
manuscript No.
(will be inserted by the editor)

Hyper Temporal Networks
A Tractable Generalization of Simple Temporal Networks and
its relation to Mean Payoff Games

Carlo Comin · Roberto Posenato ·
Romeo Rizzi

Abstract Simple Temporal Networks (STNs) provide a powerful and general
tool for representing conjunctions of maximum delay constraints over ordered
pairs of temporal variables. In this paper we introduce Hyper Temporal Networks
(HyTNs), a strict generalization of STNs, to overcome the limitation of consider-
ing only conjunctions of constraints but maintaining a practical efficiency in the
consistency check of the instances. In a Hyper Temporal Network a single temporal
hyperarc constraint may be defined as a set of two or more maximum delay con-
straints which is satisfied when at least one of these delay constraints is satisfied.
HyTNs are meant as a light generalization of STNs offering an interesting com-
promise. On one side, there exist practical pseudo-polynomial time algorithms for
checking consistency and computing feasible schedules for HyTNs. On the other
side, HyTNs offer a more powerful model accommodating natural constraints that
cannot be expressed by STNs like “Trigger off exactly δ min before (after) the
occurrence of the first (last) event in a set.”, which are used to represent syn-
chronization events in some process aware information systems/workflow models
proposed in the literature.

Keywords Simple Temporal Networks · Temporal Consistency · Hypergraphs ·
Pseudo-polynomial Time Algorithms ·Mean Payoff Games · Disjunctive Temporal
Problems · Workflows

1 Introduction

In many areas of Artificial Intelligence (AI), including planning, scheduling and
workflow management systems, the representation and management of quantita-

Carlo Comin
Department of Mathematics, University of Trento, Trento, Italy and LIGM, Université Paris-
Est in Marne-la-Vallée, Paris, France. Supported by Department of Computer Science, Uni-
versity of Verona under PhD grant “Computational Mathematics and Biology” on a co-tutelle
agreement with Université Paris-Est in Marne-la-Vallée.
E-mail: carlo.comin@unitn.it

Roberto Posenato, Romeo Rizzi
Department of Computer Science, University of Verona, Verona, Italy
E-mail: {roberto.posenato, romeo.rizzi}@univr.it



2

tive temporal aspects is of crucial importance [4, 10, 11, 20, 37, 43]. Examples of
possible quantitative temporal aspects are: constraints on the earliest start time
and latest end time of activities, constraints over the minimum and maximum
temporal distance between activities, etc.

In many cases these constraints can be represented as an instance of a Simple
Temporal Network (STN) [18], a directed weighted graph where each node repre-
sents a time-point variable (timepoint), usually corresponding to the beginning or
the end of an activity, and each arc specifies a binary constraint on the scheduling
times to be assigned to its endpoints. In [18], each arc is labeled with a closed

interval of real values: for example, the labeled arc u
[x,y]−→ v encodes the binary

constraint x ≤ v − u ≤ y over its endpoints u and v. A more uniform and ele-
mentary representation of an STN is provided by its distance graph1 [18], a graph

having the same set of nodes as the original one, but where each arc u
[x,y]−→ v is

replaced by two arcs, each labeled with a single real value: arc u y−→ v to express
the constraint v − u ≤ y, and arc v −x−→ u to express the constraint u − v ≤ −x,
i.e., x ≤ v − u.

An STN is said to be consistent if it is possible to assign a real value to each
timepoint so that all temporal constraints are satisfied. The consistency property
can be verified by searching for negative cycles in the distance graph and it is
well known that the consistency check and the determination of the earliest/latest
value for each timepoint can be done in polynomial time [18].

However, STNs do not allow the expression of constraints like “trigger off an
event exactly δ min after the occurrence of the last of its predecessors”, which are a
quite natural constraints to represent synchronization events in a process aware in-
formation system plan/workflow schema [25]. This is because in STNs, and in some
of their natural extensions, (1) it is not possible to represent a single constraint
involving more than two timepoints and (2) all constraints have to be satisfied in
order to have the network consistent. On the contrary, the above constraint about
a synchronization event can be represented as a set of distance constraints, each
involving a different pair of timepoints, that is considered satisfied when at least
one of set components is satisfied. In order to represent and analyze disjunctive
constraints like the above one, it is then necessary to consider models like Dis-
junctive Temporal Problem (DTP) [44] where a constraint is a set of disjunctive
difference constraints over the timepoints. The drawback of such model is that the
consistency check problem is NP-complete [44].

1.1 Contribution

In this article we propose to generalize STN to Hyper Temporal Network (HyTN),
which allows also the expression of constraints like the above one regarding syn-
chronization events, but where the consistency check is amenable of effective so-
lution algorithms.

Moreover, we show an interesting link between the consistency check of HyTNs
and resolution in Mean Payoff Games (MPG), a family of perfect information

1 Distance graph is also called constraint graph by other authors [17]. Moreover, Bellman [3]
was the first to describe the relation between shortest paths and difference constraints in a
constraint graph.



3

games played on graphs by two opponents [21], for which some pseudo-polynomial
time algorithms for determining winning strategies are known [7,47].

A preliminary version of this article appeared in the proceedings of TIME
symposium [15]. Here we extend the presentation as follows: (1) the definition of
HyTN has been extended in order to allow the presence of two kinds of hyperarcs;
(2) the motivating example section has been revised to show how the new kind
of hyperarc can be used; (3) some further issues and pertinent properties about
HyTN have been introduced and proved; (4) several proofs have been expanded
and clarified; (5) the experimental analysis of the consistency check algorithm has
been improved considering more recent algorithms [7] for finding winning strategies
for MPGs. This has improved the performances dramatically.

Organization The remainder of the article is organized as follows. In Section 2
we present a motivating example from the domain of the workflow-based process
management to bring out HyTNs. Section 3 introduces some definitions and well-
known results for STNs and introduces some definitions about hypergraphs. The
generalization of STNs into HyTNs and the definition of consistency problem for
HyTNs are presented in Section 4. In Section 5 we recall the main facts and results
about Mean Payoff Games which are useful for the following sections. Section 6
presents the investigation into the link between the HyTN consistency problem
and Mean Payoff Games deriving pseudo-polynomial time algorithms for checking
the consistency of HyTNs and computing feasible schedules whenever they exist.
Some empirical evaluations of the proposed algorithms are reported in Section 7.
In Section 8, some related works are presented and discussed with respect to our
approach. Section 9 summarizes the main facts brought to light in this article and
presents a possible future development of the work we are currently carrying on.

2 Motivating Examples

In the introduction we have briefly recalled a kind of constraint that cannot be
expressed within STNs. In this section, we describe in more detail two examples
of temporal constraints that cannot be fully described in an STN in order to
introduce and motivate the new expressive capability of our model. As a further
motivation, at the end of the section we also spotlight how this new capability has
been recently exploited to check the consistency of Conditional Simple Temporal
Networks (CSTNs) [45] in a more efficient way.

Let us consider an example in the domain of the workflow-based process man-
agement, a domain concerned with the coordination and control of business pro-
cesses using information technology. A workflow is a representation of a business
process as the coordinated execution of activities by human or automatic execu-
tors (agents). A Workflow management system (WfMS) is a software system that
supports the automatic execution of workflows [25]. In a WfMS, the manage-
ment of temporal aspects is a critical component and in the literature there are
many proposals on how to extend a workflow in order to represent and manage
temporal constraints of a business process [4, 8, 10–13, 19, 20, 23]. In particular,
in [4,8,13,19,20] authors show how to represent and manage some kinds of tempo-
ral constraints using specific algorithms, while in [10–12,23] authors show how it is



4

1
[1, 5]

T1

[1, 50]
T2

[14, 20]

T3

[5, 10]

T4

[8, 40]
T5

[10, 25]

2
[1, 2]

[1, 2]

[1, 2]

[1, 2]

[1, 2]

[1, 5]

[1, 2]

[2, 6]

[5, 10]

Fig. 1: A simple workflow schema excerpt with three parallel flows of execution.

possible to represent and manage a wider class of temporal constraints exploiting
models like Time Petri Nets [35] or STNs/STNUs [36].

In this paper we consider an excerpt of the conceptual temporal model pro-
posed by Combi et al. [12], where the specification of a temporal workflow is given
by a workflow schema, a directed graph (also called workflow graph) where nodes
correspond to activities and arcs represent control flows that define activity de-
pendencies on the order of execution. Both nodes and arcs may be associated to
temporal ranges to specify temporal constraints. There are two different types of
activity: tasks and connectors. Tasks represent elementary work units that will be
executed by external agents. Each task is graphically represented by a box con-
taining a name and a temporal range that specifies the allowed temporal span for
its execution. Connectors represent internal activities executed by the WfMS to
achieve a correct and coordinated execution of tasks. They are graphically repre-
sented by diamonds and, as with tasks, each of them has a temporal range that
gives the temporal span allowed to the WfMS for executing it. Every arc has a
temporal property that gives the allowed times that can be spent by the WfMS for
possibly delaying the consideration of the next activity after the end of the previ-
ous one. There are different kinds of connector that allow one to modify a control
flow. Split connectors are nodes with one incoming arc and two or more outgoing
arcs: after the execution of the predecessor, (possibly) several successors have to
be considered for the execution. The set of nodes that can start their execution
is given by the kind of split connector. A split connector can be: Parallel, Alter-
native or Conditional. Join connectors are nodes with two or more incoming arcs
and one outgoing arc only. The types of activities considered in [12] are a subset
of the possible activities specified by the Workflow Management Coalition [1, 25].

Fig. 1 shows a simple workflow schema where the Parallel connector 1 splits
the flow into three parallel flows of execution (one for the sequence of tasks T1
and T2, one for task T3, and one for task T4 and T5) that have to be joined
(synchronized) by the AND join connector 2 before continuing the execution; all
temporal ranges are in minutes.

Let us consider the connector 2; according to the recommendations from
the Workflow Management Coalition (WfMC) [25] and the temporal specification
from [12], the execution of this connector requires to wait all incoming flows and,
after the last incoming flow, to wait a time according to the connector temporal
range before following the outgoing arc. In other words, the incoming flows can
arrive at different instants but only when the last one arrives, the connector has
to be activated in order to continue with the execution.



5

B
1

E
1

BT1
ET1

BT2
ET2

BT3
ET3

BT4
ET4

BT5
ET5

b1

b2

b3

B
2

E
2

5−1

2−1

2

−
1

2

−1

2

−
1

50

−1

20

−14

10

−5

40

−8

25

−10

2

−1

2

−1

6

−2

5

−1

10

−5

t1

0

t2

0
t3

0

Fig. 2: An STN representing temporal aspects of the workflow depicted in Fig. 1. The dotted
region emphasizes, within the workflow excerpt, the connections to an AND join connector.

Combi et al. [12] proposed a method to translate workflow schemata to STNs/
STNUs [36] in order to analyze and validate all temporal aspects in a rigorous way.
As already noted in [9] and [10], such translation cannot specifically represent the
behavior of an AND join connector, because the kind of constraints in an STN/
STNU is limited. Therefore, in [10], the authors proposed an adjustment of the
translation of an AND join connector introducing for each incoming arc of the
connector a buffer node connected with some determined new arcs and assuming
a reasonable but fixed execution algorithm for the STN. In more detail, let us
consider Fig. 2 that depicts the representation of workflow of Fig. 1 by means of
an STN following partially the method described in [10] (without loss of generality,
here we convert task constraints as STN arcs instead of STNU contingent ones
because we are interested only in the AND join conversion). Each activity of the
workflow is represented by two STN nodes, one to represent the begin timepoint,
Bi, one for the end one, Ei, and temporal ranges in the workflow are represented
by STN arc labels. Regarding the translation of the AND join node 2, nodes
representing the task endings on parallel flows, ET2

, ET3
, and ET5

, are connected to
buffer nodes b1, b2, and b3 that allow the parallel flows to complete their execution
following only their temporal constraints. Then, b1, b2, and b3 are connected to
node B

2
(which represents the begin instant of the AND join connector) by

temporal constraints [0, t1], [0, t2] and [0, t3], where the values t1, t2, and t3 are
determined during the workflow-to-STN conversion as explained in [10].

Now, let us consider a possible execution scenario. If b1, b2, and b3 occur all
together at instant 20, then, following the proposed temporal semantics [12], the
only possible instant value for B

2
must be 20 while the updated STN allows any

value in the range [20, 20 + min{t1, t2, t3}]. In [10], the authors showed that the
right value is always the lower bound of such extended range and, therefore, it is
sufficient to adopt an early execution strategy in order to choose the right value
for timepoint B

2
.

In other words, the proposed translation has two drawbacks: (1) it requires
some preliminary computations for determining t1, t2, and t3 values, and (2) the
resulting STN admits some solutions that are not admissible by the semantics of
the AND join connector.

To specifically represent the behavior of an AND join connector with respect to
its predecessor time points without auxiliary conditions or analysis, it is necessary



6

ET2

ET3

ET5

E
1

b1

b2

b3

B
2

6

5

10

−2

−1

−5

A
, 0

A, 0

A
, 0

0

0

0

74

−1
7

12

−6
69−

20

Fig. 3: An augmented STN, that we call HyTN, where dashed arcs represent components of
hyperarcs, a new kind of constraint. This HyTN improves the representation of the STN of
Fig. 2. To emphasize the changes, here we have summed all arcs outside the dotted region.

to introduce a new kind of constraint based on hyperarcs, as shown in Fig. 3. In the
figure the multi-tail hyperarc A consists of three dashed arcs—called components—
and replaces the arcs from bi (i = 1, 2, 3) to B

2
of Fig. 2. We say that a multi-tail

hyperarc is satisfied if at least one of its components is satisfied. In Fig. 3 dashed
arcs define the hyperarc A that is satisfied if B

2
is 0 distant from at least one time

point among b1, b2, and b3. Since B
2
is constrained to occur at the same instant

or after each time point b1, b2, and b3 by the arcs between B
2
and bi, i = 1, 2, 3,

the result is that to satisfy A it is necessary that B
2
occurs at the same instant of

the last time point among b1, b2, and b3, as required originally. In more general, a
multi-tail hyperarc is defined as a set of distance constraints (components) between
some time points and a common end point.

The use of hyperarcs allows also the representation of temporal aspect of other
advanced connectors as, for example, the Structured Discriminator [1]. The Struc-
tured Discriminator connector provides a means of merging two or more distinct
flows in a workflow instance into a single subsequent. In particular, it triggers
the subsequent flow as soon as the the first incoming flow arrives. The arrival of
other incoming flows thereafter have no effect on the subsequent flow. As such, the
Structured Discriminator provides a mechanism for progressing the execution of a
process once the first of a series of concurrent tasks has completed and according
to the connector temporal range. Fig. 4a depicts an excerpt of a workflow schema
containing a structured discriminator connector, D, that joins three parallel flows.

At the best of our knowledge, currently there are no proposals for the rep-
resentation of temporal constraints of a discriminator connector in any tempo-
ral workflow model or process-aware information system [32]. Even exploiting the
methodology proposed in [10], it is easy to verify that it is not possible to represent
such connector as an STN because in a consistent STN all constraints have to be
satisfied while here it is necessary to allow the possibility that only one constraint
of a set has to be satisfied in order to specifically represent a discriminator connec-
tor. A possible way for specifically managing a discriminator connector consists in
following the approach suggested by [10] for representing activities and considering
a variant of the multi-tail hyperarc, called multi-head hyperarc, for representing
its temporal constraint, as depicted in Fig. 4b. In the figure there is a multi-head



7

T1

[14, 20]

T2

[5, 10]

T3

[10, 25]

D
[1, 2]

[1, 5]

[2, 6]

[5, 10]

(a) An excerpt of a workflow schema
containing a structured discrimina-
tor connector, D.

ET1

ET2

ET3

B
D

6

5

10

A
,−

2

A,−1

A
,−

5

(b) A possible representation of
temporal aspects of a discrimi-
nator connectors by means of a
multi-head hyperarc.

Fig. 4: A structured discriminator connector and a possible representation of its temporal
aspects.

hyperarc A that connects the node representing the beginning instant of the dis-
criminator activity to all nodes representing the end instant of the activities that
precede the considered discriminator and are directly connected to it. In general
a multi-head hyperarc is defined as a set of distance constraints (components) be-
tween one time point and some end points. We say that a multi-head hyperarc is
satisfied if at least one of its components is satisfied. In Fig. 4b, dashed arcs define
the hyperarc A that is satisfied if B

D
is at least 2 distant from ET1

or 1 distant
from ET2

or 5 distant from ET3
. It is sufficient that one of such previous nodes

is executed and that the delay represented in the corresponding connecting arc
is passed to execute B

D
, as required by the structured discriminator connector

semantics.

HyTNs are not only suitable for better representing temporal constraints orig-
inating from temporal workflow, but also for better representing more general
temporal constraint networks like Conditional Simple Temporal Network [45].

A Conditional Simple Temporal Network (CSTN) is an enriched graph for
representing and reasoning about temporal constraints in domains where some
constraints may apply only in certain condition settings (scenarios). Each con-
dition in a CSTN is represented by a propositional letter whose truth value is
observed in real time as the outcome of the execution of an observation time-
point. An execution strategy for a CSTN has to determine an execution time for
each time-point guaranteeing that all temporal constrains that are significant in
the resulting scenario are satisfied. An execution strategy can be dynamic in that
its execution decisions can react to the information obtained from such observa-
tions. The Conditional Simple Temporal Problem (CSTP) consists in determining
whether a given CSTN admits a dynamic execution strategy for any possible com-
bination of propositional outcomes happens to be observed over time. If such a
strategy exists, the CSTN is said to be dynamically consistent (DC).

Tsamardinos et al. [45] solved the CSTP by first encoding it as a meta-level
Disjunctive Temporal Problem (DTP), then feeding it to an off-the-shelf DTP



8

solver. Although of theoretical interest, this approach is not practical because the
CSTP-to-DTP encoding has exponential size, and the DTP solver itself runs in
exponential time. To our knowledge, this approach has never been empirically
evaluated [26].

In [16], Comin and Rizzi proposed a novel representation of CSTNs in terms of
HyTNs allowing the determination of the first singly exponential-time algorithm
for checking the dynamic consistency of Conditional Simple Temporal Networks.
More precisely, a CSTN instance is represented as a suitable HyTN where each
possible scenario is represented and connected to other scenarios in an appropriate
way and, then, such HyTN instance is solved in pseudo-polynomial time by the
algorithms analyzed in the present paper.

In summary, HyTNs allow the representation of temporal constraints that are
more general of those represented in STNs [18], because they allow disjunctions
involving more than two time points, but less general than those represented in
DTPs [44] because all disjunctions related to a multi-head(tail) hyperarcs have
to contain a common variable. Such kind of STN generalization not only allows
the compact representation of some common temporal constraints in the domains
like the workflow-based process management but also allows the determination of
new interesting algorithm for checking dynamic-consistency in richer models like
CSTN.

3 Background and Notation

In this section, we introduce some definitions, notations and well-know results
about graphs and conservative graphs; moreover, we recall the relation between the
consistency property of STNs and the conservative property of weighted graphs.

We consider graphs that are directed and weighted on the arcs. Thus, if G =
(V,A) is a graph, then every arc a ∈ A is a triple (ta, ha, wa) where ta ∈ V is the
tail of a, ha ∈ V is the head of a, and wa ∈ R is the weight of a. Moreover, since
we use graphs to represent distance constraints, they do not need to have either
loops (unary constraints are meaningless) or parallel arcs (two parallel constraints
represent two different distance constraints between the same pair of node: only
the most restrictive is meaningful). We also use the notations h(a) for ha, t(a) for
ta, and w(a) or w(ta, ha) for wa, when it helps. The order and size of a graph
G = (V,A) are denoted by n , |V | and m , |A|, respectively. The size is a good
measure for the encoding length of G.

A cycle of G is a set of arcs C ⊆ A cyclically sequenced as a0, a1, . . . , a`−1 so
that h(ai) = t(aj) if and only if j = (i+ 1) mod `; it is called a negative cycle if
w(C) ≤ 0, where w(C) stands for

∑
e∈C we. A graph is called conservative when

it contains no negative cycle.
A potential is a function p : V 7→ R. The reduced weight of an arc a = (u, v, wa)

with respect to a potential p is defined as wpa , wa − pv + pu. A potential p of
G = (V,A) is called feasible if wpa ≥ 0 for every a ∈ A. Notice that, for any cycle
C, wp(C) = w(C). Therefore, the existence of a feasible potential implies that the
graph is conservative as w(C) = wp(C) ≥ 0 for every cycle C.

The Bellman-Ford algorithm [17] can be used to produce in O(nm) time:

– either a proof that G is conservative in the form of a feasible potential function;



9

– or a proof that G is not conservative in the form of a negative cycle C in G.

When the graph is conservative, the smallest weight of a walk between two nodes
is well defined, and, fixed a root node r in G, the potentials returned by the
Bellman-Ford algorithm are, for each node v, the smallest weight of a walk from r
to v. Moreover, if all the arc weights are integral, then these potentials are integral
as well. Therefore, the Bellman-Ford algorithm provides a proof to the following
theorem.

Theorem 1 ([3, 17, 22]). A graph admits a feasible potential if and only if it is
conservative. Moreover, when all arc weights are integral, the feasible potential is
an integral function.

An STN can be viewed as a weighted graph whose nodes are timepoints that
must be placed on the real line and whose arcs express mutual constraints on the
allocations of their end points. An STN G = (V,A) is called consistent if it admits
a feasible scheduling, i.e., a scheduling s : V 7→ R such that

s(v) ≤ s(u) + w(u, v) ∀ arc (u, v) of G.

Corollary 1 ([3,17,18]). An STN G is consistent if and only if G is conservative.

Proof. A feasible scheduling is just a feasible potential. Therefore, this corollary
is just a restatement of Theorem 1.

In this paper, we also deal with directed weighted hypergraphs.

Definition 1 (Hypergraph). A hypergraph H is a pair (V,A), where V is the set
of nodes, and A is the set of hyperarcs. Each hyperarc A ∈ A is either a multi-head
or a multi-tail hyperarc.

A multi-head hyperarc A = (tA, HA, wA) has a distinguished node tA, called
the tail of A, and a nonempty set HA ⊆ V \ {tA} containing the heads of A; to
each head v ∈ HA is associated a weight wA(v) ∈ R. Fig. 5a depicts a possible
representation of a multi-head hyperarc: the tail is connected to each head by a
dashed arc labeled by the name of the hyperarc and the weight associated to the
considered head.

A multi-tail hyperarc A = (TA, hA, wA) has a distinguished node hA, called
the head of A, and a nonempty set TA ⊆ V \ {hA} containing the tails of A; to
each tail v ∈ TA is associated a weight wA(v) ∈ R. Fig. 5b depicts a possible
representation of a multi-tail hyperarc: the head is connected to each tail by a
dotted arc labeled by the name of the hyperarc and the weight associated to the
considered tail.

The cardinality of a hyperarc A ∈ A is given by |A| , |HA∪{tA}| if A is multi-
head, and |A| , |TA ∪ {hA}| if A is multi-tail; if |A| = 2, then A = (u, v, w) is a
standard arc. The order and size of a hypergraph (V,A) are denoted by n , |V |
and m ,

∑
A∈A |A|, respectively.



10

v1

v2

v3

tA

A,wA
(v1

)

A,wA(v2)

A,w
A (v

3 )

(a) Multi-Head Hyperarc
A = (tA, HA, wA).

v1

v2

v3

hA

A,w
A (v

1 )

A,wA(v2)

A,wA
(v3

)

(b) Multi-Tail Hyperarc A =
(TA, hA, wA).

Fig. 5: A graphical representation of the two kinds of hyperarcs.

4 Hyper Temporal Networks and Consistency Property

We introduce now Hyper Temporal Networks (HyTNs), a strict generalization of
STNs to partially overcome the limitation of allowing only conjunctions of con-
straints. Compared to STN distance graphs, which they naturally extend, HyTNs
allow a greater flexibility in the definition of temporal constraints.

A HyTN is a directed weighted hypergraphH = (V,A) where a node represents
a time point variable (timepoint), and a multi-head/multi-tail hyperarc represents
a set of temporal distance constraints between the tail/head and the heads/tails,
respectively.

For example, the multi-tail hyperarc A = (TA, B
2
, wA) in Fig. 3, where TA =

{b1, b2, b3} and wA(bi) = 0 for i = 1, 2, 3, stands for the set of distance constraints
{B

2
− bi ≤ 0 | i = 1, 2, 3}.

In general, we say that a hyperarc is satisfied when at least one of its distance
constraints is satisfied. Then, we say that a HyTN is consistent when it is possible
to assign a value to each time-point variable so that all of its hyperarcs are satisfied.

More formally, in the HyTN framework the consistency problem is defined as
the following decision problem.

Definition 2 (General-HyTN-Consistency). Given a HyTN H = (V,A), de-
cide whether there exists a scheduling s : V → R such that, for every hyperarc
A ∈ A, the following holds:

– if A = (t, h, w) is a standard arc, then

s(h)− s(t) ≤ w;

– if A = (tA, HA, wA) is a multi-head hyperarc, then

s(tA) ≥ min
v∈HA

{s(v)− wA(v)};

– if A = (TA, hA, wA) is a multi-tail hyperarc, then

s(hA) ≤ max
v∈TA

{s(v) + wA(v)}.



11

Any such scheduling s : V → R is called feasible. A HyTN that admits at least
one feasible scheduling is called consistent.

Comparing the consistency of HyTNs with the consistency of STNs, the most
important aspect of novelty is that, while in a distance graph of a STN each arc
represents a distance constraint and all such constraints have to be satisfied by
a feasible schedule, in a HyTN each hyperarc represents a set of one or more
distance constraints and a feasible scheduling has to satisfy at least one such
distance constraints for each hyperarc.

Let us show some interesting properties about the consistency problem for
HyTNs.

The first interesting property is that any integral-weighted HyTN admits an
integral feasible schedule when it is consistent, as proved in the following lemma.

Lemma 1. Let H = (V,A) be an integral-weighted and consistent HyTN . Then
H admits an integral feasible scheduling s : V → {−T,−T +1, . . . , T −1, T}, where
T =

∑
A∈A,v∈V |wA(v)|.

Proof. Since H is consistent, then there exists a feasible scheduling s̃ : V → R.
The idea in this proof is to project the HyTN H over a conservative graph and
then, in that setting, to exploit the integrality properties of potentials as stated
in Theorem 1. However, this projection is asked to resolve the non-determinism
contained in the disjunctive nature of the hyperarcs; in order to sort out such
non-determinism, the projection is built considering the given feasible scheduling
s̃ as follows.

For each hyperarc A ∈ A, a weighted directed arc eA is defined as follows:

– if A = (u, v, w) is a standard arc, then eA , (u, v, w). Note that s̃(v) ≤ s̃(u)+w
follows by the feasibility of s̃;

– if A = (tA, HA, wA) is a multi-head hyperarc, then

eA , (tA, vA, wA(v)) where vA = arg min
v∈HA

{s̃(v)− wA(v)}.

Here, s̃(vA) ≤ s̃(tA) + wA(v) follows by the feasibility of s̃;
– if A = (TA, hA, wA) is a multi-tail hyperarc, then

eA , (vA, hA, wA(v)) where vA = arg max
v∈TA

{s̃(v) + wA(v)}.

Here, s̃(hA) ≤ s̃(vA) + wA(v) follows by the feasibility of s̃.

Now, a weighted directed graph G = (V,E) with E , {eA | A ∈ A} is defined.
G is integral-weighted and conservative graph since it admits s̃ as a potential
function. Therefore, G admits an integral potential function s : V → {−T,−T +
1, . . . , T − 1, T}. Indeed, such a function s is obtained by applying the Bellman-
Ford algorithm on G. To conclude, we observe that s is also an integral feasible
scheduling for H.

The following theorem states that General-HyTN-Consistency is NP-complete.

Theorem 2. General-HyTN-Consistency is an NP-complete problem even
if input instances H = (V,A) are restricted to satisfy wA(·) ∈ {−1, 0, 1} and
|HA|, |TA| ≤ 2 for every A ∈ A.



12

Proof. If H = (V,A) is integral-weighted and consistent, then it admits an integral
feasible scheduling s : V → {−T, . . . , T} by Lemma 1. Moreover, any such feasible
scheduling can be verified in polynomial time with respect to the size of the input;
hence, General-HyTN-Consistency is in NP.

To show that the problem is NP-hard, we describe a reduction from 3-SAT.
Let us consider a boolean 3-CNF formula with n ≥ 1 variables and m ≥ 1

clauses:

ϕ(x1, . . . , xn) =
m∧
i=1

(αi ∨ βi ∨ γi)

where Ci = (αi ∨ βi ∨ γi) is the i-th clause of ϕ and each αi, βi, γi ∈ {xj , xj | 1 ≤
j ≤ n} is either a positive or a negative literal.

We associate to ϕ a HyTN Hϕ = (V,A), where each boolean variable xi
occurring in ϕ is represented by two nodes, xi and xi. V also contains node z
that represents the reference initial node for the HyTN Hϕ, i.e., the first node
that has to be executed. For each pair xi and xi, Hϕ contains a pair of hyperarc
constraints as depicted in Fig. 6a: one with multi-head {xi, xi} and tail in z and
the other multi-tail {xi, xi} and head in z. IfHϕ is consistent, the pair of hyperarcs
associated to x,¬x assures that Hϕ admits a feasible scheduling s such that s(xi)
and s(xi) are coherently set with values in {0, 1} (see Lemma 1). In this way, s is
forced to encode a truth assignment on the xi’s. The HyTN Hϕ contains also a
node Cj for each clause Cj of ϕ; each node Cj is connected by a multi-tail hyperarc
with head in Cj and tails over the literals occurring in Cj and by two standard and
opposite arcs with node z as displayed in Fig. 6b. Such setting of arcs assures that
if Hϕ admits a feasible scheduling s, then s assigns value 1 at least to one of the
node representing the literals connected with the hyperarc.

More formally, Hϕ = (V,A) is defined as follows:

– V = {z} ∪ {xi | 1 ≤ i ≤ n} ∪ {xi | 1 ≤ i ≤ n} ∪ {Cj | 1 ≤ j ≤ m};
– A =

⋃n
i=1 Vari ∪

⋃m
j=1 Claj , where:

– Vari =
{
(z, xi, 1), (xi, z, 0), (z, xi, 1), (xi, z, 0),

({xi, xi}, z, [w(xi), w(xi)] = [−1,−1]),
(z, {xi, xi}, [w(xi), w(xi)] = [0, 0])

}
.

This defines the variable gadget for xi as depicted in Fig. 6a;
– Claj =

{
(z, Cj , 1), (Cj , z,−1),

({αj , βj , γj}, Cj , [w(αj), w(βj), w(γj)] = [0, 0, 0])
}
.

This defines the clause gadget for clause Cj = (αi ∨ βi ∨ γi) as depicted in
Fig. 6b.

Notice that |V | = 1 + 2n +m = O(m + n) and mA = 8n + 5m = O(m + n);
therefore, the transformation is linearly bounded in time and space.

We next show that ϕ is satisfiable if and only if Hϕ is consistent.
Any truth assignment ν : {x1, . . . , xn} → {true, false} satisfying ϕ can be

translated into a feasible scheduling s : V → Z of Hϕ as follows. For node z, let
s(z) = 0, and let s(Cj) = 1 for each j = 1, . . . ,m; then, for each i = 1, . . . , n,
let s(xi) = 1 and s(xi) = 0 if the truth value of xi, ν(xi), is true, otherwise let
s(xi) = 0 and s(xi) = 1. It is easy to verify that, using this scheduling s, all the



13

z

[0]

xixi

1

0
0

−1

1

0

0

−1

(a) Gadget for a 3-SAT variable xi.

Cj

[1]

βjαj γj

z

[0]

+1

−1
0

0

0

(b) Gadget for a 3-SAT clause Cj = (αj ∨
βj ∨ γj) where each αj , βj , γj is a positive or
negative literal.

Fig. 6: Gadgets used in the reduction from 3-SAT to General-HyTN-Consistency.

constraints comprising each single gadget are satisfied and, therefore, the network
is consistent.

Vice versa, assume that Hϕ is consistent. Then, it admits an integral feasible
scheduling s by Lemma 1. After the translation s(v) = s(v)− s(z), we can assume
that s(z) = 0. Hence, s(Cj) = 1 for each j = 1, . . . ,m, as enforced by the two
standard arcs incident at Cj in the clause gadget, and {s(xi), s(xi)} = {0, 1} for
each i = 1, . . . , n, as enforced by the constraints comprising the variable gadgets.
Therefore, the feasible scheduling s can be translated into a truth assignment
ν : {x1, . . . , xn} → {true, false} defined by ν(xi) = true if s(xi) = 1 (and
s(xi) = 0); ν(xi) = false if s(xi) = 0 (and s(xi) = 1) for every i = 1, . . . , n.

To conclude, we observe that any hyperarc A ∈ A of Hϕ has weights wA(·) ∈
{−1, 0, 1} and size |A| ≤ 3. Since any hyperarc with three heads (tails) can be
replaced by two hyperarcs each having at most two heads (tails), the consistency
problem remains NP-Complete even if wA(·) ∈ {−1, 0, 1} and |A| ≤ 2 for every
A ∈ A.

Theorem 2 motivates the study of consistency problems on hypergraphs hav-
ing either only multi-head or only multi-tail hyperarcs. In the former case, the
consistency problem is called Head-HyTN-Consistency, while in the latter it is
called Tail-HyTN-Consistency. In the following theorem we observe that the
two problems are inter-reducible, i.e., we can solve consistency for any one of the
two models in f(m,n,W ) time whenever we have a f(m,n,W ) time procedure for
solving consistency for the other one.

Theorem 3. Head-HyTN-Consistency and Tail-HyTN-Consistency are
inter-reducible by means of log-space, linear-time, local-replacement reductions.

Proof. We show the reduction from multi-tail to multi-head hypergraphs; the other
direction is symmetric. Informally, what we will do is to reverse all the arcs (so



14

that what was multi-tail becomes multi-head), and, contextually, we invert the
time-axis (to account for the inversion of the direction of all arcs).

Let H = (V,A) be a multi-tail hypergraph, we associate to H a multi-head
hypergraph H′ = (V,A′) by reversing all multi-tail hyperarcs. Formally, we define

A′ = {(v, S, w) | (S, v, w) ∈ A}.

For example, a standard arc (t, h, w) ∈ A is transformed into a reversed standard
arc (h, t, w) in A′ while a hyperarc with two weighted tails t1 and t2 becomes a
hyperarc having t1 and t2 as its two weighted heads.

Now, H is consistent if and only if H′ is consistent. To prove it, we note that
each scheduling s for H can be associated, with a flip of the time direction, to
the scheduling s′ , −s. Then, it holds that s is feasible for H if and only if s′

is feasible for H′. Indeed, s satisfies the constraint represented by an hyperarc
A = (TA, hA, wA) ∈ A, namely

s(hA) ≤ max
v∈TA

{s(v) + wA(v)},

or, equivalently
−s(hA) ≥ min

v∈TA

{−s(v)− wA(v)},

if and only if s′ (that is, −s) satisfies the constraint represented by the reversed
hyperarc A′ = (hA, TA, wA), namely

s′(hA) ≥ min
v∈TA

{s′(v)− wA′(v)}.

In the remainder of this work we shall adopt the multi-head hypergraph as
our reference model. Hence, when considering hypergraphs and HyTNs, we will
be implicitly referring to multi-head hyperarcs. Notably, we consider the following
specialized notion of consistency for HyTNs.

Definition 3 (HyTN-Consistency). Given a (multi-head) HyTN H = (V,A),
decide whether there exists a scheduling s : V → R such that:

s(tA) ≥ min
v∈HA

{s(v)− wA(v)} ∀A ∈ A. (1)

Remark 1. Notice that this notion of consistency for HyTNs is a strict generaliza-
tion of STN one. In general, the feasible schedules of an STN are the solutions of
a linear system and, therefore, they form a convex polytope. Since an STN may
be viewed as a HyTN, the space of feasible schedules of an STN can always be
described as the space of feasible schedules of a HyTN. The converse is not true
because feasible schedules for a HyTN do not form a convex polytope. Let us con-
sider, for example, a HyTN of just three nodes x1, x2, x3 and one single hyperarc
with heads {x1, x2} and tail x3 expressing the constraint x3 ≥ min{x1, x2}; (0, 2, 2)
and (−2, 0, 2) are both admissible schedules, but (1, 1, 0) = 1

2 (0, 2, 2)−
1
2 (−2, 0, 2)

is not an admissible schedule. In conclusion, the STN model is a special case of
the Linear Programming paradigm, whereas the HyTN model is not.

In the rest of this section, we extend the characterization of STN consistency
recalled in Section 3 to HyTNs.



15

Definition 4 (Reduced Slack Value wpA(v)). With reference to a potential p :
V → R, we define, for every arc A ∈ A and every v ∈ HA, the reduced slack value
wpA(v) as wA(v) + p(tA)− p(v) and the reduced slack wpA as

wpA , max{wpA(v) | v ∈ HA}.

A potential p is said to be feasible if and only if wpA ≥ 0 for every A ∈ A.

Again, as it was the case for STNs, a mapping f : V → R is a feasible potential
if and only if it is a feasible schedule. In order to better characterize feasible
schedules, we introduce a notion of negative cycle.

Definition 5 (Negative Cycle). Given a multi-head HyTN H = (V,A), a cycle is
a pair (S, C) with S ⊆ V and C ⊆ A such that:

1. S =
⋃
A∈C(HA ∪ {tA}) and S 6= ∅;

2. ∀v ∈ S there exists an unique A ∈ C such that tA = v.

Moreover, we let a(v) denote the unique arc A ∈ C with tA = v as required in
previous item 2. Every infinite path in a cycle (S, C) contains, at least, one finite
cyclic sequence vi, vi+1, . . . , vi+p, where vi+p = vi is the only repeated node in the
sequence. A cycle (S, C) is negative if for any finite cyclic sequence v1, v2, . . . , vp,
it holds that

p−1∑
t=1

wa(vt)(vt+1) < 0.

There are two results about negative cycles as stated in the following lemmas.

Lemma 2. A HyTN with a negative cycle admits no feasible schedule.

Proof. By contraposition. Let H be a consistent HyTN and let p be a feasible
potential for H. Also, let (S, C) be any cycle of H; we will show that (S, C) is not
negative. For every A ∈ C, let hA be the head of A with maximum reduced slack
value:

hA , arg max
v∈HA

{wpA(v)}.

Let us consider the infinite path in (S, C) built choosing, at each node vt,
ha(vt) as the following node. As already seen, such a path contains at least one
finite cyclic sequence vh, vh+1, . . . , vk with vk = vh. The sum of weights of the
finite cyclic sequence is given by

k−1∑
t=h

wa(vt)(vt+1) =

k−1∑
t=h

wpa(vt)(vt+1)

for every potential p; since p is feasible, all terms of the last sum are non-negative.
It follows that (S, C) is not negative.

At first sight, it may appear that checking whether (S, C) is a negative cycle
might take exponential time since one should check a possibly exponential number
of cyclic sequences. The next lemma shows instead that it is possible to check the
presence of negative cycle in polynomial time.

Lemma 3. Let (S, C) be a cycle in a HyTN. Then checking whether (S, C) is a
negative cycle can be done in polynomial time.



16

Proof. Consider the weighted graph G = (S,∪t∈SAt) where each hyperarc a(t),
for every t ∈ S, is transformed into a set of standard arcs as follows:

a(t) ; At , {(t, v,−wa(t)(v)) | v ∈ Ha(t))}, ∀ t ∈ S.

Notice that G is thus an STN. Checking whether (S, C) is a negative cycle
amounts to check whether all cycles in G have strictly positive weight. To do this,
firstly, a potential function π for G is determined by Bellman-Ford algorithm. If
the algorithm returns a negative cycle instead of π, then there is no negative cycle
in (S, C) and the check ends.

Otherwise, since w(C) = wπ(C) ≥ 0 for every cycle C of G, it is necessary
to verify that no cycle in G has wπ(C) = 0. This check can be done by verifying
the acyclicity of the subgraph of G comprising only arcs a of G with wπ(a) = 0.
The check that a graph is acyclic can be done in linear time by a depth first
visit [17].

A hypergraph H is called conservative when it contains no negative cycle.
In the next sections we will provide a pseudo-polynomial time algorithm that
always returns either a feasible scheduling or a negative cycle, thus extending
the validity of the classical good-characterization of STN consistency to general
HyTN consistency. Here, we anticipate the statement of the main result in order
to complete this general introduction of HyTNs.

Theorem 4. A HyTN H is consistent if and only if it is conservative. Moreover,
when all weights are integral, then H admits an integral scheduling if and only if
it is conservative.

Proof. IfH is consistent, then it is conservative by Lemma 2. IfH is not consistent,
then there is a negative cycle as shown in Theorem 8-(3). The existence of an
integral scheduling when all weights are integral is guaranteed by Lemma 1.

5 Mean Payoff Games

In this section, we propose an introduction to Mean Payoff Games (MPGs) tai-
lored to the needs of the present work. MPGs represent a well-studied model for
representing some kinds of two-player dynamics and we will show in Section 6 that
there is a substantial equivalence between the MPG and the HyTN model, which
will allow us to exploit some important algorithmic and structural results.

An MPG is a weighted directed graph G = (V0 ∪· V1, E) whose node set V is
partitioned into two disjoint sets V0 and V1, where, for p = 0, 1, the nodes in Vp
are those under control of Player p. Even with these graphs we have no loops and
no parallel arcs. It is also assumed that every node has at least one outgoing arc.
Notice that, in general, (V0, V1) does not need to be a bipartiton of G, i.e., E may
contain arcs with both endpoints in V0, or with both endpoints in V1.

Each play starts with a pebble placed at some node v0 ∈ V0 ∪· V1 and consists
in a sequence of moves. Move t begins with the pebble placed in node vt−1 and is
played by the Player p such that vt−1 ∈ Vp: the player chooses any arc e ∈ E with
tail te = vt−1 and moves the pebble along e; at the end of the move the pebble is
in node vt = he. The game ends as soon as vt = vt′ for some t > t′, i.e., when the
pebble comes back to an already visited node vt′ . At this point, the pebble has



17

traversed a cyclic sequence of arcs et′+1, . . . , et and Player 0 “pays” to Player 1 the
average weight of the visited cycle:

1

t− t′
t∑

i=t′+1

w(ei).

If this amount is negative, then Player 0 wins the game, otherwise the winner is
Player 1.

A strategy for Player p is a mapping that, given all the previous visited nodes
and the current node, returns which node has to be visited in the next move; a
strategy is said to be positional (or memoryless) if it depends only on the current
position vt and does not take into account all the previous history. If s ∈ V0 ∪ V1
and Player p has a strategy leading him to win any possible play starting at v0 = s,
then we say that s is a winning start position for Player p. We denote by Wp the
set of winning start positions for Player p. A winning strategy for Player p leads
Player p to win every play started from any node in Wp. Since these finite games
are zero-sum, i.e., what won by a player is what lost by the other one, then they
admit a game value ν: for each start position s ∈ V of the game, there exists a
νs ∈ R such that Player 0 has a strategy ensuring payoff at most νs, while Player 1
has a strategy ensuring payoff at least νs.

It is worthwhile to consider an infinite variant of the model, in which the game
does not stop, and continues for an infinite number of steps. In this model, Player 1
wants to maximize the limit inferior of the average weight:

lim inf
n→∞

1

n

n∑
t=1

w(vt−1, vt)

Symmetrically, Player 0 wants to minimize the limit superior of the same average
weight:

lim sup
n→∞

1

n

n∑
t=1

w(vt−1, vt)

In their Determinacy Theorem, Ehrenfeucht and Mycielski [21] proved that any
infinite game admits a value ν∞, and that this value equals the one of the finite
counterpart game on every start position, i.e., ν∞s = νs for every s ∈ V0 ∪ V1.
Moreover, they proved the existence of positional strategies which are optimal for
both variants of the model: when Player p limits himself to an optimal strategy πp,
i.e., when, for every v ∈ Vp, he disregards all arcs with tail in v except the one with
head in πp(v), then he will secure himself the optimal payoff ν in every play, finite or
infinite, however the adversary plays. The graph Gπp obtained from G by dropping
all arcs with tail in Vp not prescribed by πp is called the projection of the game
G on πp, and is a solitaire game whose value can be easily computed by means
of a simple variant of Bellman-Ford algorithm. Therefore, the Ehrenfeucht and
Mycielski’s results are already sufficient for determining a simple exponential time
algorithm computing the node values and the two optimal positional strategies in
an MPG: the algorithm consists in evaluating each possible strategy for one of the
two players as a solitaire game for determining the optimal one. In the literature
there are many local search algorithms that explore this space in a more efficient
way [5, 6, 41, 42] and some of them have been proven to be practically efficient in



18

many settings by experiments [6, 41]. Moreover, the global optimization problem
of computing the best strategies for one player, according to a given metric, has
been shown to have the property that every local optimum is also a global one for
many complete metrics [5].

As another line of research, Zwick and Paterson [47] proposed pseudo-
polynomial time algorithms for computing values of games, as well as positional
optimal strategies. In particular, they considered the following four algorithmic
problems:

1. MPG-Decision(ν, s): given a real number ν and a start position s, decide
whether νs ≥ ν;

2. MPG-Threshold(T ): given a real number T , determine for which nodes s ∈
V it holds that νs ≥ T ;

3. MPG-Values: compute the optimal values νs for all s ∈ V .
4. MPG-Synthesis: assuming νs ≥ 0 (νs < 0) for every s ∈ V , synthesize a

positional winning strategy for Player 1 (Player 0);

and they proved the following theorem:

Theorem 5 ([47]). Let G = (V,E) be a mean payoff game. Assume all weights
are integers and let W = maxe∈E |w(e)|. Then the following hold:

1. MPG-Threshold(T ) can be solved in time O(|V |2|E|W ) when T ∈ Z, whereas
it can be solved in time O(|V |3|E|W ) when T ∈ R;

2. MPG-Values can be solved in time O(|V |3|E|W );
3. MPG-Synthesis can be solved in time O(|V |4|E| log(|E|/|V |)W ).

Then, they observed that MPG-Decision is the basic decision problem for
MPGs in the sense that several natural questions for MPGs, like evaluating the
value νs for every node s or constructing the optimal positional strategies, may
all be Turing-reduced to it. They also pointed out that the existential results
of Ehrenfeucht and Mycielski [21] already implies that MPG-Decision ∈ NP ∩
co-NP and asked whether there might exist a strongly polynomial time decision
procedure. Proving the existence of such algorithm is an open problem [7]. Finally,
they showed how to reduce mean payoff games to other important families of games
on graphs, like discounted payoff games and simple stochastic games.

The complexity status of MPG-Decision has been since updated by proving
that it lays in UP ∩ co-UP by Jurdziński in [27].

In recent years, some other interesting results have been proven. Notably, in
2007 Lifshits, Pavlov [33] proposed a potential theory for MPGs and in 2011 Brim
et al. [7] obtained faster algorithms exploiting results obtained in the the fields of
Energy Games and energy progress measures, which are intimately related to the
potentials studied in [33].

Their algorithmic results are summarized in the following theorem.

Theorem 6 ([7]). For MPGs in which all weights are integers and for T ∈ Z, the
Value Iteration Algorithm [7] solves MPG-Threshold(T ) and MPG-Synthesis
in time O(|V | |E|W ), where W = maxe∈E |w(e)|.

We remark that both the algorithm of Paterson and Zwick [47] and the Value
Iteration Algorithm [7] prescribe well defined procedures even if the weights on
the arcs are real values. What is lost in running these algorithms on real weights
is only the pseudo-polynomial upper bound on their running time.



19

For our purposes, the family of pseudo-polynomial algorithms for MPGs is the
best option. Indeed, in most of temporal workflow graphs all weights are expressed
by integers of relatively small magnitude with respect to the intrinsic temporal
granularity of the considered workflow. For example, in a workflow containing
temporal distance constraints of days, the commonly adopted temporal granular-
ity is the “minute” (m) and, therefore, all weights can be assumed to be less than
104 as order of magnitude. In such circumstances, Brim’s algorithm offers the guar-
antee to terminate within short computation times. For these reasons we opted for
integrating the procedures of Zwick and Paterson, as well as the faster procedures
of Brim et al. [7], in order to efficiently solve instances of HyTN-Consistency
and compute feasible schedules.

Furthermore, as will be discovered in the experimental section, if these algo-
rithms are suitably adapted—so as to allow them to terminate earlier as soon as
certain evidences of inconsistency have been collected—then their observed be-
havior outperforms by orders of magnitude what predicted by their theoretical
pseudo-polynomial bounds even on input instances containing very large integer
values.

Based on these findings, we think that these pseudo-polynomial algorithms are
to be considered (and probably adopted) even for solving HyTN instances where
weights are floating point values whose magnitudes may differ in a significant way.
In case the running time results to be unacceptable for a real application, one could
then consider the possibility to round the weights to integer values. This rounding
would clearly require special care: a very accurate approximation might lead to
very high computation times while a gross approximation might not represent the
original instance in a correct way.

6 The Reductions

This section presents the direct connection and the computational equivalence be-
tween MPG-Threshold and HyTN-Consistency. The equivalence is formally
proven by offering one reduction in each direction.

The reduction of HyTN-Consistency to MPG-Threshold allows to apply,
in the context of HyTNs, any of the algorithms known for MPGs, included the
exponential and subexponential ones.

Vice versa, in consideration of the fact that the MPG-Decision
?
∈ P question

is an open problem [5, 7, 27, 41, 47], the reduction of MPG-Decision to HyTN-
Consistency confirms that HyTN-Consistency offers an algorithmically more
ambitious and mathematically steeper generalization of STN-Consistency (see also
Remark 1). Moreover, the reduction gives a further evidence that, within STNs,
a new algorithmic approach is necessary in order to manage temporal aspects of
event like the synchronization one presented in the Introduction.

Let us start considering the first reduction.

Theorem 7. There exists a log-space2, linear-time, local-replacement3 reduction
from HyTN-Consistency to MPG-Threshold.

2 A strong and basic-form of reduction introduced by Papadimitriou in [38].
3 A restricted kind of Karp reduction introduced in [24].



20

v1

v2

v3

u

A,w
A
(v1

)

A,wA(v2)

A,w
A (v

3 )

(a) Hyperarc A.

v1

v2

v3

Au

wA
(v1

)

wA(v2)

w
A (v

3 )

0

(b) MPG representation of A.

Fig. 7: The conversion of a hyperarc into a white MPG node and its incident arcs.

Since this reduction plays a main role in the algorithmic solutions proposed in
this paper, we firstly describe how it works and, secondly, we prove its correctness
by means of two lemmas, Lemma 4 and Lemma 5.

The reduction goes as follows.
Let H = (V,A) be a HyTN. We assume that every v ∈ V is the tail of some

arc A ∈ A. This assumption is not a restriction since, if H contains a sink node v,
i.e., a node v with no arc A ∈ A having tail in it, then H is consistent if and only
if so is Hv, the HyTN obtained from H by removing node v and every hyperarc
having v as an head. Indeed, any feasible scheduling s : V 7→ R for H, once
projected onto V \ {v}, gives a feasible scheduling for Hv since every constraint
involving v has been dropped and no constraint has been added; conversely, any
feasible scheduling s for Hv can be easily extended to a feasible scheduling s
for H by exploiting the property of v being a sink node: it is sufficient to set
s(v) , min{s(tA)− wA(v) | A ∈ A, v ∈ HA}.

Now, let us consider a mean payoff game GH = (V0∪· V1, E) where: (1) V0 = V ,
V1 = A, nodes in V0 are colored by black while nodes in V1 are colored by white,
and (2) for each A ∈ A, the following weighted arcs are added to E:
– an arc of weight 0 from the black node ta to the white node A, i.e., arc (tA, A, 0);
– for each head node h ∈ HA, an arc of weight wA(h) from the white node A to

the black node h, i.e., arc (A, h,wA(h)).
In short, GH = (V0 ∪· V1,A), with V0 = V , V1 = A, E = {(tA, A, 0) | A ∈ A} ∪
{(A, h,wA(h)) | A ∈ A, h ∈ HA}. Fig. 7 depicts how a hyperarc is transformed into
a MPG subnetwork while Fig. 8 reports a pseudocode for the whole construction
process, i.e., Algorithm 1.

GH has |V |+ |A| nodes and O(m) arcs and can be constructed in linear time.
Moreover, GH is a bipartite graph with bipartition (V0, V1) and it has been ob-
tained from H by a simple local replacement rule: replace every hyperarc A ∈ A
by a claw subgraph as depicted in Fig. 7. For each single object, it is necessary
only to manage a constant number of indexes, each of them having a polynomial
size; thus the reduction is log-space. Fig. 9 depicts an MPG obtained applying the
reduction to the motivating example HyTN depicted in Fig. 3;

Now, let us introduce the formal proof of Theorem 7 by the following two
lemmas.
Lemma 4. If H is consistent then every node of GH is a winning start position
for Player 1.



21

Algorithm 1: makeACorrespondingGame(H)
// a HyTN H = (V,A)

1 V0 ← V ;
2 V1 ← A;
3 E ← ∅;
4 foreach A ∈ A do
5 E ← E ∪ (tA, A, 0);
6 foreach h ∈ HA do
7 E ← E ∪ (A, h,wA(h));

Output: The MPG GH = (V0 ∪· V1, E)

Fig. 8: The algorithm implementing the reduction from a HyTN to the corresponding MPG.

ET2

ET3

ET5

E
1

b1

b2

b3

B
2

eu1

el1

eu2

el2

eu3

el3

eu4

el4

eu5

el5

eu6

el6

e7

e8

e9

h1

0

0

0

7
4

12

6
9

0

0−17

6

0

0−6

5

0 0

−20 10

0 0

0

−2

0

0

0

−1

0

0

0

−5

0

0

0
0

Fig. 9: The MPG equivalent to the HyTN depicted in Fig. 3, obtained by considering the
(equivalent) multi-head HyTN transformation of the multi-tail HyTN shown in Fig. 3. A
winning positional strategy π1 for Player 1 is highlighted by thick arcs. The dashed arcs are
those not prescribed by strategy π1, i.e., they are removed when projecting the MPG on π1.

Proof. Since H is consistent, there exists a feasible scheduling s : V → R such
that, for each hyperarc A ∈ A, the reduced slack weight is non-negative wsA ≥ 0.
Consider the following positional strategy π1 for Player 1: for each A ∈ V1,

π1(A) = arg min
h∈HA

{s(h)− wA(h)}.

We claim that π1 ensures Player 1 the win, wherever node the game starts from
and however Player 0 moves. In order to show this, we prove that the projection
graph Gπ1 is conservative exhibiting a feasible potential p. Let p : V0 ∪ V1 → R be
defined as follows:

p(v) ,

{
s(v) if v ∈ V0,
s(t(v)) if v ∈ V1.

(2)



22

Now, let a = (u, v, w) be any arc of Gπ1 :
Case 1: if v ∈ V1, then v is a hyperarc of H with t(v) = u and w = 0; therefore,
p(v) = s(t(v)) = s(u) = p(u) since u ∈ V0. Then wp(u, v) = w−p(v)+p(u) = 0 ≥ 0
follows;
Case 2: if v ∈ V0, then u ∈ V1 and w = wu(v). Moreover, v = π1(u), which
implies that v = argminh∈Hu

{s(h) − wu(h)}. Therefore, recalling that wsu ≥ 0,
i.e., s(t(u)) ≥ minh∈Hu

{s(h)− wu(h)}:

p(u) = s(t(u)) ≥ min
h∈Hu

{s(h)− wu(h)} = s(v)− wu(v) = p(v)− w.

Hence, wp(u, v) = w − p(v) + p(u) ≥ 0.
In conclusion, Gπ1 is conservative. Therefore, the positional strategy π1 certifies
that any node of G is a winning start position for Player 1.

Lemma 5. If every node of GH is a winning start position for Player 1 then H
is a consistent HyTN.

Proof. If every node is a winning start position for Player 1, then there exists a
positional strategy π1 which is everywhere winning for Player 1. Notice that Gπ1

must be conservative since Player 0 can clearly win any play starting from a node
located on a negative cycle. Let p : V0∪V1 → R be a feasible potential for Gπ1 . We
claim that the restriction of p onto V0 is a feasible scheduling for H. Indeed, for
any hyperarc A of H, (tA, A, 0) is an arc of Gπ1 , whence p(A) ≤ p(tA). Moreover,
(A, π1(A), wA(π1(A))) is also an arc of Gπ1 , whence p(π1(A)) ≤ p(A)+wA(π1(A)).
Since π1(A) ∈ HA, then the following holds:

p(tA) ≥ p(A) ≥ p(π1(A))− wA(π1(A))
≥ min
h∈HA

{s(h)− wA(h)}.

Hence, the restriction of p onto V0 is a feasible scheduling for H. Thus, H is
consistent.

In Fig. 10 the values under the nodes represent a feasible potential for the
projection of the MPG depicted in Fig. 9. By Lemma 5, the restriction of such
a feasible potential on the black nodes is also a feasible scheduling for the corre-
sponding HyTN depicted in Fig. 3. Now, we have all the necessary results to prove
the following theorem.

Theorem 8. Let H = (V,A) be an integral-weighted HyTN, m =
∑
A∈A |A|,

and W = maxA∈A{maxh∈A |wA(h)|} the maximal weight value present in H. The
following propositions hold:

1. There exists an O((|V |+ |A|)mW ) pseudo-polynomial time algorithm deciding
HyTN-Consistency for H;

2. There exists an O((|V |+|A|)mW ) pseudo-polynomial time algorithm such that,
given on input any consistent HyTN H, it returns as output a feasible schedul-
ing s : VH → Z of H;

3. There exists an O((|V |+|A|)mW ) pseudo-polynomial time algorithm such that,
given on input any not-consistent HyTN H, it returns as output a negative cycle
(S, C) of H.



23

ET2

2

ET3

12

ET5

5

E
1

24

b1

0

b2

7

b3

0

B
2

0

eu1

0

el1
19

eu2

12

el2
18

eu3

0

el3

25

eu4

0

el4
2

eu5

7

el5
8

eu6

0

el6

5

e7

0

e8

0

e9

0

h1

0

0

0

0

7
4

12

6
9

0

0−17

6

0

0−6

5

0 0

−20 10

0 0

0

−2

0

0

0

−1

0

0

0

−5

0

0
0

0
Fig. 10: The integer labels under the nodes are a feasible potential for the projection on π1 of
the MPG depicted in Fig. 9. The restriction of this potential on the black nodes (those in V0)
is a feasible scheduling for the HyTN depicted in Fig. 3 as explained in the proof of Lemma 5.

Algorithm 2: isConsistent(H)
// a HyTN H = (V,A) of unknown consistency state

1 GH ← makeACorrespondingGame(H); // See Algorithm 1
2 (W0,W1)← solveMPG-Threshold(GH, 0); // Brim’s algorithm, see Theorem 6
3 if (W0 = ∅) then Output: YES;
4 else Output: NO;

Fig. 11: Pseudocode of the algorithm for deciding HyTN-Consistency.

Proof. 1. The decision algorithm is sketched in Fig. 11. It takes in input a HyTN
H = (V,A) and, in line 1, constructs the corresponding MPG GH as described
in Theorem 7. This first step takes O(m) time and yields a graph with |V |+ |A|
nodes and O(m) arcs. Then, in line 2, the instance of MPG-Threshold with
T = 0 on graph GH is solved in O((|V |+ |A|)mW ) time by the Value Iteration
Algorithm (see Theorem 6). The output consists in a partition of GH nodes
into two sets: W1 = {v ∈ V ∪ A | νv ≥ 0} and W0 = {v ∈ V ∪ A | νv < 0}. If
W0 is empty, then H is consistent by Lemma 5, otherwise it is not consistent
by Lemma 4.

2. In caseW0 is empty, a feasible scheduling is obtained as shown in Algorithm 3.
First, in line 2, the algorithm computes a positional winning strategy π1 for



24

Algorithm 3: computeAFeasibleSchedule(H)
// a consistent HyTN H = (V,A)

1 G← makeACorrespondingGame(H); // See Algorithm 1
2 π1 ← MPG-Synthesis (G); // Compute a positional winning strategy for Player 1; see

Theorem 6
3 Gπ1 ← compute the subgraph of G induced by π1;

// Recall Gπ1 = (V0 ∪· V1, E), where V0 = V and V1 = A.
4 s← a new node; // s 6∈ V0 ∪ V1
5 Add s to V1 and add an arc (s, v, 0) for each v ∈ V0;
6 p← Bellman-Ford(Gπ1 , s); // compute a potential function p

Output: the restriction of p onto V

Fig. 12: Pseudocode of the algorithm for computing a feasible schedule.

Player 1. This takes O((|V | + |A|)mW ) time by Theorem 6. Next, in line 3,
it builds the graph Gπ1 which is conservative since π1 is a positional winning
strategy for Player 1. Then, in lines 4-5, it adds a new node s to V1 and a new
arc ev = (s, v, 0) for each node v ∈ V0 in Gπ1 . Let G

′
π1

= (V0 ∪· (V1 ∪ {s}), E′)
the graph thus obtained. Observe that every node of G′π1

is reachable from s.
Indeed, every node A ∈ V1 = A can be reached by traversing two arcs: from
s to tA along the arc etA = (s, tA, 0), which belongs to G′π1

as tA ∈ V0, then
from tA to A along the arc (tA, A, 0), which belongs to Gπ1 (and hence to G′π1

)
since tA ∈ V0.
Since the added node s is a source, then G′π1

is conservative too. Therefore,
in G′π1

, the set of distances from node s, computed calling the Bellman-Ford
algorithm in line 6, forms a feasible potential p : V0 ∪ V1 ∪ {s} → Z and the
restriction of p onto V0 = V is a feasible scheduling for H.

3. In case W0 is not empty, a negative cycle is determined by Algorithm 4. Let
G[W0] be the subgraph of G induced by W0, i.e., the graph obtained from G
by removing all nodes not in W0 and all the arcs incident into them. Notice
that every node v ∈W0 is a winning start position for Player 0 in game G[W0]
because v is a winning start position for Player 0 in game G, and no winning
strategy for Player 0 in G can prescribe a move from a node in W0 to a node
in W1; therefore, that same winning strategy remains valid on G[W0]. This
implies that, for every u ∈W0, there exists at least one arc (u, v) with v ∈W0.
In particular, since (V0, V1) is a bipartition of G, then W 0 , W0 ∩ V0 6= ∅. In
line 3, a positional winning strategy π0 for Player 0 on G[W0] is determined.
By Theorem 6, this computation takes time O((|V |+ |A|)mW ). Consider the
set of hyperarcs C = {π0(v)}v∈W 0

; the pair (W 0, C) returned by the algorithm
is a negative cycle. Indeed, for any v ∈ W 0, π0(v) ∈ V1 is a hyperarc of H.
Thus the head set Hπ0(v) ⊆ V0. Also, Hπ0(v) ⊆ W0, since v is a winning start
position for Player 0 and π0 is a winning strategy for Player 0. Combining,
Hπ0(v) ⊆W 0 determining that (W 0, C) is a negative cycle.

Remark 2. In Theorem 8 Item 2), a set of feasible potentials may be obtained
without executing the Bellman-Ford algorithm. Actually, if the partition (W0,W1)
is computed by the Value Iteration Algorithm [7], then a feasible scheduling for H
can be directly derived from the progress measure computed within the algorithm.



25

Algorithm 4: computeANegativeCycle(H,W0)

// a HyTN H = (V,A) = (V0 ∪· V1,A) which is not consistent
// the non-empty set W0 = {v ∈ V | νv < 0}

1 G← makeACorrespondingGame(H); // See Algorithm 1
2 G[W0]← compute the subraph of G induced by W0;
3 π0 ← MPG-Synthesis (G[W0]); // Compute a positional winning strategy for Player 0;

see Theorem 6
4 W 0 ←W0 ∩ V0;
5 C ← {π0(v)}v∈W0

;
Output: (W 0, C)

Fig. 13: Pseudocode of the algorithm for computing a negative cycle.

Algorithm 5: computeAFeasibleSchedule-Remark2(H)

// a consistent HyTN H = (V,A) = (V0 ∪· V1,A)
// ref. Remark 2 and Theorem 6 [7]

1 G← makeACorrespondingGame(H); // ref. Algorithm 1
2 f ← Value-Iteration(G); // compute an energy progress measure for G as in Theorem 6

Output: f

Fig. 14: Pseudocode of the algorithm of Remark 2 for computing a feasible schedule.

In more detail, let G = (V0 ∪· V1, E) be an MPG weighted by w : E → Z. An
energy progress measure is a function f : V0 ∪ V1 → N ∪ {+∞} such that: if
v ∈ V0, then for every (v, v′, w) ∈ E it holds f(v) ≥ f(v′) − w; otherwise, v ∈ V1
and there exists (v, v′, w) ∈ E such that f(v) ≥ f(v′) − w. An energy progress
measure f : V0 ∪ V1 → N∪ {+∞} such that 0 ≤ f(v) < +∞ for every v ∈ V0 ∪ V1
is provided by the resolution algorithm of Theorem 6 in time O((|V |+ |A|)mW ).

The progress measure f is already a feasible scheduling for H: in fact, for every
hyperarc A ∈ A, it holds (tA, A, 0) ∈ E and (A, v, wA(v)) ∈ E, for every v ∈ HA;
combining these two last facts, it follows that:

f(tA) ≥ f(A) ≥ min
v∈HA

{f(v)− wA(v)},

i.e., f is a scheduling satisfying all constrains A ∈ A. This allow us to employ the
algorithm depicted in Fig. 14 instead of the one depicted in Fig. 12 in the case
that W1 = V .

The computational equivalence between MPG-Decision problem and HyTN-
Consistency can be now determined by showing that also MPG-Decision can
be reduced to HyTN-Consistency.

Theorem 9. There exists a log-space, linear-time, local-replacement reduction
from MPG-Decision to HyTN-Consistency.

Proof. Let G = (V0 ∪· V1, E) be an MPG. For each node u ∈ V0 ∪ V1, let NG(u)
denote the outgoing neighborhood of u in G, i.e., NG(u) , {v ∈ V0 ∪ V1 | (u, v) ∈
E}.

A corresponding HyTN H = (V,A), where V = V0 ∪· V1, is constructed from
G as follows. For every u ∈ V1, a hyperarc Au ∈ A is added to H, where:

Au , (u,NG(u), wAu
),



26

with weight wAu
(v) , w(u, v) for every v ∈ NG(u). Moreover, for every u ∈ V0

and every v ∈ NG(u), a hyperarc Auv ∈ A is added to H, where:

Auv , (u, v, w(u, v)).

This construction requires a log-space and linear-time computation.
Now, we firstly prove that if H is consistent then every node of G is a winning

start position for Player 1.
Indeed, let s : V → R be a feasible scheduling for H. Thus, wsA ≥ 0 for every

hyperarc A ∈ A. Notice that, by construction, for each u ∈ V1 there exists a unique
hyperarc Au ∈ A with tail tAu

= u; moreover, it holds that HAu
, NG(u). Hence,

for each u ∈ V1, we can define a positional strategy π1 for Player 1 as follows:

π1(u) , arg min
h∈HAu

{s(h)− wAu
(h)}.

Now, consider the potential function p : V → R defined as: p(u) , s(u) for every
u ∈ V . We argue that p is a feasible potential for Gπ1 .

In fact, let a = (u, v, w) ∈ E be any arc of G:

Case 1: Assume that u ∈ V0. Then, by construction, a = Auv. Hence, from p , s
and the feasibility of s, we have:

p(u) = s(u) ≥ minh∈HAuv
{s(h)− wAuv

(h)}
= s(v)− wAuv

(v)
= p(v)− w

Hence, wp(u, v) = w − p(v) + p(u) ≥ 0;
Case 2: Assume that u ∈ V1. Then, by construction, A = (u,NG(u), wA), where

wA(z) = w(u, z) for every z ∈ NG(u); moreover, notice that v = π1(u) ∈
NG(u) = HA. Hence, from p , s, the feasibility of s, and the definition of
π1, we have:

p(u) = s(u) ≥ minh∈Hu
{s(h)− wAu

(h)}
= s(π1(u))− wAu

(π1(u))
= s(v)− wAu

(v)
= p(v)− w

Hence, wp(u, v) = w − p(v)− p(u) ≥ 0.

Thus, Gπ1 is conservative. This implies that every node of G is a winning start for
Player 1.

Secondly, we prove that if every node of G is a winning start position for
Player 1, then H is consistent.

Let π1 be a positional winning strategy for Player 1. It follows that Gπ1 is
conservative and, therefore, it admits a feasible potential p : V → R. Now, consider
the scheduling function s : V → R for H defined as: s(u) , p(u) for every u ∈ V .
We argue that s is a feasible scheduling of H.

In fact, let A = (tA, HA, wA) ∈ A be any hyperarc of H:



27

Case 1: assume tA ∈ V0. Then, by construction, A = (u, v, w) for some v ∈
NG(u), w ∈ R and u = tA. Hence, from s , p and the feasibility of
p, we have:

s(tA) = p(u) ≥ p(v)− w
= s(v)− wA(v)
= minh∈HA

{s(h)− wA(h)}

Hence, s satisfies A, i.e., wsA ≥ 0 ;
Case 2: assume tA ∈ V1. Then, by construction, A = (u,NG(u), wA) for u = tA

and wA(v) = w(u, v) ∈ R for every v ∈ NG(u); moreover, if v , π1(u),
then v ∈ NG(u) = HA. Hence, from s , p and the feasibility of p, we
have:

s(tA) = p(u) ≥ p(v)− w
= s(v)− wA(v)
≥ minh∈HA

{s(h)− wA(h)}

Hence, s satisfies A, i.e., wsA ≥ 0.

This proves that s satisfies every hyperarc A ∈ A. Then s is a feasible scheduling
of H, which is thus consistent.

7 Computational Experiments

This section describes our empirical evaluation of the proposed consistency check-
ing algorithms to evaluate the performances and the general applicability of the
proposed HyTN model. Both Algorithm 3 and Algorithm 4 consist of one single
call to Algorithm 2, plus some extra computation of lower asymptotic complexity.
Since the cost of these further computations was confirmed to be practically negli-
gible in some preliminary experiments, we report on the results of our experimental
investigations only for Algorithm 2.

All algorithms and procedures employed in this empirical evaluation have been
implemented in C/C++ and executed on a Linux machine having the following
characteristics:

– 2 CPU AMD Opteron 4334;
– 64GB RAM;
– Ubuntu server 14.04.1 Operating System.

The source code and all HyTNs used in the experiments are freely available [14].
The main goal of this empirical evaluation was to determine the average com-

putation time of Algorithm 2, with respect to randomly-generated HyTNs fol-
lowing different criteria, in order to give an idea of the practical behavior of
the algorithm. According to Theorem 8, the worst-case time complexity of Al-
gorithm 2 is O((n + m′)mW ), where n = |V |, m′ = |A|, m =

∑
A∈A |A|, and

W = maxA∈A{maxh∈A |wA(h)|}. Hence, we implemented different experiments
with respect to the parameters n,m′,m, and W . Here we propose a summary
of the obtained results presenting a brief report about four tests, Test 1, Test 2,
Test 3 and Test 4.

In Test 1 the average computation time was determined for different HyTN
orders n to emphasize the practical computation time dependency on n. In Test 2



28

the average computation time was determined for different HyTN maximal edge-
weights W to understand how much the practical computation time is dependent
on W . In Test 3 we investigated how some execution times affect the value of
the standard deviation, with the goal to determine how many instances require a
significant greater computation time with respect to the average time of a data
set. Finally, in Test 4 the average computation time was determined with respect
to different values of the number of possible strategies of Player 1

∏
A∈A |HA| in

order to give an idea about the possible practical relation between execution time
and number of possible strategies.

The generation of random HyTN instances was carried out exploiting two gen-
erators. The first generator was the random workflow schema generator provided
by ATAPIS toolset [31]: it produces random workflow graphs according to dif-
ferent input parameters that allow to control the minimal and maximal number
of activities, probability for having parallel branches, the minimal and maximal
probability of inter-task temporal constraints, etc. on the generated graphs. We
verified that this tool allows the determination of graphs that are not only a closer
approximation to real-world examples, but also more difficult to check than those
generated at random without particular criteria.

We generated benchmarks as follows:

1. First, temporal workflow graphs were generated by fixing the probability for
parallel branches to 10% and maximal value for each activity duration or delay
between activities to a value W , where W was chosen accordingly to the test
type;

2. Then, each workflow graph was translated into an equivalent HyTN H by the
simple transformation algorithm exemplified in Section 2.

It is worth noting that different random workflow graphs all having the same num-
ber of activities may translate into HyTNs having different orders n because the
original workflow graphs may have different number of connector nodes. Consider-
ing the transformation algorithm exemplified in Section 2, it is easy to verify that
a workflow with N activities can translate into a CSTN having between 2N + 2
nodes (when the workflow is a simple sequence) and 5N + 2 nodes (when the
workflow is a sequence of groups of two parallel activities).

ATAPIS toolset has been designed to generate graphs with strongly connected
components (Andreas Lanz, personal communication, October 6, 2015). In partic-
ular, it has been optimized for small graphs with up to 50 activities. This design
choice was motivated by the widely accepted seven process modeling guidelines [34]
which suggests to always “decompose a (workflow) model with more than 50 el-
ements (activities)”. Therefore, we used the tool for generating random workflow
graphs with 100 activities at maximum and, consequently, obtaining HyTNs hav-
ing 502 nodes at most.

In Table 1 we report the orders of the smallest and the largest HyTN deter-
mined from each set of random generated workflow graphs having N activities for
N ∈ {10, 20, . . . , 100}.

In order to study the scalability of the algorithm with respect to the number
of nodes, we had to rely on a second generator of random HyTN graphs. Our
choice has been to use the randomgame procedure of pgsolver suite [39], that can
produce parity games instances for any given number of nodes. In particular, we
exploited randomgame in the following way:



29

Table 1: Orders of the smallest and biggest HyTN determined for each set of random generated
workflows having N activities.

N Order of smallest HyTN Order of biggest HyTN
10 26 50
20 48 94
30 78 138
40 104 196
50 136 236
60 164 268
70 196 306
80 222 350
90 262 394

100 292 410

Table 2: Comparison between different kinds of queue implementation in the Value-Iteration
procedure. All values are in seconds.

FIFO Queue LIFO Queue LIFO Queue
+ Stopping-Criterion

Max-Priority Queue

µ 90.55 11.77 6.98 184.69
σ 487.69 64.10 34.61 653.26

1. First, randomgame was used to generate random directed graphs with out-
degree fixed to 3;

2. Then, the resulting graphs were translated into MPGs by weighting each arc
with an integer randomly chosen in the interval [−W,W ], whereW was chosen
accordingly to the test type;

3. Finally, each MPG G was translated into a HyTN HG by the reduction algo-
rithm of Theorem 9. During the translation from MPG to HyTN, only 10% of
the hyperarcs were maintained having multiple heads, while 90% of hyperarcs
were transformed into standard arcs. This 10%-rule stems from the fact that
we are considering workflow based applications where the percentage of (multi-
headed) hyperarcs is less than 10% compared to standard arcs in general.

With such settings, the resulting HyTNs are characterized by m,m′ ∈ Θ(n).

Before presenting the summary of results, it is worthwhile to present some
implementation choices about Algorithm 2 that we had to adopt. The core of
the algorithm consists of calls to algorithms makeACorrespondingGame(H), that
transforms the given HyTN H into a MPG GH, and solveMPG-Threshold(GH, 0)
(Value Iteration algorithm), that determines for which game nodes s it holds that
vs ≥ 0. The makeACorrespondingGame() implementation didn’t require significant
choices thanks to the simple structure of the algorithm. On the contrary, in the im-
plementation of solveMPG-Threshold() we introduced some further ideas in order
to speed-up the algorithm and avoid unnecessary computations. In particular, it is
not necessary for solveMPG-Threshold() to continue to determine other potential
value vs′ as soon as it determines a value vs < 0: at this point we can already
conclude that the network is not consistent and, with a lower computational cost,
we can yield a generalized negative circuit assessing this fact (Lemmas 4 and 5).

Moreover, we verified that there is an important data structure in the original
Value Iteration algorithm, a queue, that is not further specified by the authors
and that different implementations of it affect the performance of the algorithm.



30

Therefore, we decided to verify whether solveMPG-Threshold() performance could
be appreciably improved adding a suitable stopping criterion and a proper queue
implementation. Table 2 reports the obtained results, mean execution time µ and
its standard deviations σ, determined running the following different versions of
solveMPG-Threshold() on the same data set of 103 not consistent HyTNs4 having
|V | = 106 and W = 103:

1. FIFO Queue: the original queue is implemented as a FIFO queue;
2. LIFO Queue: the original queue is implemented as a a LIFO queue (stack);
3. LIFO Queue+Stopping Criterion: the queue is implemented as stack and

the computation is halted either when all potential values are stable or when
any of them is negative;

4. Max-Priority Queue: the original queue is implemented as a Fibonacci’s
heap.

The results show that, in general, solveMPG-Threshold() performance be-
comes better if the original queue is implemented as a stack and, in particular, a
further improvement can be obtained if the stopping criterion is also considered.
Nevertheless, such improvements can only partially reduce the statistics variability
of the running time, as it is shown in the following experimental results.

As mentioned above, the goal of Test 1 was to determine the average compu-
tation time of Algorithm 2 implementation for different values of n to study the
practical computation time dependency on such parameter.

The instances in Test 1 come from the randomgame generator, except those
for the first row of the table in Fig. 15a which have been built by the ATAPIS
workflow random generator. In particular, for each n ∈ {1 ·105, 2 ·105, . . . , 10 ·105},
1600 HyTN instances with maximum weight W := 1000 and unknown consistency
state were generated by randomgame, whereas 1600 HyTNs of unknown consistency
state and order n around 400 were generated by ATAPIS. The results of the test
are summarized in Fig. 15, where each execution mean time is depicted as a point
with a vertical bar representing its confidence interval determined according to its
standard deviation.

The depicted function interpolating the mean values shows that the practical
performance of the algorithms is definitely better than the theoretical worst-case
bound of O((n + m′)mW ); in our case this last is O(n2) since in the generated
data sets W is constant and m,m′ ∈ Θ(n). Fig. 15c depicts the interpolating
function of experimental execution times and, in red, the function n2/1010 as a
reasonable surrogate for the worst-case execution time. The comparison shows that
the algorithm performs very well in real case executions.

However, since the standard deviation observed in the experiment is not neg-
ligible, we further investigated the behavior of the algorithm and we discovered
that there is a correlation between the execution time of the algorithm and the
consistency state of the input HyTN. Therefore, µ and σ were recalculated con-
sidering two kind of HyTN sets: one having all consistent HyTNs, and the other
having all not consistent HyTNs.

Fig. 16 depicts average execution times obtained in Test 1 calculated consid-
ering samples of either all consistent or all not consistent HyTNs obtained from

4 We considered not consistent HyTNs because they practically required more time to be
solved.



31

n µ (sec) σ
< 4 · 102 0.13 0.42

1 · 105 0.55 5.41
2 · 105 0.99 4.71
3 · 105 1.67 13.55
4 · 105 1.95 12.59
5 · 105 2.58 16.10
6 · 105 2.58 9.43
7 · 105 3.48 22.43
8 · 105 4.58 17.85
9 · 105 4.72 36.19

10 · 105 4.83 30.62

(a) Test 1 results.

0 2 · 105 4 · 105 6 · 105 8 · 105 1 · 106

−20

0

20

40

n

T
im

e
[s
]

Average Execution Time

(b) Interpolation of average execution times
of Test 1.

0 2 · 105 4 · 105 6 · 105 8 · 105 1 · 106
−50

0

50

100

150

200

n

T
im

e
[s
]

Theoretical time bound scaled down by 1010

Average Execution Time

(c) Comparison between theoretical computation times and experimental ones.

Fig. 15: Results of Test 1: average execution times (µ) and relative standard deviations (σ)
over a range of different HyTN orders n. Times are in seconds. Each data set comprised of
1600 HyTN instances of unknown consistency state.

workflow graphs. Fig. 17 offers the same view but for HyTNs obtained from MPG
graphs. In general, the mean execution times for consistent HyTNs are smaller
than the corresponding ones for not consistent HyTNs; furthermore, they also ex-
hibit a negligible standard deviation. However, for samples of consistent HyTNs
obtained from workflows, the standard deviation is not negligible even for samples
with size N = 20. Part of the reasons for this behavior is given by the structure of
the data sets: in each data set HyTNs can differ a lot with respect to their order
and, therefore, they may require very different execution times. For example, the
data set relating to workflow graphs with 20 activities contains HyTNs with or-
der in range [48, 94]. Since the number of activities is usually considered as main
parameter in workflow community, we wanted to maintain such structure of data
set and experiment results to emphasize the dependency of execution time with
respect to such number.

On the other side, for consistent HyTNs determined from MPGs, the observed
standard deviation σ is always less that the 10% of the average execution time
µ with 99% level of confidence, while for not consistent HyTNs it has not been
possible to determine any confidence level because the observed standard deviation
σ resulted to be always high due to some hard instances.



32

N µ (sec) σ
10 6.42 · 10−5 1.22 · 10−5

20 1.05 · 10−4 4.85 · 10−5

30 1.50 · 10−4 5.7 · 10−5

40 2.43 · 10−4 1.04 · 10−4

50 3.20 · 10−4 1.78 · 10−4

60 3.77 · 10−4 1.38 · 10−4

70 4.77 · 10−4 1.28 · 10−4

80 5.73 · 10−4 1.80 · 10−4

90 6.82 · 10−4 2.79 · 10−4

100 8.89 · 10−4 4.10 · 10−4

(a) Average execution times for con-
sistent HyTNs obtained from workflow
graphs with N activities.

20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

1.2

·10−3

N

T
im

e
[s
]

(b) Interpolation of average execution
times of Table 16a.

N µ (sec) σ
10 4.45 · 10−4 1.38 · 10−3

20 1.50 · 10−3 5.10 · 10−3

30 4.04 · 10−3 1.48 · 10−2

40 1.10 · 10−2 3.62 · 10−2

50 1.64 · 10−2 8.42 · 10−2

60 4.36 · 10−2 1.20 · 10−1

70 8.08 · 10−2 2.71 · 10−1

80 1.31 · 10−1 4.20 · 10−1

90 1.59 · 10−1 5.22 · 10−1

100 2.59 · 10−1 8.46 · 10−1

(c) Average execution times for not con-
sistent HyTNs obtained from random
workflow graphs with N activities.

20 40 60 80 100

−0.5

0

0.5

1

N

T
im

e
[s
]

(d) Interpolation of average execution
times of Table 16c.

Fig. 16: Average execution times obtained in Test 1 calculated considering samples of either
all consistent or all not consistent HyTNs obtained from workflow graphs.

Even though procedure solveMPG-Threshold() could require up to Θ(W ) up-
dates according to the theoretical worst-case bound, our experiments suggest that,
in practice, some kind of dependency of the running time onW is appreciable only
for a few MPG games, all associated to not consistent HyTN instances.

The goal of Test 2 was to determine the average computation time of Algo-
rithm 2 for different values of W , in order to understand how much the practical
computation time is dependent onW . Therefore, we considered three possible edge
weight ranges, [102, 103], [105, 106], and [108, 109], and for each of them two data
sets have been built using the randomgame generator, one comprising only consis-
tent HyTNs, and the other only not consistent ones. Each data set comprised of
800 HyTNs instances having |V | = 105 nodes, m,m′ ∈ Θ(n) and edge weights
in the corresponding weight range. Fig. 18 depicts the results on these six data
sets. Applying the worst-case analysis for these data sets, it results that the time
complexity should be O(W ) since n, m and m′ are constants. On the contrary,
the determined interpolation functions representing the experimental execution
times do not show any clear dependence on W . This result suggests that, in prac-
tice, uniform random weighted instances are decided very quickly with respect to



33

n µ (sec) σ
1 · 105 0.16 0.04
2 · 105 0.35 0.07
3 · 105 0.56 0.01
4 · 105 0.75 0.02
5 · 105 0.96 0.02
6 · 105 1.18 0.03
7 · 105 1.38 0.03
8 · 105 1.59 0.04
9 · 105 1.86 0.06

10 · 105 2.07 0.08

(a) Average execution times for con-
sistent HyTNs obtained from MPGs.

2 · 105 4 · 105 6 · 105 8 · 105 1 · 106

0.5

1

1.5

2

n

T
im

e
[s
]

(b) Interpolation of average execution
times of Table 17a.

n µ (sec) σ
1 · 105 0.95 7.63
2 · 105 1.64 6.60
3 · 105 2.79 19.11
4 · 105 3.15 17.73
5 · 105 4.21 22.67
6 · 105 3.98 13.19
7 · 105 5.60 31.58
8 · 105 7.58 24.89
9 · 105 7.58 51.03

10 · 105 7.60 43.14

(c) Average execution times for
not consistent HyTNs obtained from
MPGs.

2 · 105 4 · 105 6 · 105 8 · 105 1 · 106

−40

−20

0

20

40

60

n

T
im

e
[s
]

(d) Interpolation of average execution
times of Table 17c.

Fig. 17: Average execution times obtained in Test 1 calculated for samples of either all consis-
tent or all not consistent HyTNs obtained from MPG graphs.

the magnitude of their weights and that the algorithm does not seem to exhibit
the worst-case pseudo-polynomial behavior predicted in the asymptotic analysis.
Moreover, the average execution times for each data set comprising only consis-
tent HyTNs are less than those for the corresponding data of only not consistent
HyTNs. Only for consistent HyTNs data sets the standard deviation was below
7% than the average execution time with a confidence of 99%.

In order to better understand how some execution times affect the value of the
standard deviation, we conducted a third experiment, Test 3, with the goal to visu-
alize the distribution of the instances with computation times significantly above
the average. Procedure solveMPG-Threshold() has been executed on 103 ran-
domly generated not consistent HyTNs, each having order n = 106 and W ≈ 103.
The determined running times are depicted in Fig. 19a: most of the instances are
decided very quickly, i.e., in a time between 0 and 10 seconds, while a smaller por-
tion of the HyTNs required a time between 10 and 500 seconds. In more details, in
repeated tests we verified that, approximately, 1% of the HyTN instances required
a time between 50 and 100 seconds to be decided, 0.4% required a time between
100 and 500 seconds, and, finally, only 0.1% required more than 500 seconds. These
results are shown in Fig. 19b.



34

200 400 600 800 1,000
0.15

0.16

0.17

0.18

T
im

e
[s
]

Average Execution Time for
Consistent HyTNs.

(a) 102 ≤W ≤ 103

2 · 105 4 · 105 6 · 105 8 · 105 1 · 106
0.15

0.16

0.17

0.18

T
im

e
[s
]

Average Execution Time for
Consistent HyTNs.

(b) 105 ≤W ≤ 106

2 · 108 4 · 108 6 · 108 8 · 108 1 · 109
0.15

0.16

0.17

0.18

T
im

e
[s
]

Average Execution Time for
Consistent HyTNs.

(c) 108 ≤W ≤ 109

200 400 600 800 1,000

−5

0

5

10

T
im

e
[s
]

Average Execution Time for
Not Consistent HyTNs.

(d) 102 ≤W ≤ 103

2 · 105 4 · 105 6 · 105 8 · 105 1 · 106

−5

0

5

10

T
im

e
[s
]

Average Execution Time for
Not Consistent HyTNs.

(e) 105 ≤W ≤ 106

2 · 108 4 · 108 6 · 108 8 · 108 1 · 109

−5

0

5

10

T
im

e
[s
]

Average Execution Time for
Not Consistent HyTNs.

(f) 108 ≤W ≤ 109

Fig. 18: Average execution times in Test 1 calculated considering samples of either all consistent
or all not consistent HyTNs.

0 200 400 600 800 1,000

0

500

1,000

instance index

T
im

e
[s
]

(a) Execution times of 103 not consistent
HyTNs instances with n = 106 and W = 103.

0-3 3-5 5-10 10-50 50-100100-500 500+
0

10

20

30

40

Time Range [s]

%
in
st
an

ce
s

(b) Instance classification with respect to
solveMPG-Threshold() execution time.

Fig. 19: solveMPG-Threshold() execution times obtained in Test 3 determined considering
samples of all not consistent HyTN instances.

Such behavior has been confirmed in other tests with different graph orders and
maximum edge weight values. In several experiments we conducted, we observed
that the maximum execution time of the algorithm keeps growing as we enlarge the
size of the dataset. This explains why the standard deviation can’t be reduced. If
we could characterize such hard instances in general, we would be making a major
progress in understanding the computational complexity of MPGs. We didn’t find
any pattern or property that characterizes the found hard instance. Here we can
only show a simple family of HyTNs instances in which the execution time grows



35

v5

v4 v3

v0

v1

v2

A0, 0A0, 0

A1, 0A1, 0

A2,−1A3,−W

A4, 0

A5, 0

(a) A HyTN HW for which Algorithm 2 takes Θ(W ) time.

A4

v4v5

A5

A3 v3

v0

A0 v1

A1

v2

A2

0

00
0 0

0

0−1

0−W
00

0 0

(b) The corresponding MPG GHW
computed by Algorithm 1.

Fig. 20: A HyTN which requires Θ(W ) computation time by Algorithm 2.

Π µ (sec) σ
1.13 · 1015 3.02 · 10−4 1.36 · 10−3

1.27 · 1030 7.78 · 10−4 3.34 · 10−3

8.08 · 1038 3.45 · 10−3 2.15 · 10−2

1.43 · 1045 8.13 · 10−3 3.70 · 10−2

1.00 · 1050 1.63 · 10−2 6.15 · 10−2

9.10 · 1053 2.65 · 10−2 1.02 · 10−1

2.02 · 1057 3.46 · 10−2 1.05 · 10−1

1.61 · 1060 4.82 · 10−2 1.62 · 10−1

5.80 · 1062 7.44 · 10−2 2.63 · 10−1

1.13 · 1065 9.01 · 10−2 3.21 · 10−1

(a) Average execution times obtained for
different values of the product of the heads
of hyperarcs Π.

1011 1023 1035 1047 1059

−0.2

0

0.2

0.4

Π

T
im

e
[s
]

(b) Interpolation of average execution
times in Table 21a.

Fig. 21: Average Execution Times obtained in Test 4.

linearly with W . The family is given by just one single HyTN graph where only
W changes, as depicted in Fig. 20a. The corresponding MPG is shown in Fig. 20b
and provides a clear example where Brim’s Value Iteration algorithm [7] performs
poorly. It is worth noting that in the context of MPGs this example can be reduced
down to 6 nodes.

Finally, in order to show how much the running time is dependent on the
number of different positional strategies of one player, in Test 4 the average
computation time has been calculated with respect to different values of the
product of the heads of hyperarcs (i.e.,

∏
A∈A |HA|) in a HyTN. In particular,

for each Π ∈ {1015, 1030, . . . , 1065}, 2500 HyTNs instances (V,A) each having
|V | = 50 nodes,

∏
A∈A |HA| ≈ Π, and W = 103 have been generated by means

of randomgame generator. The results of the evaluation are depicted in Fig. 21,
where Π values are drawn in logarithmic scale. Analyzing the diagram in the fig-



36

ure it is possible to say that, experimentally, the average execution time increases
only logarithmically with respect to the number of different positional strategies
of one player. This results is quite interesting because, considering the HyTN in
Fig. 20a, it is evident that the time for checking a HyTN is more dependent on
the edge weight magnitude than on the number of different positional strategies
of one player.

8 Related Work

In the literature there are some extension proposals of the STN model to augment
the capability to represent temporal constraints.

In the STN seminal paper [18], Dechter et al. firstly proposed to consider the
Temporal Constraint Satisfaction Problem (TCSP). A binary constraint in a TCSP
is represented using a set of intervals rather than a single interval as in an STN.
In particular, a binary constraint Cij = {[a1, b1], [a2, b2], . . . , [al, bl]} between time
points xi and xj represents the disjunction a1 ≤ xj − xi ≤ b1 ∨ a2 ≤ xj − xi ≤
b2 ∨ al ≤ xj − xi ≤ bl. The problem of verifying consistency of a TCSP is NP-
complete as the same authors showed in the paper; hence, they finally propose to
consider STNs as a tractable simplified model.

A similar kind of generalization considering disjunction of temporal distance
constraints was proposed by Stergiou and Koubarakis [44] defining the Disjunctive
Temporal Problem (DTP). A DTP consists of a set of variablesX = {x1, x2, . . . , xn}
having continuous domains and representing time points and a set of disjunctive
difference constraints between the time points in the form: a1 ≤ xi1 − xj1 ≤
b1 ∨ a2 ≤ xi2 − xj2 ≤ b2 ∨ . . .∨ ak ≤ xik − xjk ≤ bk; where xi1 , xj1 , . . . , xik , xjk are
time points from X and a1, b1, . . . , ak, bk are real numbers. A DTP is consistent
if there exists an instantiation of variables X to real numbers satisfying all the
constraints. Since DTPs are a generalization of TCSPs, also for DTPs the con-
sistency check problem is NP-complete. In [44] the authors presented some of the
theoretical results characterizing the possible backtracking algorithms that solve
the consistency problem in terms of search nodes visited and consistency checks
performed.

In 2005, Kumar proposed to consider a restricted class of DTP in order to
maintain some of the expressive power of DTPs but, at the same time, allowing
an efficient consistency check. In particular, in [40], RDTPs (restricted DTPs) is
defined as a disjunctive temporal problem where a constraint is one of the follow-
ing types: (Type 1) (l ≤ xi − xj ≤ u), (Type 2) (l1 ≤ xi ≤ u1) ∨ (l2 ≤ xi ≤
u2) . . . (lj ≤ xi ≤ uj), (Type3) (l1 ≤ xi ≤ u1) ∨ (l2 ≤ xj ≤ u2), where xi and xj
represent a timepoint variable, and li, ui real values. An RDTP instance can be
solved in strongly polynomial-time deterministic algorithm transforming it into a
binary Constraint Satisfiability Problem (CSP) over meta variables representing
constraints of Type 2 or Type 3 and, then, showing that such binary constraints
are also connected row-convex (CRC) constraints, and, then, exploiting the prop-
erties of CRC constraints. An instantiation of a consistency check algorithm for
RDTPs that further exploits the structure of CRC constraints has a running time
complexity of O((|TP2| + |TP3|)3d2max + (|TP2| + |TP3|)2(NM + d2max)), where
TP2 is the set of Type 2 constraints, TP3 is the set of Type 3 ones, dmax is the
maximum number of disjuncts in any constraint, and N/M is the number of the



37

nodes/arcs of the instance, respectively. In the same paper, Kumar presented also
a simpler and faster, but randomized, algorithm for the same class RDTP.

An attempt to model some aspects of STNs similar to those addressed by
HyTNs was lead in [2], where fun-in and fun-out subgraphs much resembling our
multi-tail and multi-head hyperarcs were considered. However, since the problem
1-in-3-SAT is NP-complete even when all the literals comprising the clauses are
positive, it readily follows that their models lead to NP-complete problems even
when fun-out subgraphs (or fun-in subgraphs) are banned. As such, the opportu-
nity for tractability spotlighted in this paper is missed in those models.

Another approach to extend STN is represented by the proposal of Khatib
et al. [28, 29]. They introduced the characterization of hard and soft constraints.
STNs are able to model just hard temporal constraints, i.e., they can represent
instances where all constraints have to be satisfied, and that the solutions of a
constraint are all equally satisfying. However, such assumption can be too much
restrictive in some real-life scenarios. For example, it may be that some solutions
are preferred with respect to others and, hence, the main problem is to find a
way to satisfy them optimally, according to the preferences specified. To address
these kind of problems, in [28] the authors introduced a framework in which each
temporal constraint is associated with a preference function specifying the prefer-
ence for each distance or duration; a soft simple temporal constraint is a 4-tuple
〈(X,Y ), I, A, f〉 consisting of (1) an ordered pair of variables (X,Y ) over the inte-
gers, called the scope of the constraint; (2) an interval I = [a, b], where a and b are
integers such that a ≤ b; (3) a set of preferences A; (4) a preference function f ,
where f : [a, b] 7→ A is a mapping of the elements belonging to interval I into pref-
erence values, taken from set A. An assignment vx and vy to the variables X and Y
is said to satisfy the constraint 〈(X,Y ), I, A, f〉 if and only if a ≤ vy − vx. In such
a case, the preference associated to the assignment by the constraint is f(vy−vx).
Using soft simple temporal constraint, a new model of temporal constraint net-
work has been introduce: the Simple Temporal Problem with Preferences (STPP).
In general, each solution of a STPP has a global preference value, obtained by
combining in a suitable way the preference levels at which the solution satisfies
the constraints. The optimal solutions of an STPP are those solutions which are
not dominated by any other solution in terms of global preference. It was shown
in [28] that, in general, STPPs belongs to the class of NP-hard problems. When the
preference functions are semi-convex and some other side conditions are observed,
then the problem to find an optimal solutions of an STPP is tractable [29].

Finally, another kind of possible extension is represented by the use of 6= oper-
ator instead of ≤ in the binary constrains of STNs. Koubarakis [30] showed that
if in a STN temporal constraints are used together with disequations in the form
x−y 6= r, where r is a real constant, then the problem of deciding consistency is still
tractable. This extension does not allow the specification of alternative constraints
but it is interesting because it allows to exclude some solutions maintaining the
consistency problem tractable.

9 Conclusions and Future Work

In the literature, there are different frameworks and approaches aimed to extend
the STN model allowing the representation of disjunctive temporal constraints [18,



38

44], but at cost of an exponential-time consistency check procedure. The only
extension with a polynomial time consistency check procedure we are aware of is
the one of Kumar [40] mentioned in Section 8.

In this paper, we proposed a novel extension, called Hyper Temporal Network
(HyTN), where it is possible to represent a new kind of disjunctive constraint,
hyper constraint, and to check the consistency of a network in pseudo-polynomial
time. A hyper constraint is a suitable set of STN distance constraints and it is sat-
isfied if at least one distance constraint is satisfied. There could be two kinds of hy-
perarc: multi-head and multi-tail. In a multi-head hyperarc, its distance constraints
are between a common source timepoint and different destination timepoints. In a
multi-tail hyperarc, its distance constraints are between different source timepoints
and a common destination timepoint.

A HyTN is said consistent if it is possible to determine an assignment for all its
timepoints such that all hyperarcs are satisfied. The computational complexity of
the consistency problem of a HyTN is NP-complete when instances contain both
kinds of hyperarc.

On instances containing either only multi-tail hyperarcs, or only multi-head
hyperarcs, the consistency problem can be solved by reducing it, in a very efficient
way, to the search of a winning strategy in an equivalent Mean Payoff Game
(MPG), and exploiting the known winning-strategy search algorithms for MPGs.

Moreover, we presented an empirical analysis of the efficiency of the resulting
consistency check algorithm. The empirical analysis shows that the proposed al-
gorithm can be effectively used in real cases and confirms the general robustness
of our approach.

As future work we are investigating the frontier of practical efficient consistency
checking for possible generalizations of the HyTN model as, for example, those
including contingent constraints [46] or conditional ones [45].

References

1. van der Aalst, W., ter Hofstede, A., Kiepuszewski, B., Barros, A. (2003): Workflow pat-
terns. Distributed and Parallel Databases 14(1), 5–51. DOI 10.1023/A:1022883727209

2. Barták, R., Čepek, O.: Temporal networks with alternatives: Complexity and model. In:
D. Wilson, G. Sutcliffe (eds.) Proceedings of the Twentieth International Florida Artificial
Intelligence Research Society Conference, May 7-9, 2007, Key West, Florida, USA., pp.
641–646. AAAI Press (2007)

3. Bellman, R. (1958): On a routing problem. Quarterly of Applied Mathematics 16(1),
87–90

4. Bettini, C., Wang, X.S., Jajodia, S. (2002): Temporal reasoning in workflow systems. Dist.
& Paral. Data. 11(3), 269–306. DOI 10.1023/A:1014048800604

5. Björklund, H., Vorobyov, S. (2007): A combinatorial strongly subexponential strategy
improvement algorithm for mean payoff games. Discrete Applied Mathematics 155(2),
210 – 229. DOI 10.1016/j.dam.2006.04.029

6. Brim, L., Chaloupka, J. (2012): Using strategy improvement to stay alive. Int. J. Found.
Comput. Sci. 23(3), 585–608. DOI 10.1142/S0129054112400291

7. Brim, L., Chaloupka, J., Doyen, L., Gentilini, R., Raskin, J.F. (2011): Faster algorithms
for mean-payoff games. Formal Methods in System Design 38(2), 97–118. DOI 10.1007/
s10703-010-0105-x

8. Chinn, S.J., Madey, G.R. (2000): Temporal representation and reasoning for workflow in
engineering design change review. IEEE Transactions on Engineering Management 47(4),
485–492. DOI 10.1109/17.895343



39

9. Combi, C., Gambini, M., Migliorini, S., Posenato, R.: Modelling temporal, data-centric
medical processes. In: Proc. of the 2nd ACM SIGHIT Int. Health Informatics Symp.,
IHI ’12, pp. 141–150. ACM, New York, NY, USA (2012). DOI 10.1145/2110363.2110382

10. Combi, C., Gambini, M., Migliorini, S., Posenato, R. (2014): Representing business pro-
cesses through a temporal data-centric workflow modeling language: An application to
the management of clinical pathways. Systems, Man, and Cybernetics: Systems, IEEE
Transactions on 44(9), 1182–1203. DOI 10.1109/TSMC.2014.2300055

11. Combi, C., Gozzi, M., Posenato, R., Pozzi, G. (2012): Conceptual modeling of flexible
temporal workflows. ACM Trans. Auton. Adapt. Syst. 7(2), 19:1–19:29. DOI 10.1145/
2240166.2240169

12. Combi, C., Posenato, R.: Controllability in temporal conceptual workflow schemata. In:
BPM 2009 - Proc. of the 7th Business Process Management Conference, pp. 64–79 (2009).
DOI 10.1007/978-3-642-03848-8_6

13. Combi, C., Pozzi, G.: Architectures for a temporal workflow management system. In:
Proc. of the 2004 ACM Symp. on Applied Computing, SAC ’04, pp. 659–666. ACM, New
York, NY, USA (2004). DOI 10.1145/967900.968040

14. Comin, C.: A HyTN Consistency Check Algorithm Implementation in C++. http://
profs.scienze.univr.it/~posenato/software/hytn/2015_v1_Code.tgz (2015)

15. Comin, C., Posenato, R., Rizzi, R.: A tractable generalization of simple temporal networks
and its relation to mean payoff games. In: 21st International Symposium on Temporal
Representation and Reasoning (TIME 2014), pp. 7–16. IEEE CPS (2014). DOI 10.1109/
TIME.2014.19

16. Comin, C., Rizzi, R.: Dynamic consistency of conditional simple temporal networks via
mean payoff games: a singly-exponential time DC-Checking. In: 22nd International Sym-
posium on Temporal Representation and Reasoning (TIME 2015), pp. 19–28. IEEE CPS
(2015). DOI 10.1109/TIME.2015.18

17. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms. The
MIT Press (2001)

18. Dechter, R., Meiri, I., Pearl, J. (1991): Temporal constraint networks. Artificial Intelligence
49(1–3), 61–95. DOI 10.1016/0004-3702(91)90006-6

19. Eder, J., Gruber, W., Panagos, E.: Temporal modeling of workflows with conditional
execution paths. In: M. Ibrahim, J. Küng, N. Revell (eds.) Database and Expert Systems
Applications (DEXA 2000), LNCS, vol. 1873, pp. 243–253. Springer Berlin Heidelberg
(2000). DOI 10.1007/3-540-44469-6_23

20. Eder, J., Panagos, E., Rabinovich, M.: Time constraints in workflow systems. In: M. Jarke,
A. Oberweis (eds.) Advanced Information Systems Engineering, LNCS, vol. 1626, pp. 286–
300. Springer Berlin Heidelberg (1999). DOI 10.1007/3-540-48738-7_22

21. Ehrenfeucht, A., Mycielski, J. (1979): Positional strategies for mean payoff games. Int.
Journal of Game Theory 8(2), 109–113. DOI 10.1007/BF01768705

22. Ford Jr., L.R., Fulkerson, D.R.: Flows in networks, vol. 3. Princeton University Press
(1962)

23. Gonzalez del Foyo, P.M., Reinaldo Silva, J.: Using time Petri Nets for modeling and veri-
fication of timed constrained workflow systems. In: ABCM Symposium Series in Mecha-
tronics, pp. 471–478. Dept. Of Mechatronics, University of São Paulo, Brazil (2008)

24. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman & Co., New York, NY, USA (1979)

25. Hollingsworth, D.: The workflow reference model. http://www.wfmc.org/standards/model.htm
(1995)

26. Hunsberger, L., Posenato, R., Combi, C.: A sound-and-complete propagation-based al-
gorithm for checking the dynamic consistency of conditional simple temporal networks.
In: F. Grandi, M. Lange, A. Lomuscio (eds.) 22st International Symposium on Tem-
poral Representation and Reasoning (TIME 2015), pp. 4–18. IEEE CPS (2015). DOI
10.1109/TIME.2015.26

27. Jurdziński, M. (1998): Deciding the winner in parity games is in UP ∩ co-UP. Information
Processing Letters 68(3), 119–124. DOI 10.1016/S0020-0190(98)00150-1

28. Khatib, L., Morris, P., Morris, R., Rossi, F.: Temporal constraint reasoning with prefer-
ences. In: Proceedings of the 17th International Joint Conference on Artificial Intelligence
- Volume 1, IJCAI’01, pp. 322–327. Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA (2001)

29. Khatib, L., Morris, P., Morris, R., Rossi, F., Sperduti, A., Venable, K.B. (2007): Solving
and learning a tractable class of soft temporal constraints: Theoretical and experimental
results. AI Communications 20(3), 181–209

http://profs.scienze.univr.it/~posenato/software/hytn/2015_v1_Code.tgz
http://profs.scienze.univr.it/~posenato/software/hytn/2015_v1_Code.tgz


40

30. Koubarakis, M. (1997): From local to global consistency in temporal constraint networks.
Theoretical Computer Science 173(1), 89 – 112. DOI 10.1016/S0304-3975(96)00192-2

31. Lanz, A., Reichert, M.: Enabling time-aware process support with the atapis toolset. In:
L. Limonad, B. Weber (eds.) Proceedings of the BPM Demo Sessions 2014, CEUR Work-
shop Proceedings, vol. 1295, pp. 41–45. CEUR (2014)

32. Lanz, A., Weber, B., Reichert, M. (2012): Time patterns for process-aware information
systems. Requirements Engineering 19(2), 113–141. DOI 10.1007/s00766-012-0162-3

33. Lifshits, Y., Pavlov, D. (2007): Potential theory for mean payoff games. Journal of Math-
ematical Sciences 145(3), 4967–4974. DOI 10.1007/s10958-007-0331-y

34. Mendling, J., Reijers, H.A., van der Aalst, W.M.P. (2010): Seven process modeling
guidelines (7PMG). Information and Software Technology 52(2), 127–136. DOI
10.1016/j.infsof.2009.08.004

35. Merlin, P., Farber, D.J. (1976): Recoverability of communication protocols–implications
of a theoretical study. Communications, IEEE Transactions on 24(9), 1036–1043. DOI
10.1109/TCOM.1976.1093424

36. Morris, P., Muscettola, N., Vidal, T.: Dynamic control of plans with temporal uncertainty.
In: Proceedings of the 17th International Joint Conference on Artificial Intelligence - Vol-
ume 1, IJCAI’01, pp. 494–499. Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA (2001)

37. Pani, A., Bhattacharjee, G. (2001): Temporal representation and reasoning in artificial
intelligence: A review. Mathematical and Computer Modelling 34(1–2), 55–80. DOI
10.1016/S0895-7177(01)00049-8

38. Papadimitriou, C.H.: Computational Complexity. Addison-Wesley (1994)
39. pgsolver: The pgsolver collection of parity game solvers.

https://github.com/tcsprojects/pgsolver (2013)
40. Satish Kumar, T.K.: On the tractability of restricted disjunctive temporal problems. In:

ICAPS 2005 - Proceedings of the 15th International Conference on Automated Planning
and Scheduling, pp. 110–119 (2005)

41. Schewe, S.: An optimal strategy improvement algorithm for solving parity and payoff
games. In: M. Kaminski, S. Martini (eds.) Computer Science Logic, LNCS, vol. 5213, pp.
369–384. Springer (2008). DOI 10.1007/978-3-540-87531-4_27

42. Schewe, S., Trivedi, A., Varghese, T.: Symmetric strategy improvement. In: M.M. Halldórs-
son, K. Iwama, N. Kobayashi, B. Speckmann (eds.) Automata, Languages, and Program-
ming - 42nd International Colloquium, ICALP 2015, Kyoto, Japan, July 6-10, 2015, Pro-
ceedings, Part II, Lecture Notes in Computer Science, vol. 9135, pp. 388–400. Springer
(2015). DOI 10.1007/978-3-662-47666-6_31

43. Smith, D., Frank, J., Jónsson, A. (2000): Bridging the gap between planning and schedul-
ing. Knowledge Engineering Review 15(1), 47–83. DOI 10.1017/S0269888900001089

44. Stergiou, K., Koubarakis, M. (2000): Backtracking algorithms for disjunctions of temporal
constraints. Artificial Intelligence 120(1), 81–117. DOI 10.1016/S0004-3702(00)00019-9

45. Tsamardinos, I., Vidal, T., Pollack, M.E. (2003): Ctp: A new constraint-based formal-
ism for conditional, temporal planning. Constraints 8(4), 365–388. DOI 10.1023/A:
1025894003623

46. Vidal, T., Fargier, H. (1999): Handling contingency in temporal constraint networks: from
consistency to controllabilities. Journal of Experimental and Theoretical Artificial Intelli-
gence 11(1), 23–45. DOI 10.1080/095281399146607

47. Zwick, U., Paterson, M. (1996): The complexity of mean payoff games on graphs. Theo-
retical Computer Science 158(1–2), 343–359. DOI 10.1016/0304-3975(95)00188-3


