
HAL Id: hal-01611057
https://hal.science/hal-01611057

Submitted on 5 Oct 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A WebRTC Extension to Allow Identity Negotiation at
Runtime

Kevin Corre, Simon Bécot, Olivier Barais, Gerson Sunyé

To cite this version:
Kevin Corre, Simon Bécot, Olivier Barais, Gerson Sunyé. A WebRTC Extension to Allow Identity
Negotiation at Runtime. Lecture Notes in Computer Science, 2017, Web Engineering, 10360, pp.412-
419. �10.1007/978-3-319-60131-1_27�. �hal-01611057�

https://hal.science/hal-01611057
https://hal.archives-ouvertes.fr


A WebRTC Extension to Allow Identity
Negotiation at Runtime

Kevin Corre1,3, Simon Bécot1, Olivier Barais2, and Gerson Sunyé2

1 Orange Labs, Cesson-Sevigne, France, @orange.com
2 INRIA, Rennes, France @inria.fr
3 IRISA, Rennes, France @irisa.fr

Abstract. In this paper we describe our implementation of the We-
bRTC identity architecture. We adapt OpenID Connect servers to sup-
port WebRTC peer to peer authentication and detail the issues and so-
lutions found in the process. We observe that although WebRTC allows
for the exchange of identity assertion between peers, users lack feedback
and control over the other party authentication. To allow identity negoti-
ation during a WebRTC communication setup, we propose an extension
to the Session Description Protocol. Our implementation demonstrates
current limitations with respect to the current WebRTC specification.

1 Introduction

In business communications, especially with previously unknown party, when
dealing with high value information, or when having privacy concerns, ensuring
the identity of the other party and the confidentiality of the communication is
of the greatest importance. Usually Communication Services (CS) require and
manage user authentication, secure call signaling, and may transmit the actual
communication in the case of telecom operators. Trust between users and CSs
is thus required in order to ensure the safety of the conversation. Telecom op-
erators rely on a Circle of Trust model to allow CS interoperability. Joining the
Circle of Trust ensures an implicit initial level of trust [1] to its members. On
the contrary, Web CSs are usually organized in a silo model: to communicate
together, two users must be using the same CS. Large identity federation are
difficult to build and present complex issues [2]. As a result users calling out-
side of their enterprise’s domain are often stranded in a silo situation, with the
fallback option of using self-asserted identities.

WebRTC [3] is a Web API, specified by the W3C and the IETF, which
supports Peer-to-Peer (P2P) audio-video calling and data sharing. It allows real-
time communications between browsers, without additional plugins. The IETF-
draft by Rescorla et al. [4], now part of the specification, offers a mechanism for
explicit authentication, decoupling the identity and signaling functions.

It is expected to see the emergence of numerous WebRTC-enabled Web sites,
resulting in a large number of security configurations. Even more if services
and applications start being interoperable with each others. Designing new P2P

The final publication is available at Springer via
http://dx.doi.org/10.1007/978-3-319-60131-1 27.



service architecture enabling dynamic trusted relationships among distributed
applications is currently explored within the Matrix4 specification or within the
reThink project5. However, in such kinds of distributed, dynamic and hetero-
geneous architecture, it may become difficult for users to understand if their
communications are secured enough.

One of the challenge is then to build a trust and security model for com-
munication services, capable of returning a single metric encompassing different
aspects of the communication’s security configuration. It would help users in
making trust decision, and in return allow negotiation to raise trust in the com-
munication’s security.

In this paper we report and discuss on our implementation of the WebRTC
identity specification. We first present the WebRTC identity specification in
Section 2. In Section 3 we detail our implementation, and in particular the
change we did to two OpenID Connect (OIDC) [5] server implementations to
support WebRTC user to user authentication. A report of a similar work for
the SAML protocol was already published in 2015 6, but our work is to our
knowledge the first implementation of a WebRTC IdP Proxy for OIDC. The
WebRTC identity architecture gives an initial level of trust in the other party’s
identity. However, we show that users need more information and control in order
to trust Identity Providers (IdP) used in the session establishment. In order to
solve this issue, in Section 4, we propose a WebRTC extension to negotiate
over the other-party authentication during a call setup. We implemented the
negotiation, demonstrates it to just decorate the current protocol and remain
compatible with existing user-agent and report on the limitations imposed by the
current WebRTC specification. After discussing possible future work in Section 5,
we conclude in Section 6.

2 WebRTC Overview

WebRTC communication setup can be decomposed into three different paths as
shown in Figure 1a. The Signaling path initializes the communication between
Alice and Bob User-Agents (UA) through one or more Communication Service
(CS) servers. On this path, Alice and Bob negotiate communication parame-
ters by exchanging Session Description Protocol (SDP) [6] call offer and answer
messages in order to setup the Media path. The Media path is a peer-to-peer
encrypted connection between Alice and Bob used to exchange audio, video, or
data. Optionally, one or two Identity paths can be used to generate and verify
Identity Assertions. Identity Assertions bind the identity of the authenticated
user to the media session, and are included in SDP signaling messages. Their
role is to assert that media path encryption keys are used by users that are
authenticated by IdPs.

4 https://matrix.org
5 https://rethink-project.eu/
6 https://www.terena.org/activities/tf-webrtc/meeting2/slides/20150519-webrtc-

identity.pdf



CS

UA UA

IdPA IdPB

Media

Identity

Signaling
Alice Bob

(a) A call with IdP-based identity and
a single communication service provider.
The Signaling path join Alice and Bob
through a CS. The Media path is the P2P
session. Each Identity path allows a user
to authenticate to the other user through
an IdP.

IdPIdPProxy

API Calls

RTCPeerConnection

API Calls

Calling JS Code CS

User Agent

(b) API calls are the RTCPeerConnec-
tion’s setIdentityProvider function, and
the generateAssertion and validateAsser-
tion functions, offered by the IdP Proxy
to the RTCPeerConnection. The proto-
col used between the IdP Proxy and the
IdP is unspecified.

Fig. 1: WebRTC Call Setup

The WebRTC security architecture [4] specifies the IdP Proxy component.
This component serves as an interface between the WebRTC RTCPeerConnec-
tion object and an IdP. The IdP Proxy is supposed to be available at a standard-
ized location on each compatible IdP domain. Before making a SDP call offer
or answer, the RTCPeerConnection calls the IdP Proxy to generate an assertion
covering a set of keys. Once the IdP authenticated the user, an identity assertion
is returned. This assertion is then included in the SDP message with the IdP
Proxy origin, i. e., the IdP domain’s URL. This allows users to discover an IdP
Proxy location without prior knowledge or relationship with the other party’s
IdP. On receiving a SDP call offer or answer containing an Identity Assertion
and the associated IdP domain-name, the User-Agent downloads the IdP Proxy
from the specified location. It then calls its verifyAssertion function. If success-
ful, the IdP Proxy returns the key fingerprint and the user identifier, for instance
an email address. This bounds the key used on the media channel to the identity
authenticated by the verifying IdP and ensures that no MitM attack is being
set. The WebRTC Identity Architecture is shown in Figure 1b.

Richard L. Barnes and Martin Thomson gives a clear overview of the We-
bRTC security architecture in their 2014 IEEE article [7]. They describe the
trust model on which the specification is based and explain why the CS may be
considered as an adversary in this trust model. Their paper gives a good under-
standing, on how authenticated WebRTC communication are protected against
network and signaling attack. Considering the CS to be untrusted, and at the
same time relying on the same CS to offer protection through the IdP Proxy



mechanism, may be considered quite restrictive. Besides, the question of trust
in the other party IdP is only addressed from the perspective of verifying the
IdP’s origin. The strength of the authentication process is not considered, and
it is left to the user to decide whether to trust the received identity by using an
address book.

3 Implementing the WebRTC Identity Specification

To implement the WebRTC identity specification, we develop a simple WebRTC
service7 offering communication for two users in a single room. The session sig-
naling is done over WebSockets and through the communication server. A client
code in Javascript manages the call session. Tests are conducted on Firefox ver-
sion 50.1.0.

We implement IdP Proxies in conformance with the WebRTC specification.
These proxies are added to two OIDC servers: a reference implementation by
Nat Sakimura8 and an implementation in NodeJS9.

3.1 IdP Proxy implementation

In its simplest form, our IdP Proxy uses a simple REST API on the IdP server,
matching the generateAssertion and validateAssertion functions. The GET re-
quest to the generateAssertion endpoint use the session cookie to prove that the
user has been authenticated. The content parameter is passed in the request. If
the user does not have an active session, the IdP login URL is returned by the
IdP Proxy. A successful login following this URL is signaled to the CS client
page by a ”LOGINDONE” message from the login page. The generateAssertion
returns an opaque token as a string. This token can then be used on the vali-
dateAssertion endpoint to retrieve the user identity and the associated content
parameter, i. e. the media key fingerprint declared by the user.

The resulting IdP Proxy is a small piece of Javascript that can easily be
deployed. And could even be provided by CS if an interoperability need arises.

3.2 IdP Proxy with OpenID Connect

To map the WebRTC Identity architecture to our OIDC server implementations,
we consider the IdP Proxy to be a OIDC client using the implicit flow. Our
implementation however requires additional modifications to the specification.
As the implicit flow is used, and the URL fragment response is inaccessible
from a Fetch API request10, we request the ID Token to be returned in the
response body, using the response mode parameter. Additionally, we introduce

7 https://github.com/Sparika/ACOR SDP
8 https://github.com/reTHINK-project/dev-IdPServer-phpOIDC
9 https://github.com/reTHINK-project/dev-IdPServer

10 https://developer.mozilla.org/en/docs/Web/API/Fetch API



a new rtcsdp claim, to have the media key fingerprint included in the ID Token.
Finally, the redirect uri of the request is set to a particular page, sending the
”LOGINDONE” message to the CS client page.

OpenID Connect is based on OAuth2, an authorization protocol. As such the
concept of user consent is central to the protocol. However, in the user-to-user
authentication use case, it is not clear who is the intended audience for the ID
Token. As our IdP Proxy acts as the OIDC client, it is the effective audience.
In practice, the identity assertion, i. e. the ID Token, is visible to each CS on
the signaling path, and is ultimately verified by the peer’s user-agent. The user
should thus be asked for consent to share the ID Token to any of these actors.
However, these are not all known in advance, and by design, any actor could
instantiate an IdP Proxy to validate and decode the identity assertion.

Actually, without appropriate protection, a web page could look for user’s
identity assertion without triggering any warning. This could reveal user iden-
tities, or at least existing user accounts on IdPs. For instance, given a list of
WebRTC compatible IdPs, running the following script would reveal identity
assertion from unprotected IdPs with active sessions.

IdPArray.forEach(function(idp){

var pc = new RTCPeerConnection()

pc.setIdentityProvider(idp.domain, idp.proxy)

pc.getIdentityAssertion()

.then(res => {alert(’Got your ID token: ’+res)})

})

This is a major issue, and implementors should take appropriate measure to
protect their interfaces against such vulnerabilities. Protections could consist in
requesting user consent for every request, limiting the access to known web page
origin, or managing user consent and authorization based on web page origin.

In conclusion, although OIDC offers an existing framework to generate and
validate identity assertion, several modifications to existing implementations are
still required in order to support WebRTC IdP Proxy peer-to-peer authentica-
tion. The resulting solution is more complex than a simple cookie based IdP
Proxy, but would also easily handle authorization flow to check user consent.

4 Going Further: Trust Issue

Although the WebRTC identity specification allows to bind the media session to
a validated peer identity, it does not offer a clear measure of trust to the user.
In particular, a user may ask himself the following questions: should I trust my
peer’s IdP and what is the strength of my peer’s authentication? In order to re-
quire a particular trust level, it would be necessary to act on the communication
setup, i. e. conduct negotiation on the peer authentication process.



4.1 SDP negotiation

Two parameters could be negotiated: the other-party IdP origin and the au-
thentication level [8]. To convey these requests we define two parameters. The
Authentication Class Request (ACR): List<ACRValue>, a list, ordered by pref-
erence, of accepted authentication class value. And the Origin Request (OR):
List<Origin>, a list, ordered by preference, of accepted IdP’s origins.

WebRTC conveys identity assertions as SDP session level attributes [4]. Ex-
tension to the attribute are possible, but none are defined by the specification.
Due to the identity attribute grammar, identity assertion would be mandatory
to negotiate identity parameters.

We instead propose to define a new type of SDP session-level attribute to
negotiate these identity parameters. The Authentication Class and Origin Re-
quest (ACOR) SDP attribute defines a list of accepted authentication class and
IdP domain for the other peer identity.

– a=acor:LIST<ACRValue> ; List<Origin>

In SDP, a negotiation is a sequence of offer and answer exchanges, with an
offer always followed by an answer. To accept the requested ACOR attribute, a
peer must thus reply a SDP message with a compatible identity assertion.

4.2 Implementation

We implemented our solution11 to negotiate identity parameters over SDP ex-
change. SDP messages are returned by the createOffer and createAnswer func-
tions offered by the PeerConnection object. Once generated, the client code ap-
pends an ACOR attribute to the generated SDP offer or answer. The SDP is then
sent to the other peer’s client. On receiving a message, the client code reads the
requested ACOR attribute. It also verifies that the received peer-identity follows
the ACOR it previously requested.

The resulting negotiation solution is implemented in under 100 Javascript
code lines, for a very simple client. Renegotiation allows both clients to make
new offer once the session has been established. For instance, this allows to ask to
an anonymous user to authenticate itself. We however identify some important
limitations, mostly due to the specifications.

The generateAssertion function from the IdP Proxy has for parameters con-
tents, origin, and usernameHint. Request for a particular authentication class
to the IdP is not defined. We use the usernameHint parameters to pass ACR
parameters to the IdP. The IdP is modified accordingly to understand this pa-
rameter. However, the browser generated WebRTC IdentityValidationResult do
not represent the ACR. It is thus impossible for the validating IdP Proxy to
return a certified ACR value to the client. The client could directly read the
identity assertion contained by the SDP message, but this solution would loose
the benefits of the WebRTC identity abstraction.

11 Available with sequence diagrams at https://github.com/Sparika/ACOR SDP



It also appears impossible to change identity at call runtime or use multiples
identities simultaneously. The WebRTC specification states that if the PeerCon-
nection object has ”previously authenticated the identity of the peer [...], then
this also establishes a target peer identity. The target peer identity cannot be
changed once set” [3]. Our tests demonstrate that modifying the remote peer
identity effectively close the connection. Once a first identity has been set, it
cannot be changed. If this is an issue and if several IdPs are available, the client
should wait to receive an ACOR request from the peer before setting an IdP.

In the end, we are able to establish two anonymous sessions and then request
the other peer to authenticate with a particular identity domain. We are however
unable to control the strength of the authentication. In addition, our modified
SDP messages are effectively ignored by other services and by the user-agent.
As a result, interoperability with other services should not be compromised by
this new attribute.

5 Discussion and Future Work

Identity parameters negotiation We evaluate the possibility to deploy ne-
gotiation over ACR and IdP’s origin with current WebRTC specifications. Our
conclusion shows that it is not possible to request ACR to IdP Proxy when call-
ing the generateAssertion function. As a result, the specification would need to
be updated to support ACR negotiation. In particular: the generateAssertion
function could be extended to accept additional parameters, and the Identity-
ValidationResult could be left open to extensions.

Recommendation source We implement our identity parameters negotiation
solution on the CS side as it was the simplest solution. As identity negotiation
is most useful in scenarios of inter-operable communication services, such ser-
vices could be acting as the identity recommendation source. This may seems to
contradict the WebRTC trust model with untrusted CS. However, in the inter-
operable scenario, we may want to relax the trust model and consider that a CS
may be trusted by its own user. In this situation a CS could be well-suited to
provide recommendation and evaluation of the other-peer’s authentication.

Formalizing the trust model We are working on a model of the full WebRTC
communication setup, from a security configuration point of view. We use secu-
rity configuration inputs from the three communication setup paths described
in Figure 1a. Knowing and negotiating the other peer’s authentication strength
and IdP, as presented in Section 4, is a first step towards building an explicit
trust model for the identity path. User-agents could use this model to display a
security indicator for the overall WebRTC communication.



6 Conclusion

Decoupling authentication from the signaling process by providing an explicit
identity assertion to the user is an interesting new paradigm. Especially true for
the design of interoperable communication services on the web.

In this paper, we described our implementation of the WebRTC identity
architecture and the issues we encountered in our OpenID Connect implementa-
tion. Although WebRTC identity specification provides users with an initial trust
level in their peer’s authentication, it does not offer a clear measure of trust. To
solve this issue we propose an extension to WebRTC standard based on a new
SDP attribute for users to negotiate over the authentication of the other party
during the signaling process. Our implementation highlights that this solution
could be readily used by communication services, but it also demonstrates actual
limit of the current specifications in some scenarios, such as a multiple identities
for a user, e. g. personal and professional identities.

Users are not best fitted to analyze at runtime a complex security configu-
ration, such as a WebRTC setup configuration. They need help from a recom-
mendation source that would conduct the negotiation and notify them of the
current trust and security level. This recommendation source would use actual
session parameters at runtime to evaluate trust in the communication. In our
future work we will build such trust model.

Acknowledgment
This work has received funding from the European Union’s Horizon 2020 research
and innovation program under grant agreement No 645342, project reTHINK.

References

1. L. Boursas and V. A. Danciu, “Dynamic inter-organizational cooperation setup in
circle-of-trust environments,” in NOMS 2008-2008 IEEE Network Operations and
Management Symposium. IEEE, 2008, pp. 113–120.

2. A. Jøsang, J. Fabre, B. Hay, J. Dalziel, and S. Pope, “Trust requirements in identity
management,” in Proceedings of the 2005 Australasian workshop on Grid computing
and e-research-Volume 44. Australian Computer Society, Inc., 2005, pp. 99–108.

3. C. Jennings, A. Narayanan, B. Aboba, A. Bergkvist, and D. Burnett, “WebRTC
1.0: Real-time communication between browsers,” W3C, Working Draft, Mar. 2017.

4. E. Rescorla, “WebRTC Security Architecture,” IETF Secretariat, Internet-Draft
draft-ietf-rtcweb-security-arch-12, June 2016.

5. N. Sakimura, J. Bradley, M. Jones, B. de Medeiros, and C. Mortimore,
“OpenID connect core 1.0,” The OpenID Foundation, OpenID Specification, 2014,
http://openid.net/specs/openid-connect-core-1 0.html.

6. M. Handley, V. Jacobson, and C. Perkins, “SDP: Session Description Protocol,”
Network Working Group, RFC 4566, July 2006.

7. R. L. Barnes and M. Thomson, “Browser-to-browser security assurances for We-
bRTC,” IEEE Internet Computing, vol. 18, no. 6, pp. 11–17, 2014.

8. “ISO/IEC 29115:2013 - Information technology – Security techniques – Entity au-
thentication assurance framework.”


