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Introduction 

 
Water  quality  models generally require  large quanti- 

ties of different  types of data:  meteorological  variables 

(rainfall,  air temperature, . . .) for the forcing processes, 

spatial    data    (altitude,    soil,   land   use, . . .)   for   the 

description   of  the  basin  and  human   activities  (waste 

water, agriculture  water use, fertilizing calendar, . . .). All 

these data are subject to uncertainties that can have 

significant effects on the model results. Thus evaluation 

of confidence  in the model  predictions  should  be a re- 

quired  step for modellers (Beven and Freer,  2001; Bev- 

en, 2002). The  uncertainties  on  physical  data  (such as 

rainfall)   are  commonly   analysed   (see  among   others 
 

Bertoni,  2001). For  spatial  data  such as land use maps, 

difficulties  arise  because  the  uncertainties  are  closely 

linked  to the sophisticated  methods  used for obtaining 

the data. 

Different sources of information are valuable for land 

use characterisation: field observations, aerial photo- 

graphs  or  remotely  sensed data.  Only remotely  sensed 

data   allow  land  use  classification   with  automatic or 

semi-automatic routines  on large areas  (Schultz, 1993), 

which is why it is now the main source for land use data. 

The  quality  of  land  use  maps  depends  on  numerous 

factors including the quantity  of available scenes and the 

dates  at  which they were taken,  the relief of the study 

area and the character of its landscape, the sensor 

characteristics,  the   classification   techniques   and,   of 

course, the choice of the land use categories. 

Thus to obtain  an accurate  classification of a scene is 

a complex process. Land  use maps resulting from scene



 
 
 

interpretation are subject to positional or categorical 

uncertainties  (Girard  and Girard, 1999). The positional 

uncertainties  are due to the difficulties in detecting  the 

boundaries of the  object  (Goodchild, 1993). The  cate- 

gorical uncertainties  correspond to the errors in the land 

use  type  associated  with  a  pixel  (Girard   and  Girard, 

1999). These positional  and categorical  uncertainties in 

land  use data  have  significant  effects on  the  results  of 

hydrological  (Bertoni,  2001) and  water  quality  models 

(Eckhardt et al., 2003). 

Model  confidence can be evaluated  in two steps: the 

first step, called sensitivity  analysis,  analyses  the sensi- 

tivity of the model responses  to variations  in the input 

data; the second step, called uncertainty analysis, studies 

the propagation of the uncertainties  in the input data on 

the response  of the model. These two methods  are dif- 

ferent in terms of concepts but use similar tools (Chang 

et al., 1993). 

In this paper,  we develop a methodology to test the 

confidence  of a  water  quality  model  to  land  use data 

uncertainties. The analysis is focused on categorical  er- 

rors for agricultural land use categories and both a 

sensitivity  analysis  and  an  uncertainty analysis  are ap- 

plied successively. The test is conducted  with the water 

quality  model POL on the Pallas river (France). 
 

 
2. Methodology 

 
2.1. Land use data specificities 

 
In land use maps, three general categories of land use 

are  distinguished:  urban   area,  natural area  and  agri- 

cultural  area.  Since farming  lands  are the most  impor- 

tant    in   water    quality    modelling    (particularly    for 

nitrogen or phosphorus modelling) we chose to focus on 

the categorical  uncertainties  on  agricultural zones. We 

studied  four  types of farming:  vineyard,  orchard,  mar- 

ket  gardening  and  cereal.  We characterised  the  uncer- 

tainties  using confusion  matrices  based  on  the process 

of  generating  the  land  use  map  from  remote  sensing 

images. 

The confusion  matrix gives the number  of pixels that 

are  well-  or  misclassified,  comparing   the  interpreted 

image to a reference field data set (Campbell, 1996). The 

confusion matrix elements can be written using absolute 

or relative (standardised) values, by dividing the element 

In this work, we use confusion matrices, standardised 

by the reference data  set categories,  that  allow categor- 

ical errors  due to the classification  to be represented  in 

applying  the POL model. 

 
2.2. Model description 

 
The  water  quality  model  POL  generates  the  catch- 

ment  response  to  a  rainfall   event  in  terms  of  total 

nitrogen  (TN)  fluxes. The confidence  of the model will 

be studied  on the TN load at the catchment  outlet  and 

on the duration of the pollution  event (Fig. 1). 

The model is based  on a semi-distributed approach, 

so that  the spatial variability  of human  activities can be 

taken  into  account.  DEM  data,  a land  use map,  infor- 

mation  on agricultural practices,  specification  of nitro- 

gen point  sources  and  rainfall  data  are  required.  The 

catchment  is delineated  into  hydrological  units  (Rodri- 

guez-Iturbe   and   Gupta,   1983)––sub-catchments and 

river reaches––for  which geomorphological characteris- 

tics  (area,  slopes,  length)  and  land  use  properties  are 

defined (Payraudeau et al., 2001). Nitrogen  point  sour- 

ces (such as sewage treatment plants)  are defined as di- 

rect inputs  in the river. 

Two  processes  are  considered  in the  model:  (i) the 

production of TN  loads  by the sub-catchments during 

the rainfall event and (ii) the transport of these TN loads 

along  the  river  reaches.  Two  simplifying  assumptions 

are  made   in  representing   the  complex  processes  of 

nitrogen  delivery to the catchment  outlet: (i) the rainfall 

triggers the TN mobilisation on the surface of the sub- 

catchments;   (ii) TN  loads  are  conservative  along  the 

river reaches during  the event. 

The  production of TN  on  a given sub-catchment is 

represented  by a simple linear  reservoir.  At the begin- 

ning of the rainfall event, the reservoir content  is a 

proportion (/) of the initial nitrogen  stock NBV on the 

whole  catchment.   The  proportion  / is  the  ratio   of 

agricultural areas on the sub-catchment to those on the 

catchment.  NBV is the first parameter of the model. To 

reduce  the  number  of parameters to  be estimated,  the 
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of this column  (or row). Written  in standardised form, 

the  confusion  matrix  for  a  perfect  classification  is  a 

diagonal  matrix  with  100% for  each  diagonal  element 

and  0% for the other  elements. If we can consider  that 

there is no influence due to the sampling of the field data 

set, the confusion  matrix  is perfectly known.  Then, it is 

possible to estimate, on the whole basin, the true area of 

each land use category  using the confusion  matrix. 
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Fig.  1. TN flux variables definition. 
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Fig.  2. Formalisation of TN production on the a sub-catchment. 
 

lag-time of the reservoir is assumed to be the same for all 

the  sub-catchments. It  is related  to  the  rainfall  event, 

through  a filter function  for which a coefficient F is the 

second parameter of the model (Fig. 2). 

The  transport of  TN  fluxes  along  a  river  reach  is 

represented  by a series of linear reservoirs. The number 

of reservoirs depends on the length of the reach, and it is 

assumed  that  one elementary  reservoir  is needed  for a 

900-m long  reach.  The  lag-time  T  of the  reservoirs  is 

assumed to be the same for all the reaches. It is the third 

parameter of the model (Fig. 3). 

The  variability   of  the  three   parameters  has  been 

studied for various rainfall events on different small 

catchments  in the South  of France  (Payraudeau, 2002). 

It has been shown that  (i) the filter coefficient F can be 

set at a common  value to all catchments  and events; (ii) 

the  river  lag-time  T  can  be statistically  related  to  the 

duration  of  the  rainfall   event  and  the  total   rainfall 

amount  in the 30 days before  the event; (iii) the initial 

stock NBV can be related  to the farming  types and the 
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agricultural  practices,  by  linear  relationships that  are 

also assumed to be the same throughout the catchment. 

The initial stock NBV is a simple function  of the mean 

of the  daily  nitrogen  fertilizer  inputs  for  each  type  of 

farming, weighted by their respective areas on the whole 

catchment.  A fuzzy approach was used to distribute  the 

annual  fertilizer inputs  on a daily basis during  the fer- 

tilizing period,  as shown in Fig. 4. These estimations  of 

the POL  model  parameters provide  acceptable  simula- 

tions  of nitrogen  loads  (Payraudeau, 2002) and  can be 

used for the sensitivity analysis and the uncertainty 

analysis. 

 
2.3. Evaluation of the model confidence 

 
Different statistical methods (correlation analysis, 

sensitivity indices, Monte-Carlo based method  as Gen- 

eralised   Likelihood   Uncertainty  Estimation  method) 

can be used to study the model behaviour  under the 

influence  of  model   input   errors   (see  among   others, 

Helton,  1993; Yulianty  et al., 1999; Beven, 2001; . . .). 

In  this  paper,  the  model  confidence  is evaluated  by 

comparisons between model responses during rainfall 

events in terms of event load and duration at the basin 

outlet  for simulated  or true land use maps. The criteria 

of the sensitivity analysis are chosen as ratios:  load/ref-

upstream reach 
 

nitrogen input 

upper catchment 
 
nitrogen input 

erence load and duration/reference duration. The refer- 
ence values  are  the  model  responses  for  the  available 

land use map.

 
T 

 
nitrogen output 

 
downstream reach 

 

 
Fig.  3. Formalisation of TN transport in a river reach. 

2.3.1. Sensitivity analysis 

To test the sensitivity of the model response  to land 

use means to identify if this input is important or not in 

the modelling. 

Some recent papers present analysis of sensitivities of 

land  use data  on water  quality  models. Eckhardt et al. 

(2003) studied  step  by step  the  evolution  of SWAT-G 

model  responses  to  uniform   land  use  on  the  whole
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Fig.  4. NBV determination. 

 
 

catchment  and to some other  radical changes. Crosetto 

et al. (2000) defined  sensitivity  indices based  on  many 

simulations  of  landscape.  We  choose  to  compare  the 

model  responses  according  different  simulations  based 

on four  uniform  land  use data  sets (one for each agri- 

cultural   category),  in  a  similar  way  to  the  study  of 

Eckhardt et al. (2003). 

 
2.3.2. Uncertainty  analysis 

From  the point  of view of a modeller,  land use map 

uncertainties  are related to the resolution,  the choice of 

the categories, the sampling of the reference data  set or 

to the interpretation bias. The effects of resolution  and 

choice  of  categories  on  hydrological   models  have  al- 

ready  been  analysed  (Payraudeau et  al.,  2003; Cotter 

et al., 2003; . . .). The errors  due to the image interpre- 

tation  or to  the sampling  of the reference data  set are 

dealt  with  by  remote  sensing  specialists  (Lewis et  al., 

2000; Hubert-Moy et al., 2001; Girard  and Girard, 1999; 

. . .) with the aim of proposing  some methods  to reduce 

the categorical  uncertainties. 

Here,  we generate  multiple  realisations  of the catch- 

ment land use map. These realisations  are not built pixel 

by pixel, considering  some land  use attributes, but  are 

obtained   using  generated   proportions  of  agricultural 

land use on the catchment  by random  sampling in a way 

consistent with the confusion matrix. This method is 

compatible  with the assimilation  of land use data  in the 

POL  model.  The distribution of the responses  of POL 

model  corresponding to  the  different  land  use maps  is 

then studied  relative to the reference response. 
 

 
3. Results 

 
3.1. The application site 

 
The  Pallas  river,  located  in  the  South  of  France, 

drains  an  area  of  52 km2 . It  is a  rural  basin,  with  a 

sparse population and no significant  industrial  activity. 

The available  land  use data  take  into  account  seven 

categories:  natural, urban  and  mining  areas  plus  four 

agricultural classes. As a recent study indicated  no sig- 

nificant  change  of urban  and  natural areas  (AME-Di- 

ren,  2000), CORINE land  cover data  (I.F.E.N., 1988) 

are used to classify the non-agricultural areas. The 

agricultural land  use map  results  from  the  supervised 

classification  of a multispectral  image obtained  on May 

30th 1996 by the SPOT 3 sensor,  with a spatial  resolu- 

tion  of  20 m · 20 m  (Sagot,  1999). Agricultural areas 

cover 52% of the whole basin. The disused mining area 

(2 km2 ) is of no importance  for the nitrogen  dynamics 

that  are studied  here. This remote  sensing classification 

is considered as the reference land use map (Fig. 5). The 

confusion  matrix  (Table 1) has been built according  to 

field data collected in 1996 (Sagot, 1999). The confusion 

matrix   shows  that   only  two-thirds   of  the  pixels  are 

correctly  classified in the land use map.  The main con- 

fusion  is the misclassification  of vineyard,  market  gar- 

dening  and  cereal areas;  for example,  respectively 20% 

and 12% of the real surface of the vineyard are classified 

into market  gardening  and cereal on the map.  Agricul- 

tural  practice data  were collected by surveys (Table 2). 

The POL model was run with the values of the three 

parameters  as  described   previously   on  three  rainfall 

events, with the reference  land  use map.  The reference 

results  are  summarised  in the  Table  3. The  estimated 

values  of the  daily  amount  of fertilizer  for  each  culti- 

vation  type  and  for  each event  are  presented  Table  4, 

they allow the calculation  of the initial stock NBV. 

 
3.2. Sensitivity analysis 

 
The sensitivities of the model results to uniform  land 

use are shown in Fig. 6 for the nitrogen  load and in Fig. 

7 for the event duration. The nitrogen  load is very sen- 

sitive to  changes  in the  uniform  land  use whereas  the 

event duration sensitivity to uniform  land use is lower. 

Uniform land use affects only the nitrogen production 

in the subcatchments but  does not  change the nitrogen
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Fig.  5. Pallas basin: land use map obtained  from CORINE land cover and a SPOT image classification  (Sagot, 1999). 

 
 

 
Table  1 

Standardised confusion  matrix  corresponding to the agricultural classification  (Sagot, 1999) 
 

 Field data  
 

 
Interpreted data 

Categories 

Vineyard 

Vineyard Market  gardening 

32 

Orchard 

17 

Cereal 

22 

 
 
 

100%                                 100%                                 100%                               100%   

 
 
 
 
 

Table  2 

Agricultural practices: fertilisation  inputs and calendar  (Chambre  d’Agriculture,  2000) 
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Nitrogen 
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Market gardening 
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Table  3 

Reference results of the model output variables and of the initial stock NBV for the three studied rainfall events 
 

 Date Rainfall  (mm) Total  nitrogen  load (kg) Event duration (h) NBV (kg/ha) 

Event 1 19/10/1994 119 8146 95 13 
Event 2 13/03/1996 55.6 3372 92 28.3 

Event 3 22/04/1996 6.8 28 13 4.7 



 
 
 
 

Table  4 

Reference values of the daily amount  of fertilizer for each cultivation  type and for each event 

Date                                  Cereal                              Daily amount  of fertilizer (kg/ha) for 

Market  gardening           Vineyard                           Orchard 
 

Event 1 19/10/1994 0 43.1 2.5 11.3 
Event 2 13/03/1996 104.9 28.8 15.1 32.3 

Events 3 22/04/1996 24 11.2 0 0 

 
 
 
 

 
 

Fig.  6. Nitrogen  load for uniform  land use. 
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Fig.  7. Event duration for uniform  land use. 

 

transport in the river. That  may explain the weak sen- 

sitivity of event duration to uniform  land use. 

Focusing  on  nitrogen  load  (Fig.  6), we notice  two 

variations: between the cultivation types and between 

events. These variations  are explained  by the variation 

of NBV. 

Thus  for  Event  1, there  is no  nitrogen  fertilisation 

input  during  this  period  on  the  cereal  areas  (Table  4) 

and the simplistic method retained to estimate NBV 

assumes  that  all the inputs  are used by the cultivation 

type, or leached during  the fertilizing period.  Therefore 

NBV and  the model outputs  are null for this land  use 

scenario.  The  other  scenarios  lead  to  various  nitrogen 

loads  between 19% for vineyard  and  256% for market 

gardening,  relative to the reference load. 

For  Event  2, the maximal  nitrogen  load  is obtained 

with the cereal scenario  corresponding to  368% of the 

reference load.  The minimal  nitrogen  load corresponds 

to the vineyard scenario with 54% of the reference load. 

The nitrogen  load  values for market  gardening  (102%)



 
 
 

and orchard  (114%) scenarios are close to the reference 

nitrogen  load value. 

For  Event  3, the  maximal  nitrogen  load  values  are 

obtained    for   cereal   (462%)  and   market   gardening 

(223%) scenarios. There are no fertilisation  input on the 

vineyards and orchards;.  consequently  the nitrogen  load 

is null for these two scenarios. 

 
3.3. Uncertainty  analysis 

 
Two hundred realisations of the land use map are 

generated  to  analyse  the  effects of  categorical  uncer- 

tainties  in land  use. A summary  of the descriptive  sta- 

tistics of the simulated  proportions of agricultural land 

use  on  the  catchment   and  the  proportions stemming 

from the reference land use map are supplied Table 5. It 

shows some trends:  small difference of the orchard  sur- 

faces, overestimation of the cereal and market gardening 

areas, and underestimation of the vineyard surfaces. For 

the rest of the analysis, we prefer to use the misclassifi- 

cation  of each  land  use category  (expressed  as a pro- 

portion  of the agricultural surface) by the difference of a 

simulated land use proportion to the corresponding 

reference  proportion.  These  misclassifications   can  be 

positive or negative, and their sum is obviously equal to 

0. We propose a misclassified surface index (MSI) as the 

sum  of the  positive  differences. For  the  realisation  set 

presented in this paper, MSI is bounded  by 1% and 10%, 

which means that  from 1% to 10% of the total  agricul- 

tural  area are misclassified. 

Fig.  8 shows  the  frequency  distribution of nitrogen 

loads in comparison with the reference nitrogen load for 

the three  events. The results for the event duration are 

not  shown  but,  as in the sensitivity analysis,  the event 

duration is not  very sensitive to the land use variation: 

the  maximal  difference  is  less  than  4%  for  the  three 

events.  The  low impact  of categorical  land  use uncer- 

tainty on the event duration is a result of the POL model 

structure.   Note   the  generated   nitrogen   load   ranges: 

[85%, 125%] for Event 1, [95%, 120%] for Event 2, [95%, 

135%] for Event  3 (Fig.  8). Thus,  the frequency  distri- 

bution  of nitrogen  load  is more  scattered  than  the fre- 

quency distribution of MSI. Nevertheless, regression 

analysis between load and MSI shows that  respectively 

for Events 1, 2 and 3, 49%, 46%, 75% of the variance of 

the  estimated  nitrogen  load  can  be explained  by MSI. 

To  go  further,   we quantify  the  influence  of  the  mis- 

classification of each land use category on the load by a

 

 
 

Table  5 

Summary of the descriptive statistics of the proportions of 200 simulated agricultural land use on the catchment  and the proportions stemming from 

the reference land use map 

Cereal                                       Proportions of agricultural surface (%) 

Market  gardening                    Vineyard                                   Orchard 
 

Mean 11 26 52.8 10.3 
Standard deviation 1.2 2.2 2.5 0.5 

Minimum 8.4 20.6 45.7 9.2 

Maximum 13.5 312 59.9 11.3 

Reference map 8.8 23.9 55.5 11.8 

 

 
 
 
 

 
 

Fig.  8. Distribution of frequency of nitrogen  load for 200 different agricultural area maps.



 
 
 

descending stepwise regression analysis. For Event 1, the 

errors on market  gardening classification explain almost 

all  the  variance  of  the  load  (coefficient  of  determina- 

tion ¼ 0.9963 for a risk of first order of 5%). For Events 

2 and 3, the errors  on cereal and market  gardening  are 

significant  in explaining  the variance  of the load  (coef- 

ficient determination ¼ 0.9948 and  0.9998). These good 

results  can  be explained  by (i) the  combination of the 

misclassification  effect and  of the important differences 

in fertilizer inputs for the different land uses and (ii) the 

structure  of the production function  in the model. 
 

 
4. Conclusion 

 
The confidence of an event-based water quality model 

to land use data  uncertainties  has been studied focusing 

on categorical uncertainties. The agricultural areas affect 

directly the initial nitrogen  stock value according  to the 

agricultural practices:  cultivation  type,  fertiliser  inputs 

and  cultural   calendar.   In  this  current   version  of  the 

model  that   constitutes   a  first  step  of  modelling,  the 

nitrogen  stock  is calculated  for  the  whole  catchment 

based  on  the  proportion of different  cultivation  types. 

Thus, the uncertainty in the land use classification only 

affects the production function of nitrogen  load and not 

the transport function.  Note also that this simple model 

structure  assumes homogeneity  in runoff generation  and 

in N mobilisation. 

The sensitivity  analysis  and  the uncertainty analysis 

have  shown  that  the  nitrogen  load  is significantly  af- 

fected by the  land  use data.  A method  to  analyse  the 

categorical  land use uncertainty by using the classifica- 

tion  confusion  matrix  information has  been proposed. 

For  this first step we have limited the sampling  to 200 

realisations and studied three events. First purely 

methodological improvements  should  be (i) to  analyse 

the uncertainty on a bigger sample and  all the rainfall 

events of a year, to take account  better  the diversity of 

events  and  antecedent  conditions;  (ii) to  consider  not 

only  misclassification  errors   but  all  the  uncertainties 

who affect land  use data  (reference data  sampling,  res- 

olution,  choice of the categories).  The categorical  land 

use uncertainty results  in significant  uncertainty in the 

predicted  nitrogen  loads. This impact  could be reduced 

or increased in different events as a function  of the fer- 

tilisation  calendar.  A second improvement should  be a 

modification   of  the  simplistic  method  to  determinate 

NBV taking account the accumulation of nitrogen in the 

soil during  the  cultural  cycle. The  effects of positional 

land  use  uncertainty  could  not  be  studied  using  this 

semi-distributed  model  in  which  the  initial  nitrogen 

stock is determined  for the whole catchment.  So, a third 

possible  improvement will be to  improve  the  determi- 

nation  of the  local  initial  nitrogen  stock  with  a better 

knowledge of agricultural practices, and/or  of the spatial 

distribution. Finally,  to continue  the model  confidence 

evaluation,  the effects of the other  input  variables  have 

to be analysed. The impact of rainfall data uncertainty is 

usually  very significant  on  hydrological  model  predic- 

tions  (Nandakumar and  Mein,  1997). The current  ver- 

sion  of  the  POL  model  is  based  on  a  homogeneous 

rainfall and runoff generation  for the whole catchment. 

In the next version of the model,  the production func- 

tion  will be parameterised on each subcatchment. This 

model  evolution  will require  the  spatial  variability  of 

rain to be taken  into account  using distributed rain-ra- 

dar images. The ultimate  aim should  be the determina- 

tion of the respective part of each input data uncertainty 

on the model output uncertainties. 
 
 
 
References 

 
AME-Diren, 2000. Carte  de l’occupation  du sol des bassins versants 

des zones humides du littoral  du Languedoc-Roussillon, 1/50 000. 

Available from <www.geozoum.org>. 

Bertoni, J.C., 2001. Etude hydrologique et analyse des incertitudes  sur 

trois   bassins   versants   semi   urbanis es   de   la   r egion   centrale 

d’Argentine.  PhD,  Universit e Montpellier  II, Montpellier,  p. 305. 

Beven,  K.J.,  2001.  Rainfall-Runoff  Modelling:  The  Primer.  Wiley, 

Chichester. 

Beven, K.J.,  2002. Towards  an alternative  blueprint  for a physically- 

based digitally simulated hydrologic response modelling system. 

Hydrological  Processes 16 (2), 189–206. 

Beven,  K.J.,   Freer,   J.,  2001.  Equifinality,   data   assimilation,   and 

uncertainty estimation  in mechanistic  modelling  of complex envi- 

ronmental systems using the GLUE  methodology. Journal  of 

Hydrology  249, 11–29. 

Campbell,  J.B.,  1996. Introduction to  Remote  Sensing.  Taylor  and 

Francis.  pp. 375–398. 

Chambre  d’Agriculture,  2000. Suivi- evaluation  des pratiques  agricoles 

en mati ere de fertilisation  azot ee (campagne  1997–1998). Chambre 

d’Agriculture  de l’H erault,  p. 22. 

Chang,  C.H.,  Yang,  J.C.,  Tung,  Y.K.,  1993. Sensitivity  and  uncer- 

tainty  analyses of a sediment transport model: a global approach. 

Journal   of  Stochastic   Hydrology   and   Hydraulics   7  (4),  299– 

314. 

Cotter,  A.S., Chaubey, I., Costello, T.A., Soerens, T.S., Nelson, M.A., 

2003. Water quality model output uncertainty as affected by spatial 

resolution of input data. Journal  of the American Water Resources 

Association  39 (4), 977–986. 

Crosetto,    M.,   Tarantola,  S.,   Saltelli,   A.,   2000.   Sensitivity   and 

uncertainty analysis in spatial modelling based on GIS. Agriculture 

Ecosystems & Environment 81, 71–79. 

Eckhardt, K.,  Breuer,  L.,  Frede,  H.G.,  2003. Parameter uncertainty 

and the significance of simulated land use change effects. Journal  of 

hydrology  1–4, 164–176. 

Girard,  M.C.,  Girard,  C., 1999. Traitement des donn ees de t el ed etec- 

tion. DUNOD, Paris. p. 529. 

Goodchild, M.F.,  1993. Data  models and data  quality:  problems  and 

prospects.  Environmental Modeling  with GIS, 94–103. 

Helton,  J.C., 1993. Uncertainty and sensitivity analysis techniques  for 

use in performance assessment for radioactive  waste disposal. 

Reliability  Engineering  & System Safety 42, 327–367. 

Hubert-Moy, L.,  Cotonner, A.,  Le  Du,  L.,  Chardin, A.,  Perez,  P., 

2001. A comparison of parametric  classification procedures  of 

remotely sensed data  applied on different landscape  units. Remote 

Sensing of Environment 75, 174–187.

http://www.geozoum.org/


 
 
 

I.F.E.N., 1988. Base de donn ees CORINE Land  Cover  v.1 de 1988 

version 5 ha (   IFEN, 1996). Available from <www.ifen.fr>. 

Lewis,  H.G.,   Brown,   M.,   Tatmall,   A.R.L.,   2000.  Incorporating 

uncertainty     in     land     cover     classification      from     remote 

sensing   imagery.    Advanced    Space   Research    26   (7),   1123– 

1126. 

Nandakumar, N.,  Mein,  R.G.,  1997.  Uncertainty in  rainfall-runoff 

model  simulations  and  the implications  for predicting  the hydro- 

logic effects of land-use  change.  Journal  of Hydrology  192, 211– 

232. 

Payraudeau, S., 2002. Mod elisation distribu ee des flux d’azote sur des 

petits bassins versants  m editerran eens. PhD,  Engref,  Montpellier, 

p. 436. 

Payraudeau, S., Tournoud, M.G.,  Cernesson,  F., 2003. Sensitivity of 

effective rainfall  amount  to  land  use description  using GIS  tool. 

Case of a small Mediterranean catchment.  Physics and Chemistry 

of the Earth,  Parts  A/B/C 28 (6–7), 255–262. 

Payraudeau,  S.,  Tournoud,  M.G.,   Cernesson,   F.,  Picot,  B.,  2001. 

Annual nutrients export modelling by analysis of landuse and 

topographic  information:  case  of  a  small  Mediterranean  catch- 

ment. Water  Science & Technology  44 (2–3), 321–327. 

Rodriguez-Iturbe, I., Gupta, V.K., 1983. Scale problems in hydrology. 

Journal  of Hydrology  65 (special issue), 175–208. 

Sagot, O., 1999. Conception et r ealisation d’une couche d’informations 

g eor ef erenc ees sur l’occupation du sol des zones humides et de leurs 

bassins  versants  du  littoral   de  la  r egion  Languedoc-Roussillon. 

Universit e Louis Pasteur,  Strasbourg, p. 62. 

Schultz,   G.A.,   1993.  Application   of  GIS   and   remote   sensing  in 

hydrology.  HydroGIS’93:  Application  of Geographic Information 

Systems in hydrology  and  water  resources  management, Vienna, 

Austria,  April 1993, no. 211, IAHS Publication, pp. 127–140. 

Yulianty,  J.S., Lence, B.J., Johnson,  G.V.,  Takyi,  A.K.,  1999. Non- 

point source water quality management under input information 

uncertainty. Journal  of Environmental Management 55, 199–217. 

http://www.ifen.fr/

