA relationships. Thus, one of our
preconceptions of the system at the beginning of this study was
that A is likely to process the information when B is only receiving
information from A (Fig. 1). Thus, according to this, in a first
instance, one could imagine that solving or learning A would be
enough to understand the whole network N. We actually found
that, when the supervised learning is applied this idea is actually
wrong.
To evaluate the role of TA genes in the machine learning

process, we decided to generate several FRANK networks having
variable TF/TA ratios by (i) keeping the number of TF constant
(100) and increasing the number of TA (Fig. 7a), (ii) keeping the
number of genes constant (1100) and varying the TF and TA
number (Fig. 7b). In both cases, we observed that by increasing
the TF/TA ratio the GRN learning efficiency decreases (Figs. 7a, b).
Very strikingly, we even reached a very peculiar point where the
learning is nearly perfect (Fig. 7c) with a network having 25 TF and
1075 TA. It is perfect in a sense where with a relative low number
of experiments (~2000) and a relatively low level of prior
knowledge (0.3), SVM reach nearly 80% of true positive and
produce no false positive connections. We are perfectly aware that
this situation is far from being what is found in real networks.
However, we believe that this peculiar point is very informative
concerning the potential of supervised SVM learning when
applied to sub-networks. Furthermore, this demonstrates that TA
information is very important to reconstruct the whole network.
The explanation likely lies into what we have developed above
concerning TA-oriented prior-knowledge (Fig. 4b).

Supervised machine learning algorithms are predicted to be robust to
prior-knowledge errors. In the previous parts of this work, we
established that prior-knowledge, in particular TA-oriented one,
are key to supervised SVM and may radically help to reconstruct
GRNs in a near future. Nevertheless, in the previous simulations, all
the prior knowledge that we used to supervise the learning
processes contained 100% of true connections. However, in wet
lab experimental conditions, it is quite known that the results of
ChIP-seq, Y1H, or DAP-seq are likely to contain false positive or
false negative results. We thus, wanted to test how resilient
(robust) might be the supervised learning if errors where
introduced in the prior-knowledge. To do so, we simulated three
types of errors (Fig. 8). Type I errors create a certain number of
false connections in the prior knowledge, having positive or
negative influences. Type II errors remove a certain percentage of
the actual connections in the prior knowledge. Type III errors
change the directions of a certain percentage of the connections
in the prior-knowledge. We thus tested the capacity of SVM to
learn the actual network even though the prior knowledge was
changed and noisy. Very interestingly, we observed that
supervised SVM are resilient to any kind of error up to 10%.
Furthermore, we observed that supervised SVM are particularly
resilient to type I errors as compared to type II and type III (Fig. 8a).
This can be first explained by the sparsity of the network. Indeed,
biological networks seem dense (Fig. 2a) but their actual
connections represent a very little portion of all the possible
connections between the nodes. Hence, the network (N) is
mathematically sparse (have a lot of 0). Thus, when we provide
20% or error for instance, it still represents a small proportion of
the real connections. Furthermore, because the errors that we
make are sampled randomly the probability for having the same

Fig. 7 Early short dynamics in gene expression are more useful to properly learn the network than longer ones. a Surfaces exploring the SVM
accuracy (% of true positive on left and % false positive in right) to predict the connections in a FRANK generated network (100 TF, 1000 TA)
using an increasing number of simulated gene expressions (nb experiment; y-axis) and an increasing fraction of the network as prior
knowledge (alpha [rows are used as prior knowledge]; x-axis). Percentage of true positive and false positive are evaluated based on predictions
of the presence of an edge and its positive or negative influence. b Progression of the volume under the surface (as in a) computed for a
progression in (A + I)n for the % of true positive (red) and the % of False positive (blue) predicted connections in the network. Simulated gene
expression data kind: dynamic (E1 to En); prior knowledge data kind rows

Gene regulatory network design and learning
C Carré et al.

10

npj Systems Biology and Applications (2017) 17 Published in partnership with the Systems Biology Institute

Fig. 8 Target genes (TA) are important for the accurate reconstruction of the network. a Progression of the volume under the surface
computed for a progression in the number of TA for FRANK generated networks having a constant number of 100 TF. b Progression of the
volume under the surface computed for a progression in the number of TA for FRANK generated networks having a constant number of
genes (TA + TF= 1100). Red, % of True positive and blue, the % of false positive predicted connections in the network. Transcriptomic data
kind: A1; prior knowledge data kind rows. c Example of surfaces exploring the SVM accuracy (% of true positive on left and % false positive in
right panels) to predict the connections in a FRANK generated network (25 TF, 1075 TA for the top 2 surfaces and 250 TF, 850 TA for the bottom
two surfaces) using an increasing number of simulated gene expressions (nb experiment; y axis) and an increasing fraction of the network as
prior knowledge (alpha [rows are used as prior knowledge]; x-axis). Percentage of true positive and false positive are evaluated based on
predictions of the presence of an edge and its positive or negative influence. The surfaces presented in c correspond to two particular points
in the b noted by asterisks

Gene regulatory network design and learning
C Carré et al.

11

Published in partnership with the Systems Biology Institute npj Systems Biology and Applications (2017) 17

error reproduced for two different genes is quite low. Thus, by the
same principle explained above (Fig. 4b), it is very likely that the
SVM is detecting the artificially introduced errors.

Network modularity does not impact learning capacities of
supervised SVMs. In the preceding parts of this work, we focused
on the learning of network modules having homogenous
properties (Fig. 2a). However, biological networks are expected
to be modular.48, 49 A module is by definition, a discrete entity
whose function is separable from other modules but likely
receiving signals from these latters. We thus first wanted to
implement FRANK simulation towards the production of modular
networks. We also wanted to evaluate the effect of modular
networks on the machine learning capacities of supervised SVMs.
To build a modular network we combined 2 FRANK stable
networks (one being plain stable and the other one being
oscillating) (Fig. 9a, b, see FRANK manual for details Sup. File 1).
The two modules are linked together by their hubs (most
connected TFs in each modules) following the general observation

of hierarchical networks.49 We were able to indeed connect two
network modules displaying two different intrinsic behaviors in
their gene expression though connected via some TFs (Fig. 10b).
We then evaluated the learning capacities of SVM on this modular
network. We found that network modularity does not impact
learning capacities of SVM (Fig. 10c). We further applied this logic
for an increasing number of modules (number of TF and TA being
constant). We again found that network modularity does not
impact learning capacities of SVM for a modularity being higher
than two (Fig. 10d). Indeed, we observed that learning on row-
oriented prior-knowledge performed as efficiently on non-
modular (Fig. 4a) as compared to modular networks (Fig. 10c). In
both cases (modular and non-modular) column-oriented prior-
knowledge dramatically decreased the learning capacities of SVM.
This demonstrates that modularity (i) does not change the
conclusions drawn concerning the structure of the prior-
knowledge and its influence on learning; (ii) may not be a
limitation to supervised learning procedures applied to real
datasets as results in Fig. 5 may confirm.

Fig. 9 SVM learning is resilient to prior knowledge containing mistakes of type I. a Three error types have been defined and proposed to SVM:
type I (simulates false positive data); type II (simulates false negative data); and type III (wrong-sign influences). Progression of the volume
under the surface computed for a progression of % of Type I–III errors fed as prior knowledge. b Surfaces exploring the SVM accuracy (% of
true positive on left and % false positive in right) to predict the connections in a FRANK generated network (100 TF, 1000 TA) using an
increasing number of simulated gene expressions (nb experiment; y-axis) and an increasing fraction of the network as prior knowledge
containing errors of three different types (alpha [rows are used as prior knowledge]; x-axis). True positive (red) and the % of false positive (blue)
predicted connections in the network. Percentage of true positive and false positive are evaluated based on predictions of the presence of an
edge and its positive or negative influence

Gene regulatory network design and learning
C Carré et al.

12

npj Systems Biology and Applications (2017) 17 Published in partnership with the Systems Biology Institute

DISCUSSION
In his famous essay published almost 40 years ago50 Francois
Jacob describes evolution as a tinkering rather than an engineer-
ing process. We embrace this vision. Thus GRNs that we are now
observing in nature are intrinsically the outcome of an iterative
try-and-selection/Darwinian process. However, reverse engineer-
ing procedures can also be of great interest to understand the
possibilities offered by nature to design biological objects. This is
in line with the famous Richard Feynman sentence: “What I cannot
create, I do not understand”. We believe that the creation of
FRANK shed some light on probable design principles of GRNs.
Indeed, herein we employed reverse engineering to delineate the
potential properties of big (containing thousands of genes and ten
of thousands connections) GRNs. Doing so we uncovered an
interesting feature concerning large network sparsity and stability.
Indeed, we have observed that to obtain a stable network
displaying oscillatory behaviors, we need to force at least two

Eigenvalues to be on the unit circle. This observation is not a
novelty in the mathematical field of dynamical systems, however
it is to our knowledge the first time that this concept is related to
large gene network modeling. This observation also point further
towards an important potential inverse relationship between
sparsity and oscillatory stability in gene expression (Fig. 3). This is a
prediction of our models and it needs to be experimentally
observed. This would mean that TFs are likely to have many subtle
influences on a large portion of the genome, and that influence is
important to maintain gene expression oscillatory stability. Some
experimental observations in nature are in accordance with this
fact (see above).9

Another important issue that rises from our studies is the
relationship between the iterative process that we modeled, and
the real time scale in cell biology. Indeed, when we observe
individual gene behavior during the stabilization phase of gene
expression (Figs. 2c, d) it resembles very much what we can

Fig. 10 Network modularity does not compromise SVM learning capacities. a Modular networks have been built by combining two network
modules harboring different stability behavior. The first one displays stable non-oscillating behavior (First |Eigen Value| = 1), the second one
stable and oscillating genes expression (five first |Eigen Value| = 1). The two modules are connected by their hubs. b Heatmap representations
of simulated gene expression from a network (100 TF, 1000 TA) composed of two modules of 50 TF and 500 TA each. Each module has
different stability behavior plain stable or oscillating. This heatmap exactly corresponds to the expression of the network depicted in (a). c
Surfaces exploring the SVM accuracy (% of true positive on left and % false positive in right) to predict the connections in a FRANK generated
network (100 TF, 1000 TA) using an increasing number of simulated gene expressions (nb experiment; y-axis) and an increasing fraction of the
network as prior knowledge (alpha; x-axis). Percentage of true positive and false positive are evaluated based on predictions of the presence
of an edge and its positive or negative influence. Simulated gene expression data kind: A1

Gene regulatory network design and learning
C Carré et al.

13

Published in partnership with the Systems Biology Institute npj Systems Biology and Applications (2017) 17

observe during transcriptomic analysis following treatments:
genes are regulated and sometimes display an overshoot which
then reaches a stable state. In nature this overshoot in gene
expression can be observed within ~20min with a stability phase
happening within a couple of hours.44 This can vary according to
the biological model, the perturbation of the network, and the
GRN studied. This means that E20 (Figs. 2c, d) is likely to
correspond to hours of treatment. Consequently we evaluate
the simulated step in our iteration process to be equivalent to
~5–6min of cell response (120 min/20 steps). But this constitute a
rough calibration that will deserve further work.
When it comes to study of our capacity to learn the GRN by

using supervised SVM, we wanted to draw some general
conclusions that we believe can help to design future machine
learning procedures on real datasets. We found that (i) short
dynamics are more powerful to teach machine learning algo-
rithms than longer ones (Figs. 6, 7), (ii) prior knowledge greatly
helps SVM to define real underlying GRNs even if it contains errors
(Figs. 1–10), (iii) prior knowledge is far more efficient when it
represents Target-oriented results (Figs. 4 and 5, such as Y1H for
instance), (iv) studying the whole network connectivity in
particular by studying a lot of passive genes (TA) is important
for the learning process (Fig. 8). From these observations, even if
the cell system is over-simplified in our model, we really believe
that by using this approach to teach the machines the actual true
connections in the network, we will be able to accurately
reconstruct GRNs in a near future.
We have also found that prior knowledge not only greatly

improves detection of true positive connections, but also strongly
decreases the percentage of false positive. Take Fig. 4a for
instance. For 35% of prior knowledge on rows the SVM algorithm
is able to reconstruct 40% of the rest of the network. This may
appear to be quite low. However, it is very important to note that,
after 35% of prior knowledge the algorithm produces nearly no
false positive (Fig. 4a right surface). Meaning that out of 40% of
network reconstruction mainly all the connections are true ones.
This would mean that one could use this newly discovered
connections as new prior knowledge to further train the SVM in a
next cycle of the learning process. This approach, termed boosting
in computer science,51 will certainly be an important aspect of
future GRN learning algorithms.
Concerning limitations, one needs to be aware that FRANK is an

over-simplified version of transcriptional GRNs. In particular the
coefficient in the network are fixed across iterations, which
otherwise could be related to the influence of post-transcriptional
and post-translational modifications. Furthermore, it is important
to note that even if the FRANK formalism uses a sort of discrete
linear system (Fig. 1), the TF to TA relationships; XTG = f(XTF) in part
I, are not linear but polynomial, which does not prevent the
relationship to be of sigmoidal form as often observed in nature.
Finally, we would like to bring the attention of the reader on

one aspect, which makes our approach reasonable. On one hand,
the FRANK formalism has helped to discover that TA-oriented
prior-knowledge is likely to be more informative to train SVM than
TF-oriented prior-knowledge (Fig. 4a). On the other hand, since (i)
this conclusion holds true for real network learning (Fig. 5) and
that (ii) the explanation of the phenomenon stems into the
inherent structure of FRANK system (Fig. 4b), we conclude that the
FRANK formalism bring us a bit further towards the reality of GRNs
in cells, despite its obvious limitations.

METHODS
The modeling and machine learning procedures (FRANK) are fully
described in the manual of the algorithm provided online (Sup File 1).
The model equations are fully described in the Result section Part I. The
learning procedures have been implemented on a DELL server using SVM
package (Kernlab) on R (https://www.r-project.org/).

Data availability
FRANK software can be used online via a web page (https://m2sb.org/ ?
page = FRANK) or scripts will be provided upon request to any of the
authors.

ACKNOWLEDGEMENTS
The authors wish to thank Dr. Sandrine Ruffel, Dr. Stéphane Mari and Dr. Milos
Tanurdzic for their feedback on the manuscript. This work has been supported by the
CNRS PEPS-BMI (SuperRegNet) and the Labex Numev to G.K. and A.M. that funded
C.C. post-doc.

AUTHOR CONTRIBUTIONS
G.K. and A.M. designed the project. C.C. developed FRANK, performed computer
simulations and machine learning. A.M., G.K. and C.C. contributed to the study design
during the course of the project. A.M., G.K., C.C. wrote the paper.

ADDITIONAL INFORMATION
Supplementary Information accompanies the paper on the npj Systems Biology and
Applications website (doi:10.1038/s41540-017-0019-y).

Competing interest: The authors declare that they have no competing financial
interests.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

REFERENCES
1. Bansal, M., Belcastro, V., Ambesi-Impiombato, A. & di Bernardo, D. How to infer

gene networks from expression profiles. Mol. Syst. Biol. 3, 78 (2007).
2. Maetschke, S. R., Madhamshettiwar, P. B., Davis, M. J. & Ragan, M. A. Supervised,

semi-supervised and unsupervised inference of gene regulatory networks. Brief.
Bioinform. 15, 195–211 (2014).

3. Marbach, D. et al. Revealing strengths and weaknesses of methods for gene
network inference. Proc. Natl Acad. Sci. USA 107, 6286–6291 (2010).

4. Markowetz, F. & Spang, R. Inferring cellular networksa review. BMC Bioinform. 8,
S5 (2007).

5. Walhout, A. J. What does biologically meaningful mean? A perspective on gene
regulatory network validation. Genome Biol. 12, 109 (2011).

6. Araya, C. L. et al. Regulatory analysis of the C. elegans genome with spatio-
temporal resolution. Nature 512, 400–405 (2014).

7. Consortium, E. P. An integrated encyclopedia of DNA elements in the human
genome. Nature 489, 57–74 (2012).

8. Harbison, C. T. et al. Transcriptional regulatory code of a eukaryotic genome.
Nature 431, 99–104 (2004).

9. Nagel, D. H. et al. Genome-wide identification of CCA1 targets uncovers an
expanded clock network in Arabidopsis. Proc. Natl. Acad. Sci. USA 112,
E4802–4810 (2015).

10. Sandmann, T. et al. A temporal map of transcription factor activity: mef2 directly
regulates target genes at all stages of muscle development. Dev. Cell 10, 797–807
(2006).

11. Whittle, C. M., Lazakovitch, E., Gronostajski, R. M. & Lieb, J. D. DNA-binding spe-
cificity and in vivo targets of Caenorhabditis elegans nuclear factor I. Proc. Natl
Acad. Sci. USA 106, 12049–12054 (2009).

12. O’Malley, R. C. et al. Cistrome and epicistrome features shape the regulatory DNA
landscape. Cell 165, 1280–1292 (2016).

13. Medici, A. et al. AtNIGT1/HRS1 integrates nitrate and phosphate signals at the
arabidopsis root tip. Nat. Commun. 6, 6274 (2015).

14. Para, A. et al. Hit-and-run transcriptional control by bZIP1 mediates rapid nutrient
signaling in Arabidopsis. Proc. Natl Acad. Sci. USA 111, 10371–10376 (2014).

15. Bargmann, B. O. et al. TARGET: a transient transformation system for genome-
wide transcription factor target discovery. Mol. Plant 6, (978–980 (2013).

16. Doidy, J. et al. “Hit-and-Run” transcription: de novo transcription initiated by a
transient bZIP1 “hit” persists after the “run”. BMC Genom. 17, 92 (2016).

17. Gaudinier, A. et al. Enhanced Y1H assays for arabidopsis. Nat Methods 8,
1053–1055 (2011).

18. Brady, S. M. et al. A stele-enriched gene regulatory network in the arabidopsis
root. Mol. Syst. Biol. 7, 459 (2011).

19. Deplancke, B. et al. A gene-centered C. elegans protein-DNA interaction network.
Cell 125, 1193–1205 (2006).

Gene regulatory network design and learning
C Carré et al.

14

npj Systems Biology and Applications (2017) 17 Published in partnership with the Systems Biology Institute

https://www.r-project.org/
https://m2sb.org/?page=FRANK
https://m2sb.org/?page=FRANK
http://dx.doi.org/10.1038/s41540-017-0019-y

20. Fuxman Bass, J. I. et al. Human gene-centered transcription factor networks for
enhancers and disease variants. Cell 161, 661–673 (2015).

21. Reece-Hoyes, J. S. et al. Enhanced yeast one-hybrid assays for high-throughput
gene-centered regulatory network mapping. Nat Methods 8, 1059–1064 (2011).

22. Taylor-Teeples, M. et al. An Arabidopsis gene regulatory network for secondary
cell wall synthesis. Nature 517, 571–575 (2015).

23. Gaudinier, A. & Brady, S. M. Mapping transcriptional networks in plants: data-
driven discovery of novel biological mechanisms. Annu. Rev. Plant Biol. 67,
575–594 (2016).

24. Cerulo, L., Elkan, C. & Ceccarelli, M. Learning gene regulatory networks from only
positive and unlabeled data. BMC Bioinform. 11, 228 (2010).

25. Marbach, D. et al. Predictive regulatory models in Drosophila melanogaster by
integrative inference of transcriptional networks. Genome Res. 22, 1334–1349
(2012).

26. Marbach, D. et al. Wisdom of crowds for robust gene network inference. Nat.
Methods 9, 796–804 (2012).

27. Stolovitzky, G., Monroe, D. & Califano, A. Dialogue on reverse-engineering
assessment and methods: the DREAM of high-throughput pathway inference.
Ann. N. Y. Acad. Sci. 1115, 1–22 (2007).

28. Di Camillo, B., Toffolo, G. & Cobelli, C. A gene network simulator to assess reverse
engineering algorithms. Ann. N. Y. Acad. Sci. 1158, 125–142 (2009).

29. Van den Bulcke, T. et al. SynTReN: a generator of synthetic gene expression data
for design and analysis of structure learning algorithms. BMC Bioinform. 7, 43
(2006).

30. Marbach, D., Schaffter, T., Mattiussi, C. & Floreano, D. Generating realistic in silico
gene networks for performance assessment of reverse engineering methods. J.
Comput. Biol. 16, 229–239 (2009).

31. Schaffter, T., Marbach, D. & Floreano, D. GeneNetWeaver: in silico benchmark
generation and performance profiling of network inference methods. Bioinfor-
matics 27, 2263–2270 (2011).

32. Teschl, G. Ordinary differential equations and dynamical systems. (American
Mathematical Society 2012).

33. Noor, A., Serpedin, E., Nounou, M., Nounou, H., Mohamed, N. & Chouchane, L. An
overview of the statistical methods used for inferring gene regulatory networks
and protein–protein interaction networks. Adv. Bioinform. 2013. doi:10.1155/
2013/953814 (2013).

34. Tibshirani, R. Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B.
58, 267–288 (1996).

35. James, G., Witten, D., Hastie, T. & Tibshirani, R. An introduction to statistical
learning. (Springer, 2013).

36. Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).
37. Holter, N. S., Maritan, A., Cieplak, M., Fedoroff, N. V. & Banavar, J. R. Dynamic

modeling of gene expression data. Proc. Natl Acad. Sci. USA 98, 1693–1698 (2001).
38. Bishop, C. Pattern recognition and machine learning. Information science and

statistics, Springer, New York, 2006.
39. Vapnik, V. N. & Vapnik, V. Statistical learning theory. (Wiley, 1998).

40. Scholkopf, B. & Smola, A. J. Learning with kernels: support vector machines, reg-
ularization, optimization, and beyond. (MIT Press, 2001).

41. Caputo, B., Sim, K., Furesjo, F. & Smola, A. Appearance-based object recognition
using SVMs: which kernel should I use? In Proceedings of NIPS workshop on
statistical methods for computational experiments in visual processing and com-
puter vision, Whistler, 2002.

42. Duan, K.-B. & Keerthi S. S. Which is the best multiclass SVM method? An
empirical study. In International workshop on multiple classifier systems, (Springer,
2005).

43. Fu, Y., Jarboe, L. R. & Dickerson, J. A. Reconstructing genome-wide regulatory
network of E. coli using transcriptome data and predicted transcription factor
activities. BMC Bioinform. 12, 233 (2011).

44. Krouk, G., Mirowski, P., LeCun, Y., Shasha, D. E. & Coruzzi, G. M. Predictive network
modeling of the high-resolution dynamic plant transcriptome in response to
nitrate. Genome Biol. 11, R123 (2010).

45. Hecker, M., Lambeck, S., Toepfer, S., Van Someren, E. & Guthke, R. Gene regulatory
network inference: data integration in dynamic models—a review. Bio Syst. 96,
86–103 (2009).

46. Hillenbrand, P., Maier, K. C., Cramer, P. & Gerland, U. Inference of gene regulation
functions from dynamic transcriptome data. eLife 5, e12188 (2016).

47. Stefan, D., Pinel, C., Pinhal, S., Cinquemani, E., Geiselmann, J. & de Jong, H.
Inference of quantitative models of bacterial promoters from time-series reporter
gene data. PLoS Comput. Biol. 11, e1004028 (2015).

48. Hartwell, L. H., Hopfield, J. J., Leibler, S. & Murray, A. W. From molecular to
modular cell biology. Nature 402, C47–52 (1999).

49. Ravasz, E., Somera, A. L., Mongru, D. A., Oltvai, Z. N. & Barabasi, A. L. Hierarchical
organization of modularity in metabolic networks. Science 297, 1551–1555
(2002).

50. Jacob, F. Evolution and tinkering. Science 196, 1161–1166 (1977).
51. Breiman, L. Arcing classifier (with discussion and a rejoinder by the author). Ann.

Stat. 26, 801–849 (1998).

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in anymedium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this license, visit http://creativecommons.
org/licenses/by/4.0/.

© The Author(s) 2017

Gene regulatory network design and learning
C Carré et al.

15

Published in partnership with the Systems Biology Institute npj Systems Biology and Applications (2017) 17

http://dx.doi.org/10.1155/2013/953814
http://dx.doi.org/10.1155/2013/953814
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Reverse engineering highlights potential principles of large gene regulatory network design and learning
	Introduction
	Results
	Part I: Mathematical and computational simulation
	Preview of FRANK: a large network simulator
	Network and dynamical model
	Main features and calibration
	Learning versus inference
	Four benchmarks methods for gene network inference and learning: reasons for selecting SVM
	Learning on FRANK generated data
	A trick for data selection

	Part II: Biological insights using FRANK and SVM
	Benchmarking the role and the characteristics of prior knowledge and transcriptomic data to improve supervised machine learning of GRNs
	Oscillatory phenomena at a whole network scale are predicted to require a decrease in network sparsity and widespread influence of TFs genome wide
	TA oriented prior knowledge is predicted to be superior to supervised SVM machine learning procedures to learn GRNs
	The first steps in gene expression preceding stable regime contain the information needed to learn GRNs
	TF/TA ratio matters in supervised GRN learning
	Supervised machine learning algorithms are predicted to be robust to prior-knowledge errors
	Network modularity does not impact learning capacities of supervised SVMs

	Discussion
	Methods
	Data availability

	Acknowledgements
	Author contributions
	Competing interest
	ACKNOWLEDGMENTS

