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Abstract When 2 Mha of Amazonian forests are disturbed by selective logging each year, more

than 90 Tg of carbon (C) is emitted to the atmosphere. Emissions are then counterbalanced by

forest regrowth. With an original modelling approach, calibrated on a network of 133 permanent

forest plots (175 ha total) across Amazonia, we link regional differences in climate, soil and initial

biomass with survivors’ and recruits’ C fluxes to provide Amazon-wide predictions of post-logging

C recovery. We show that net aboveground C recovery over 10 years is higher in the Guiana Shield

and in the west (21 �3 Mg C ha�1) than in the south (12 �3 Mg C ha�1) where environmental stress

is high (low rainfall, high seasonality). We highlight the key role of survivors in the forest regrowth

and elaborate a comprehensive map of post-disturbance C recovery potential in Amazonia.

DOI: 10.7554/eLife.21394.001

Introduction
With on-going climate change, attention is increasingly drawn to the impacts of human activities on

carbon (C) cycles (Griggs and Noguer, 2002), and in particular to the 2.1 � 1.1 Pg C yr�1 of C loss

caused by various forms and intensities of anthropogenic disturbances in tropical forests
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(Grace et al., 2014). Among those disturbances, selective logging, i.e. the selective harvest of a few

merchantable tree species, is particularly widespread: in the Brazilian Amazon alone, about 2 Mha

yr�1 were logged in 1999–2002 (Asner et al., 2005). The extent of selective logging in the Brasilian

Amazon was equivalent to annual deforestation in the same period, and resulted in C emissions of

90 Tg C yr�1 (Huang and Asner, 2010) which increased anthropogenic C emissions by almost 25%

over deforestation alone (Asner et al., 2005). In contrast to deforested areas that are used for agri-

culture and grazing, most selectively logged forests remain as forested areas (Asner et al., 2006)

and may recover C stocks (West et al., 2014). Previously logged Amazonian forests may thus accu-

mulate large amounts of C (Pan et al., 2011), but this C uptake is difficult to accurately estimate,

because while detecting selective logging from space is increasingly feasible (Frolking et al., 2009)

(even if very few of the IPCC models effectively account for logging), directly quantifying forest

recovery remains challenging (Asner et al., 2009; Houghton et al., 2012; Goetz et al., 2015). Stud-

ies based on field measurements (e.g. Sist and Ferreira, 2007; Blanc et al., 2009; West et al.,

2014; Vidal et al., 2016), sometimes coupled with modeling approaches (e.g. Gourlet-Fleury et al.,

2005; Valle et al., 2007) or airborne light detection and ranging (LiDAR) measurements (e.g.

Andersen et al., 2014) have assessed post-logging dynamics at particular sites. Nonetheless, to our

knowledge no spatially-explicit investigation of post-logging C dynamics at the Amazon biome scale

is available.

C losses from selective logging are determined by harvest intensity (i.e. number of trees felled or

volume of wood extracted) plus the care with which harvest operations are conducted, which affects

the amount of collateral damage. After logging, C losses continue for several years due to elevated

mortality rates of trees injured during harvesting operations (Shenkin et al., 2015). Logged forests

may recover their aboveground carbon stocks (ACS) via enhanced growth of survivors and recruited

trees (Blanc et al., 2009). Full recovery of pre-disturbance ACS in logged stands reportedly requires

up to 125 years, depending primarily on disturbance intensity (Rutishauser et al., 2015). The under-

lying recovery processes (i.e. tree mortality, growth and recruitment) are likely to vary with the clear

eLife digest The Amazon rainforest in South America is the largest tropical forest in the world.

Along with being home to a huge variety of plants and wildlife, rainforests also play an important

role in storing an element called carbon, which is a core component of all life on Earth. Certain

forms of carbon, such as the gas carbon dioxide, contribute to climate change so researchers want

to understand what factors affect how much carbon is stored in rainforests. Trees and other plants

absorb carbon dioxide from the atmosphere and then incorporate the carbon into carbohydrates

and other biological molecules. The Amazon rainforest alone holds around 30% of the total carbon

stored in land-based ecosystems.

Humans selectively harvest certain species of tree that produce wood with commercial value from

the Amazon rainforest. This “selective logging” results in the loss of stored carbon from the

rainforest, but the loss can be compensated for in the medium to long term if the forest is left to

regrow. New trees and trees that survived the logging grow to fill the gaps left by the felled trees.

However, it is not clear how differences in the forest (for example, forest maturity), environmental

factors (such as climate or soil) and the degree of the disturbance caused by the logging affect the

ability of the forest ecosystem to recover the lost carbon.

Piponiot et al. used computer modeling to analyze data from over a hundred different forest

plots across the Amazon rainforest. The models show that the forest’s ability to recover carbon after

selective logging greatly differs between regions. For example, the overall amount of carbon

recovered in the first ten years is predicted to be higher in a region in the north known as the

Guiana Shield than in the south of the Amazonian basin where the climate is less favorable.

The findings of Piponiot et al. highlight the key role the trees that survive selective logging play

in carbon recovery. The next step would be to couple this model to historical maps of logging to

estimate how the areas of the rainforest that are managed by selective logging shape the overall

carbon balance of the Amazon rainforest.

DOI: 10.7554/eLife.21394.002
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geographical patterns in forest structure and dynamics across the Amazon Basin and Guiana Shield.

In particular, northeast-southwest gradients have been reported for ACS (Malhi and Wright, 2004),

net primary productivity (Aragão et al., 2009), wood density (Baker et al., 2004), and floristic com-

position (ter Steege et al., 2006). Such gradients coincide with climate and edaphic conditions that

range from nearly a seasonal nutrient-limited in the northeast to seasonally dry and nutrient-rich in

the southwest (Quesada et al., 2012). These regional differences in biotic and abiotic conditions

largely constrain demographic processes that ultimately shape forest C balances.

Here we partition the contributions to post-disturbance ACS gain (from growth and recruitment

of trees �20 cm DBH) and ACS loss (from mortality) of survivors and recruited trees to detect the

main drivers and patterns of ACS recovery in forests disturbed by selective logging across Amazonia

sensu lato (that includes the Amazon Basin and the Guiana Shield). Based on long-term (8–30 year)

inventory data from 13 experimentally-disturbed sites (Sist et al., 2015) across Amazonia (Figure 1—

figure supplement 1), 133 permanent forest plots (175 ha in total) that cover a large gradient of dis-

turbance intensities (ACS losses ranging from 1% to 71%) were used to model the trajectory of those
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Figure 1. Post-disturbance annual ACS changes of survivors and recruits in 133 Amazonian selectively logged plots. Data is available between the year

of minimum ACS (t ¼ 0) and t ¼30 years. ACS changes are: recruits’ ACS growth (orange), recruits’ ACS loss (gold), new recruits’ ACS (red), survivors’

ACS growth (light green) and survivors’ ACS loss (dark green). Thick solid lines are the maximum-likelihood predictions (for an average plot, when all

covariates are null), and dashed lines are the model theoretical behaviour. New recruits’ ACS, recruits’ ACS growth, and recruits’ ACS loss converge

over time to constant values. A dynamic equilibrium is then reached: ACS gain from recruitment and recruits’ growth compensate ACS loss from

recruits’ mortality. Survivors’ ACS growth and loss. decline over time and tend to zero when all initial survivors have died.

DOI: 10.7554/eLife.21394.003

The following figure supplement is available for figure 1:

Figure supplement 1. Experimental sites location, each site being composed of permanent forest plots varying in logging intensities, census length

(colour) and total area (size).

DOI: 10.7554/eLife.21394.004
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post-disturbance ACS changes (Figure 1) in a comprehensive Bayesian framework. We quantify the

effect of pre-disturbance ecosystem characteristics [the site’s average pre-logging ACS (acs0) and

the relative difference between each plot and acs0 as a proxy of forest maturity (dacs)], disturbance

intensity [percentage of pre-logging ACS lost (loss)], and interactions with the environment [annual

precipitation (prec), seasonality of precipitation (seas), and soil bulk density (bd)] (Figure 2) on the

rates at which post-disturbance ACS changes converge to a theoretical steady state (as in Figure 1,

see Materials and methods for more details). With global maps of ACS (Avitabile et al., 2016), cli-

matic conditions (Hijmans et al., 2005) and soil bulk density (Nachtergaele et al., 2008), we up-

scale our results to Amazonia (sensu lato) and elaborate predictive maps of potential ACS changes

over 10 years under the hypothesis of a 40% ACS loss, which is a common disturbance intensity after

conventional logging in Amazonia (Blanc et al., 2009; Martin et al., 2015; West et al., 2014). Sum-

ming these ACS changes over time gives the net post-disturbance rate of ACS accumulation. Disen-

tangling ACS recovery into demographic processes and cohorts is essential to reveal mechanisms

underlying ACS responses to disturbance and to make more robust predictions of ACS recovery

compared to an all-in-one approach (see Appendix).
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Figure 2. Effect of covariates on the rate at which post-disturbance ACS changes converge to a theoretical steady state (in yr�1). Covariates are :

disturbance intensity (loss) , i.e. the proportion of initial ACS loss; mean site’s ACS (acs0), and relative forest maturity, i.e. pre-logging plot ACS as a % of

acs0 (dacs); annual precipitation (prec); seasonality of precipitation (seas), soil bulk density (bd). Covariates are centred and standardized. Red and black

levels are 80% and 95% credible intervals, respectively. The median rate is the prediction of the convergence rate for an average plot (when all

covariates are set to zero). Negative covariate values indicate slowing and positive values indicate accelerating rates. (a) Survivors’ ACS growth. (b) New

recruits’ ACS. (c) Recruits’ ACS growth. (d) Survivors’ ACS loss. (e) Recruits’ ACS loss.

DOI: 10.7554/eLife.21394.005

The following source data and figure supplement are available for figure 2:

Source data 1. Parameters posterior distribution.

DOI: 10.7554/eLife.21394.006

Figure supplement 1. Fitted vs observed values of cumulative ACS changes (Mg C ha�1).

DOI: 10.7554/eLife.21394.007
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Results

Local variations of ACS changes
At a given site, variations of post-logging ACS changes are explained with the disturbance intensity

(loss) and the relative forest maturity (dacs). At high disturbance intensity (positive loss) as well as in

relatively immature forests (negative dacs), ACS gain from recruits is high: recruitment decreases

slowly (Figure 2b and Figure 3b) and recruits’ growth increases rapidly (Figure 2c and Figure 3c).

In the same conditions of high disturbance intensity, survivors’ ACS growth is lower in the first years

following logging than for low disturbance intensities, but declines slowly (Figure 2a and Figure 3a).

Disturbance intensity and relative forest maturity have a weak effect on ACS loss from both survivors

and recruits (Figures 2d,e and 3d,e). Overall, net ACS change stays high longer at high disturbance

intensity (Figure 3f).

Regional variations of ACS changes
Variations of post-logging ACS changes between sites are explained with the mean ACS of each site

(acs0), climatic conditions [annual precipitation (prec), seasonality of precipitation (seas)] and the soil

bulk density (bd). Contribution of survivors’ growth to ACS recovery declined slowly in sites with low

acs0 and high water stress (low precipitation, high seasonality and high bulk density) (Figure 2a). Sur-

vivors’ ACS loss showed the opposite pattern (Figure 2d) except in apparent response to high sea-

sonality of precipitation (seas) that slowed the post-disturbance rates of decline of both ACS growth

and loss. Despite slower recruits’ ACS growth in sites with high pre-logging ACS (acs0), no other

regional covariate had significant effects on recruits’ ACS changes (Figure 2b,c and e).
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Figure 3. Predicted effect of disturbance intensity on ACS changes along time in an Amazonian-average plot. (a) Survivors’ ACS growth. (b) New

recruits’ ACS. (c) Recruits’ ACS growth. (d) Survivors’ ACS loss. (e) Recruits’ ACS loss. (f) Net ACS change. The net ACS change is the sum of all five ACS

changes. ACS changes were calculated with all parameters set to their maximum-likelihood value and covariates (except standardized disturbance

intensity loss) set to 0. Time since minimum ACS varies from 0 to 30 year (i.e. the calibration interval) and disturbance intensity ranges between 5% and

60% of initial ACS loss.
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Prediction maps
While no significant environmental effects were detected for recruits’ ACS changes (Figures 2 and

4), the survivors showed a highly structured regional gradient: (i) ACS gain from survivors’ ACS

growth is high in the west and in the Guiana Shield, but low in the south (Figure 4a), whereas (ii) sur-

vivors’ ACS loss is low in the south and in the Guiana Shield but high in the west (Figure 4d). To illus-

trate how these regional differences will be critical for future ACS across Amazonia, we developed a

map of net ACS recovery over the first 10 years after a 40% ACS loss by integrating the sum of ACS

change predictions through time (Figure 5). Across the region, net ACS recovery over the first ten

years after a 40% ACS loss is predicted to be 17 � 7 Mg C ha�1, with higher values in the west and

in the Guiana Shield (Figure 5a). The uncertainty in predictions was low to medium (coefficient of

variation under 40%) in 82% of the mapped area, and high (coefficient of variation above 50%) in 5%

of the mapped area (Figure 5b).

Four areas (Figure 5a) were selected to represent four contrasted cases of net ACS recovery in

time (Figure 6): two areas, northwestern Amazonia and the Guiana Shield, with high ACS accumula-

tion (21 � 3 Mg C ha�1 over 10 year), one intermediate area, central Amazonia (15 � 1 Mg C ha�1
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Figure 4. Predicted cumulative ACS changes (Mg C ha�1) over the first 10 year after losing 40% of ACS. Extrapolation was based on global rasters:

topsoil bulk density from the Harmonized global soil database (Nachtergaele et al., 2008), Worldclim precipitation data (Hijmans et al., 2005) and

biomass stocks from Avitabile et al. map (Avitabile et al., 2016). Cumulative ACS changes are obtained by integrating annual ACS changes through

time. We here show the median of each pixel. Top graphs are ACS gain and bottom graphs are ACS loss. (a) ACS gain from survivors’ growth. (b) ACS

gain from new recruits. (c) ACS gain from recruits’ growth. (d) ACS loss from survivors’ mortality. (e) ACS loss from recruits’ mortality. Black dots are the

location of our experimental sites. Survivors’ ACS changes (a and d) show strong regional variations unlike to recruits’ ACS changes (b,c and e).
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over 10 year) and one area with low ACS accumulation, southern Amazonia (12 � 3 Mg C ha�1 over

10 year). Survivors’ contribution to the sum of ACS gains (recruitment and growth) over the first 10

years after disturbance was 71 � 4% in the Guiana Shield, 71 � 2% in the west; 63 � 4% in central

Amazonia and 55 � 6% in the south. Predicted net ACS recovery (Figure 5) and survivors’ ACS

growth (Figure 4a) are highly correlated: � ¼ 0:90 (Pearson’s correlation coefficient).

Discussion
Contrasting post-disturbance ACS dynamics were detected among the western Amazon, Guiana

Shield, and southern Amazon (Figure 4). (i) In the western Amazon, environmental stress is reduced

due to fertile soils and abundant, mostly non-seasonal precipitation, but forests are prone to fre-

quent and sometimes large-scale wind-induced disturbances (Espı́rito-Santo et al., 2014). Such con-

ditions of low stress and high disturbance tend to favor fast-growing species with rapid life cycles

(He et al., 2013), which results in fast ACS gain and loss from survivors even after the logging distur-

bance (Figures 4a,d and 6). (ii) Forests of the Guiana Shield are generally dense and grow on nutri-

ent-poor soils (Quesada et al., 2012), where wood productivity is highly constrained by competition

for key nutrients, especially phosphorus and nitrogen (Santiago, 2015; Mercado et al., 2011). The

short duration pulse of nutrients released from readily decomposed stems, twigs and leaves of trees

damaged and killed by logging may thus explain the substantial but limited-duration increase in

growth of survivors on these nutrient-poor soils (Figure 6). Yet post-disturbance ACS loss from survi-

vors’ mortality decreases slowly in the Guiana Shield (Figure 6). This is consistent with the low mor-

tality rates and the high tree longevity reported in old-growth forests of this region (Phillips et al.,

2004). (iii) In the southern Amazon, high seasonal water stress is the main constraint on ACS recov-

ery (Wagner et al., 2016). Stress-tolerant trees are generally poor competitors (He et al., 2013) and

this may explain the slow ACS changes of survivors in this region (Figures 4a,d and 6). Finally, Cen-

tral Amazonia is a transition zone for the main environmental and biotic gradients found in Amazo-

nia: (1) a competition gradient between dense and nutrient-poor northeastern forests and nutrient-

rich western forests; (2) an environmental gradient between northern wet forests and southern drier

forests (Quesada et al., 2012).
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Across Amazonia, survivors contribute most to post-disturbance ACS recovery. In regions where

survivors’ ACS gain is high (west and northeast), net ACS recovery is also high: annual ACS recovery

is between 1 and 3 Mg C ha�1 yr�1 in the first 10 year after logging (Figure 6), lower than in Amazo-

nian secondary forests (3–5 Mg C ha�1 yr�1 in the first 20 year after abandonment of land use

[Poorter et al., 2016]). Recruits, for their part, have very low geographical variations in post-logging

ACS changes: 10 years after the disturbance they are predicted to store similar amounts of ACS

almost everywhere in Amazonia. Nevertheless, small trees with DBH <20 cm have not been

accounted for in our study and may play an important role in post-logging ACS changes. The 10–20

cm DBH size class contains as much as 14% of total ACS and may be highly dynamic in some Amazo-

nian forests (Vieira et al., 2004). Because of the slow tree growth rates in Amazonia (Vieira et al.,

2005; Herault et al., 2010), many trees will not reach the 20 cm DBH threshold 10 years after log-

ging: the effects of the 10–20 cm DBH stratum on post-logging ACS changes are likely to be missed
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Figure 6. Predicted contribution of annual ACS changes in ACS recovery in four regions of Amazonia (Figure 5). The white line is the net annual ACS

recovery, i.e. the sum of all annual ACS changes. Survivors’ (green) and recruits’ (orange) contribution are positive for ACS gains (survivors’ ACS growth,

new recruits’ ACS and recruits’ ACS growth) and negative for survivors’ and recruits’ ACS loss. Areas with higher levels of transparency and dotted lines

are out of the calibration period (0–30 year). In the Guiana Shield and in nothwestern Amazonia, high levels of net ACS recovery are explained by large

ACS gain from survivors’ growth. Extrapolation was based on global rasters: topsoil bulk density from the Harmonized global soil database

(Nachtergaele et al., 2008), precipitation data from Worldclim (Hijmans et al., 2005) and biomass stocks from Avitabile et al. (Avitabile et al., 2016)

map.
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in sites with less than 10 years of measurements (e.g. Peteco, Ecosilva, Iracema, Cumaru) and should

be studied, together with the natural regeneration, in the future.

At the stand level, high disturbance intensities reduce survivors’ ACS: survivors’ ACS growth is

consequently lower (Figure 3a), resulting in lower net ACS change during the first 10 years of the

recovery period (Figure 3f). High disturbance intensities as well as relatively low forest maturity alle-

viate competition, and this is probably why ACS contributions from recruits remain high for longer

(Figure 2b) in such enhanced growth conditions (Herault et al., 2010). In the first years after log-

ging, net ACS recovery depends little on disturbance intensity (Figure 3f), but recovery is predicted

to last longer in heavily logged forests. In immature forests, intense self-thinning (Swaine et al.,

1987) may explain fast ACS losses from survivors’ mortality (Figure 2d).

In the tropics, reduced-impact logging techniques (RIL; [Putz et al., 2008]) are promoted to

reduce collateral damage to residual stands and biodiversity. Our results reveal that lower distur-

bance intensities, as a direct consequence of the employment of RIL techniques, could increase sur-

vivors’ ACS growth and slow down their ACS loss. Given that government specified minimum

cutting cycles are short, e.g. 35 year in the Brazilian Amazon (Blaser et al., 2011), and that many

commercial species are slow-growing and dense-wooded (Dauber et al., 2005; Wright et al.,

2010), available timber stocks for the next cutting cycle will be comprised mostly of survivors. Atten-

tion should be taken to high harvest intensities and/or substantial incidental damage due to poor

harvesting practices that diminish stocks of survivors, even if they promote recruitment. Most trees

that recruit are fast-growing pioneers that are favored by disturbance but are vulnerable to water

stress (Bonal et al., 2016) and competition (Valladares and Niinemets, 2008), and because their

height is lower than in mature forests (Rutishauser et al., 2016), they might have reduced carbon

sequestration potential. With ongoing climate change and increased frequencies and intensities of

droughts in Amazonia (Malhi et al., 2008), betting on recruits to store C in forests disturbed by

selective logging might thus be a risky gamble.

In this study, we focus on one type of disturbance: selective logging. Because of its economic

value and implications for forest management, selective logging is a long-studied human disturbance

in tropical forests, and the data gathered by the TmFO network are unique in terms of experiment

duration and spatial extent. We nevertheless believe that our study gives clues on the regional differ-

ences in Amazonian forests response to large ACS losses induced by other disturbances (e.g.

droughts, fire) that are expected to increase in frequency with ongoing global changes (Bonal et al.,

2016).

Materials and methods

Site description
Our study includes data from thirteen long-term (8–30 year) experimental forest sites located in the

Amazon Basin and the Guiana Shield (Figure 1—figure supplement 1). Sites meet the following cri-

teria: (i) located in tropical forests with mean annual precipitation above 1000 mm; (ii) a total cen-

sused area above 1 ha; (iii) at least one pre-logging census and (iv) at least two post-logging

censuses. For each site, we extracted annual precipitation and seasonality of precipitation data from

WorldClim (RRID:SCR_010244) (Hijmans et al., 2005), topsoil bulk density data from the Harmo-

nized World Soil database (Nachtergaele et al., 2008), and the synthetic climatic index from Chave

et al. (Chave et al., 2014), using in all cases the highest resolution data available (30 arc-seconds).

For one of our sites (La Chonta, see Figure 1—figure supplement 1), field measurements of precipi-

tation (mean = 1580 mm yr�1) differed substantially from WorldClim data (1032 mm yr�1): in this par-

ticular case we used the measured value and adjusted the synthetic climatic index (E) in the

allometric equation (Chave et al., 2014) accordingly. Sites’ data is available at Dryad Digital

Repository (Piponiot et al., 2016).

ACS computation
In all plots, diameter at breast height (DBH) of trees >20 cm DBH were measured, and trees were

identified to the lowest taxonomic level: to the species level (75%) when possible, or to the genus

level (15%); 10% of trees were not identified. To get the wood density, we applied the following

standardized protocol to all sites: (i) trees identified to the species level were assigned the
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corresponding wood specific gravity value from the Global Wood Density Database (GWDD,

doi:10.5061/dryad.234/1) (Zanne et al., 2009); (ii) trees identified to the genus level were assigned

a genus-average wood density; (iii) trees with no botanical identification or that were not in the

GWDD were assigned the site-average wood density. The aboveground biomass (AGB) was esti-

mated with the allometric equations from Chave et al. (Chave et al., 2014). Biomass was assumed

to be 50% carbon (Penman et al., 2003). The ACS of every tree i was then computed as follows:

^ACSi ¼ exp
�

� 1:803� 0:976�Eþ 0:976� lnðWDiÞþ

þ2:673� lnðDBHiÞ� 0:0299� lnðDBH2

i Þ
�

� 0:5

(1)

where WDi and DBHi are the specific wood density and diameter at breast height of the tree i and E

is the synthetic climatic index (Chave et al., 2014). The ACS changes data that was generated is

available at Dryad Digital Repository (Piponiot et al., 2016).

The recovery period
After logging, plot ACS decreases rapidly until it reaches its minimum value (acsmin) a few years

later. This transition point determines the beginning tmin ¼ t0 of the recovery period. acsmin was esti-

mated as the minimum ACS in the 4 years following logging activities. Because our focus is on post-

logging ACS recovery, we did not include in our analysis plots where the minimum ACS value was

not reached within the 4 years after logging, either because the logging activity did not affect the

plot or because there were other sources of disturbance long after logging (fire, road opening, silvi-

cultural treatments).

ACS changes computation
For each plot j and census k, with tk the time since the beginning of the recovery period t0, we define

5 ACS changes : new recruits’ ACS (Rrj;k) is the ACS of all trees <20 cm DBH at tk�1 and �20 cm

DBH at tk; recruits’ ACS growth (Rgj;k) is the ACS increment of living recruits between tk�1 and tk ;

recruits’ ACS loss (Rlj;k) is the C in recruits that die between tk�1 and tk; survivors’ ACS growth (Sgj;k)

is the ACS increment of living survivors between tk�1 and tk; survivors’ ACS loss (Slj;k) is the ACS of

survivors that die between tk�1 and tk. ACS gains (Sg, Rr, Rg) are positive and ACS losses (Sl, Rl) are

negative. Instantaneous ACS changes are subject to stochastic variation over time: because we are

less interested in year-to-year variations than in long-term ACS trajectories, we modelled cumulative

ACS changes instead of annual ACS changes. Cumulative ACS changes (Mg C ha�1) were defined as

follows:

cChangej;k ¼
X

k

m¼0

Changej;m (2)

where j is the plot, tk the time since t0 (yr) and Change is the annual ACS change (Mg C ha�1 yr�1),

either recruits’ ACS (Rr), recruits’ ACS growth (Rg), recruits’ ACS loss (Rl), survivors’ ACS growth (Sg),

or survivors’ ACS loss (Sl).

Covariates
To model ACS changes, we chose six covariates : (1) loss disturbance intensity, i.e. percentage of ini-

tial ACS loss; (2) acs0 mean ACS of the site; (3) dacs relative ACS of the plot, as a % of acs0; (4) prec

annual precipitation; (5) seas precipitation seasonality; (6) bd topsoil bulk density. To give equivalent

weight to all covariates, we centred and standardized them in order to have a mean of zero and a

standard deviation of one over all observations. The uncertainty associated with ACS covariates (loss,

acs0, dacs) is less than 10% (Chave et al., 2014). Climatic covariates (annual precipitation prec and

precipitation seasonality seas) were extracted from Worldclim rasters (RRID:SCR_010244). Error in

Worldclim precipitation data was estimated to be <10 mm in Amazonia (Hijmans et al., 2005).

There is no information on the uncertainty on topsoil bulk density but we expect it to be higher than

the uncertainty on other covariates, due to measurement (De Vos et al., 2005) and interpolation

methods (Hendriks et al., 2016).
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Survivors’ model
Survivors’ cumulative ACS changes are null at t ¼ 0 (by definition). When all survivors are dead, their

ACS changes stop: annual ACS changes become null and cumulative ACS changes reach a constant/

finite limit. We decided to model survivors’ cumulative ACS growth cSg and ACS loss cSl as:

cSi;j;k ~N
�

aS
j �

�

1� expð�bS
j � tkÞ

�

; ðsS
EÞ

2

�

(3)

where j is the plot, tk is the time since t0;S is either Sg or Sl:aS
j is the finite limit of the cumulative ACS

change and bS
j the rate at which the cumulative ACS change converges to this limit. By choosing an

exponential kernel, we assume that survivors’ ACS change at tk is proportional to survivors’ ACS

change at tk � 1.

Because aS
j values are expected to vary among plots, they are modelled with the following

distribution:

aS
j ~N

�

aS
0
; ðsS

aÞ
2

�

(4)

Parameter bS
j is the rate at which survivors’ ACS change (from growth or mortality) on plot j con-

verges to a finite limit after the disturbance: it reflects the response rapidity of survivors’ ACS

changes to disturbance. Because we are interested in predicting variations in bS
j (S is either Sg or Sl),

we expressed bS
j as a function of covariates:

bS
j ¼ bS

0
þ
X

6

l¼1

ðlSl �Vj;lÞ (5)

where
P

6

l¼1

ðlSl �Vj;lÞ, is the effect of covariates (Vj;l) on the post-logging rate bj. Covariates are centred

and standardized and are (1) loss : disturbance intensity, i.e. percentage of initial ACS loss; (2) acs0 :

mean ACS of the site; (3) dacs relative ACS of the plot, as a % of acs0; (4) prec annual precipitation;

(5) seas precipitation seasonality; (6) bd topsoil bulk density.

When all survivors in plot j are dead, all the C gained by their growth (cSgj;¥ ¼ a
Sg
j ) plus their initial

ACS (acsminj) will have been lost (cSlj;¥ ¼ aSl
j ). We thus added the following constraint to each plot j:

aSl
j þa

Sg
j þ acsminj ¼ 0 (6)

with a
Sg
j ;aSl

j the finite limits of survivors’ cumulative ACS growth and ACS loss respectively, and

acsminj the ACS of the plot j at tmin ¼ t0.

Recruits’ model
When survivors are all dead, recruits will constitute the new forest. We made the assumption that

the ACS of this new forest will reach a dynamic equilibrium: recruits’ annual ACS changes are

expected to converge to constant values (that are however prone to small inter-annual variations),

with ACS gains compensating ACS losses. Because there are no recruits yet at t0, recruits’ annual

ACS growth (Rg) and ACS loss (Rl) are zero, and progressively increase to reach their asymptotic val-

ues. Recruits’ annual ACS growth and ACS loss can be thus modelled with the function:

f ðt;a;bÞ ¼ a�
�

1� expð�b� tÞ
�

(7)

where t is the time since the beginning of the recovery period. In the same logic as survivors’ cumu-

lative ACS change, a is the asymptotic value of recruits’ annual ACS change (Mg C ha�1 yr�1), and b

is the rate at which this asymptotic value is reached.

Contrary to recruits’ annual ACS growth and ACS loss, the ACS of new recruits (Rr) is high at t0
because of the competition drop induced by logging, but then progressively decreases to reach its

asymptotic value. We modelled it with the following function:
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f ðt;a;b;hÞ ¼ a�
�

1þh� expð�b� tÞ
�

(8)

where t is the time since logging. The parameter h was added to allow annual recruited ACS to be

higher than a at t0.

As stated before, we chose to model cumulative ACS changes instead of annual ACS changes.

The general model for recruits’ cumulative ACS changes is deduced by integrating annual ACS

changes from t0 to tk:

cRi;j;k ~N
�

aR
i �

�

tk þh�
1� expð�bR

j � tkÞ

bR
j

�

; ðsR
EÞ

2

�

(9)

where i is the site, j is the plot, tk is the time since t0 is either Rr;Rg or Rl. When R is Rg or Rl, h¼�1;

when R is Rr, h>0.

Once the forest reaches a new dynamic equilibrium, recruits’ annual ACS changes should depend

mostly on each site’s characteristics: we expect there to be more inter-site than intra-site variation in

recruits’ asymptotic ACS changes aR. This is why we use one value aR
i per site i, and model it as follows:

aR
i ~N

�

aR
0
; ðsR

aÞ
2

�

(10)

When the dynamic equilibrium is reached, annual ACS gain (growth and recruitment) compen-

sates annual ACS loss (mortality). We thus added the following constraint for every site i:

aRr
i þa

Rg
i þaRl

i ¼ 0 (11)

With the same logic as for survivors, we are interested in predicting variation in bR. Given that we

use one value aR
i per site i (i.e. all plots in one site i have the same value for aR

i ), we chose to take

into account the inter-plot variability as follows:

bR
j ~N

�

bR
0
þ
X

6

l¼1

ðlRl �Vj;lÞ;ðs
R
bÞ

2

�

(12)

Inference
Bayesian hierarchical models were inferred through MCMC methods using an adaptive form of the

Hamiltonian Monte Carlo sampling (Carpenter et al., 2015). Each observation was given a weight

proportional to the size of the plot. Codes were developed using the R language (RRID:SCR_

001905) (R Developement Core Team, 2015) and the Rstan package (Carpenter et al., 2015). A

detailed list of priors is provided in Table 1.

Prediction maps
Maps were obtained with the following steps: (i) spatially-explicit covariates are extracted at the res-

olution of 30 arc-second from: the pan-tropical carbon map of Avitabile et al. for pre-disturbance

aboveground carbon stocks (Avitabile et al., 2016); WorldClim (RRID:SCR_010244) (Hijmans et al.,

2005) for annual precipitation and seasonality of precipitation, and the Harmonized World Soil data-

base (Nachtergaele et al., 2008) for topsoil bulk density; (ii) disturbance intensity is set to 40% of

pre-logging ACS loss, which is a common value for disturbance intensity after conventional logging

in Amazonia (West et al., 2014; Blanc et al., 2009; Martin et al., 2015) , and the relative forest

maturity dacs is set to zero; (iii) parameters are drawn from their previously calibrated distribution;

(iv) to simulate random effects, all five parameters (a) are taken from their distribution Nða0;s
2

aÞ; (v)

for every pixel, we estimate the five cumulative ACS changes (cSg, cSl, cRr,cRg,cRl) 10 years after the

40% ACS loss, given the parameters value and the pixel covariates values extracted from global ras-

ters. Steps (iii) to (v) are repeated 200 times and summary statistics are calculated for every pixel.

Because a significant part of our sites have experiment duration lower than 10 years (Figure 1—fig-

ure supplement 1), we are less confident in Amazonian-wide predictions after that 10 year period.

Maps were elaborated under the R statistical software (RRID:SCR_001905) (R Developement Core

Team, 2015).
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quisa do Estado de São Paulo

FAPESP: 2013/16262-4 and
2013/50718-5

Edson Vidal

European Regional Develop-
ment Fund

FEDER 2014-2020,
GY0006894

Camille Piponiot
Bruno Hérault
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Table 1. List of priors used to infer ACS changes in a Bayesian framework. Models are : (Sg) survivors’ ACS growth, (Sl) survivors’ ACS

loss, (Rr) new recruits’ ACS, (Rg) recruits’ ACS growth, (Rl) recruits’ ACS loss. lloss is the parameter relative to the covariate loss (logging

intensity).

Model Parameter Prior Justification

Sg a
Sg
j

U½25; 250� On average 100 survivors/ha storing 0.25 to 2.5 MgC each

Sg b
Sg
j

U½0:015; 0:04�
75<tSg

0:95

*
<200 yr

Sl bSl
j U½0:006;bSg� t

Sg

0:95
<tSl

0:95

�
<500 yr

Rr aRr
i

U½0:1; 1� Range of observed values in TmFO control plots

Rr bRr
j

U½0:006; 0:6� 5<tRr
0:95

�
<500 yr

Rr h U½0; 3� Rrðt ¼ 0Þ<3� Rrðt ¼ ¥Þ

Rg a
Rg
i

U½0:5; 3� Range of observed values in Amazonia (Johnson et al., 2016)

Rg b
Rg
j

U½0:006; 0:15� 20<tRg
0:95

�
<500 yr

Rl bRl
j

U½0:003; 0:06� 50<tRl
0:95

�
<1000 yr

All models M†
lMloss U½�bM

;bM � Avoid multicollinearity problems

All models M†
ðlMl Þl 6¼loss U½� bM

4
;
bM

4
� Avoid multicollinearity problems

*t0:95 ¼
lnð20Þ
b

is the time when the ACS change has reached 95% of its asymptotic value.

†M is one of the five models: either Sg, Sl, Rr, Rg, Rl.
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2016 Data from: Post-disturbance carbon
recovery in Amazonian forests

http://dx.doi.org/10.
5061/dryad.rc279

Available at Dryad
Digital Repository
under a CC0 Public
Domain Dedication

References
Andersen H-E, Reutebuch SE, McGaughey RJ, d’Oliveira MVN, Keller M. 2014. Monitoring selective logging in
western Amazonia with repeat lidar flights. Remote Sensing of Environment 151:157–165. doi: 10.1016/j.rse.
2013.08.049

Aragão LEOC, Malhi Y, Metcalfe DB, Silva-Espejo JE, Jiménez E, Navarrete D, Almeida S, Costa ACL, Salinas N,
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Monteagudo A, Patiño S, Peñuela MC, et al. 2009. Above- and below-ground net primary productivity across
ten Amazonian forests on contrasting soils. Biogeosciences 6:2759–2778. doi: 10.5194/bg-6-2759-2009

Asner GP, Broadbent EN, Oliveira PJ, Keller M, Knapp DE, Silva JN. 2006. Condition and fate of logged forests
in the brazilian Amazon. PNAS 103:12947–12950. doi: 10.1073/pnas.0604093103, PMID: 16901980

Asner GP, Knapp DE, Broadbent EN, Oliveira PJ, Keller M, Silva JN. 2005. Selective logging in the brazilian
Amazon. Science 310:480–482. doi: 10.1126/science.1118051, PMID: 16239474

Asner GP, Rudel TK, Aide TM, Defries R, Emerson R. 2009. A contemporary assessment of change in humid
tropical forests. Conservation Biology 23:1386–1395. doi: 10.1111/j.1523-1739.2009.01333.x, PMID: 20078639

Avitabile V, Herold M, Heuvelink GB, Lewis SL, Phillips OL, Asner GP, Armston J, Ashton PS, Banin L, Bayol N,
Berry NJ, Boeckx P, de Jong BH, DeVries B, Girardin CA, Kearsley E, Lindsell JA, Lopez-Gonzalez G, Lucas R,
Malhi Y, et al. 2016. An integrated pan-tropical biomass map using multiple reference datasets. Global Change
Biology 22:1406–1420. doi: 10.1111/gcb.13139, PMID: 26499288

Baker TR, Phillips OL, Malhi Y, Almeida S, Arroyo L, Di Fiore A, Erwin T, Killeen TJ, Laurance SG, Laurance WF,
Lewis SL, Lloyd J, Monteagudo A, Neill DA, Patino S, Pitman NCA, M. Silva JN, Vasquez Martinez R. 2004.
Variation in wood density determines spatial patterns inAmazonian forest biomass. Global Change Biology 10:
545–562. doi: 10.1111/j.1365-2486.2004.00751.x

Blanc L, Echard M, Herault B, Bonal D, Marcon E, Chave J, Baraloto C. 2009. Dynamics of aboveground carbon
stocks in a selectively logged tropical forest. Ecological Applications 19:1397–1404. doi: 10.1890/08-1572.1,
PMID: 19769089

Blaser J, Sarre A, Poore D, Johnson S. 2011. Status of Tropical Forest Management.
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Valladares F, Niinemets Ülo. 2008. Shade tolerance, a Key Plant Feature of Complex Nature and Consequences.
Annual Review of Ecology, Evolution, and Systematics 39:237–257. doi: 10.1146/annurev.ecolsys.39.110707.
173506

Valle D, Phillips P, Vidal E, Schulze M, Grogan J, Sales M, van Gardingen P. 2007. Adaptation of a spatially
explicit individual tree-based growth and yield model and long-term comparison between reduced-impact and
conventional logging in eastern Amazonia, Brazil. Forest Ecology and Management 243:187–198. doi: 10.1016/
j.foreco.2007.02.023

Vidal E, West TAP, Putz FE. 2016. Recovery of biomass and merchantable timber volumes twenty years after
conventional and reduced-impact logging in amazonian Brazil. Forest Ecology and Management 376:1–8.
doi: 10.1016/j.foreco.2016.06.003

Vieira S, de Camargo PB, Selhorst D, da Silva R, Hutyra L, Chambers JQ, Brown IF, Higuchi N, dos Santos J,
Wofsy SC, Trumbore SE, Martinelli LA. 2004. Forest structure and carbon dynamics in amazonian tropical rain
forests. Oecologia 140:468–479. doi: 10.1007/s00442-004-1598-z, PMID: 15221436

Vieira S, Trumbore S, Camargo PB, Selhorst D, Chambers JQ, Higuchi N, Martinelli LA. 2005. Slow growth rates
of amazonian trees: Consequences for carbon cycling. PNAS 102:18502–18507. doi: 10.1073/pnas.0505966102
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Appendix

The importance of a process-based approach
We here study C recovery dynamics with a demographic process-based approach, i.e. by

segregating ACS changes into cohorts (survivors and recruits) and demographic processes

(growth, recruitment, mortality), as opposed to an all-in-one model in which only the

ecosystem net ACS change is modelled, without examination of demographic processes.

To compare the goodness of fit of the two approaches (all-in-one and process-based), we

calibrated an all-in-one model with our data and compared the accuracy of its predictions

with the process-based predictions reported in this study. The all-in-one model was written

as follows:

Cj;k ~N
�

ðacs0j � acsminjÞ� ð1� exp
�

�bC
j � tkÞ

�

; ðsC
E Þ

2

�

(13)

where Cj;k (MgC ha�1) is the total C accumulation tk years after the disturbance in plot j is

the ACS lost by logging and bC
j is the rate at which the plot ACS returns to its pre-logging

ACS. We took into account the effect of covariates and dependencies for bC
j :

bC
j ~N

�

bC
0
þ
X

6

l¼1

ðlCl �Vj;lÞ; ðs
C
bÞ

2

�

(14)

The process-based model made better predictions (RMSE = 0.24) than the all-in-one

model (RMSE = 0.31). In some sites, for example Paracou (black diamonds in Appendix—

figure 1), there is a clear bias in the all-in-one model predictions: C accumulation is

overestimated at the beginning of the recovery period and underestimated towards the

end. This bias may be due to the non-adequacy of the negative exponential curve in the

classic all-in-one model ( Appendix—figure 2a) to the C recovery observed in

experimental plots (Rutishauser et al., 2015). The process-based model does not predict

a constant instantaneous C accumulation rate (Appendix—figure 2b), and is thus more

accurate.
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Appendix 1—figure 1. Observed vs fitted values of net ACS accumulation (MgC ha�1). (a)

Fitted values from the all-in-one model. (b) Fitted values from the process-based model

(right). Net ACS accumulation is the sum of cumulative ACS changes (gain and loss). Each

combination of a colour and shape is specific to a site. The closer the dots are to the x=y

line, the better the prediction.
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Appendix 1—figure 2. Predicted trajectories of net ACS accumulation (MgC ha�1) per site with

(a) the all-in-one model and (b) the process-based model.
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