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2 Université de Nice Sophia Antipolis, CNRS, LJAD, UMR 7851, 06100 Nice, France
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We study the time irreversibility of the direct cascade in two-dimensional turbulence by looking
at the time derivative of the square vorticity along Lagrangian trajectories, a quantity called meten-
strophy. By means of extensive direct numerical simulations we measure the time irreversibility
from the asymmetry of the probability density function of the metenstrophy and we find that it
increases with the Reynolds number of the cascade, similarly to what found in three-dimensional
turbulence. A detailed analysis of the different contributions to the enstrophy budget reveals a
remarkable difference with respect to what is observed for the energy cascade, in particular the role
of the statistics of the forcing to determine the degree of irreversibility.

I. INTRODUCTION

Although the time reversibility of the Navier-Stokes
equations is broken by the viscous forces, it is not re-
stored in the limit of vanishing viscosity. Indeed this
limit of fully developed turbulence is characterized by an
irreversible flux of energy from the large scales to the
small scales where it is dissipated. The irreversibility
of the energy flux in three-dimensional turbulence is re-
sponsible for the asymmetry of the two-point statistical
observables, either in a fixed Eulerian reference frame as
in the case of velocity structure functions which display
a negative third moment [1], or for the Lagrangian evo-
lution of pairs of trajectories [2].

Recently, it has been shown on the basis of labora-
tory experiments and numerical simulations, how irre-
versibility in turbulence manifests itself at the level of
single-point observable [3]. By looking at the evolution
of the (kinetic) energy along a fluid trajectory, it has
been shown that the particle acquires energy on a long
time scale and loses it on a short time scale. This re-
flects the fact that energy is injected in the flow by an
external forcing at large, slow scales and is dissipated
by viscosity at small, fast scales [4]. As a consequence,
although in stationary conditions the mean temporal in-
crement of energy vanishes, the full statistics is not time-
reversible and odd moments of energy increments are dif-
ferent from zero [3]. Time irreversibility can be quantified
by looking at the statistics of the power along a trajectory
p(t) = d/dt(v?(t)/2) and it has been shown that the third
moment (p?) is negative and increases with the control
parameter, the Reynolds number, of the flow. Similar
results have been found for the inverse cascade of energy
in two-dimensional turbulence, which is characterized by
the same scaling law of 3D turbulence [5] and in com-
pressible turbulence [6]. Despite the fact that in 2D the
energy flows towards the large scales (instead of the small
scales), time irreversibility manifests in two-dimensional
turbulence as in 3D, with a negative skewness of the
power computed along a Lagrangian trajectory [3].

In this paper, we study the time irreversibility of the di-
rect cascade in two-dimensional turbulence, characterized
by an enstrophy (mean square vorticity) flow towards

small scales, by studying the statistics of what we call
metenstrophy, i.e. the time derivative of the enstrophy
along a trajectory. The main motivation for this work is
that the direct cascade is characterized by a single charac-
teristic time [5] and therefore spatial separation (between
injection and dissipation scales) does not correspond in
a simple way to time-scale separation. This make the
enstrophy cascade completely different from the energy
cascades (direct and inverse) studied in [3]. On the ba-
sis of direct numerical simulations at different Reynolds
numbers, we find that also in this case single-point statis-
tics breaks time reversal symmetry and that the degree
of irreversibility grows with the Reynolds numbers of the
flow. A part this similarity, the picture which emerges
from the enstrophy cascade is very different from what
observed in the energy cascade, as here the terms that
contribute to the enstrophy balance are all local and pres-
sure gradient, which is responsible for the transfer of en-
ergy from slow to fast particles in 3D [7] is absent.

The remaining part of this paper is organized as fol-
lows. In Section II we provide a brief survey of two-
dimensional turbulence, introducing the equations and
the main quantities which will studied. In Section III
we report the results of our numerical simulations and
Section IV is devoted to the discussion of our findings.

II. THEORETICAL BACKGROUND

We consider the two-dimensional, incompressible
Navier-Stokes equation for the vorticity field w = Opu, —
Oy, in a double periodic square box of dimension L x L

Ow+u-Vw =vV3w—aw+ f (1)

where v is the kinematic viscosity, « the friction coeffi-
cient and f(x,t) is an external forcing needed to sustain
a stationary state. In the inviscid (v = a = 0) unforced
(f = 0) limit (1) has two conserved quantities: kinetic
energy £ = (1/2)(u?) and enstrophy Z = (1/2){w?).
Here (...) represents average over the L? domain). The
forcing term f injects energy and enstrophy at a char-
acteristic scale from which they are transported towards



large and small scales respectively, generating the double
cascade predicted by Kraichnan 50 years ago [5, 8]. The
inverse cascade of energy is characterized by Kolmogorov-
like spectrum with close-to-Gaussian statistics [9] and its
time-reversal properties have been the object of previous
works [3, 7]. In the direct cascade enstrophy is trans-
ferred at a rate 7 from the forcing scales ¢ down to
the small dissipative scales ¢, ~ 1/1/2/771/6 generating a
power-law spectrum with exponent close to the dimen-
sional prediction —3 [10-17]. The ratio of these scales
defines the Reynolds number of The ratio of the forcing
and dissipative scales defines the Reynolds number of the
cascade as Re = n'/303 /v = (07 /1,)?.

In presence of forcing and dissipation, the time deriva-
tive of the local square vorticity along a trajectory, which
will be called metenstrophy q, is given, from (1), by

w® =gy + qa + qr (2)

where with obvious notation we have introduced ¢, =
wrV3w, ¢o = —aw? and ¢y = wf. In stationary condi-
tions we have (¢) = 0 and the enstrophy balance reads
(qr) = —(qv) — (¢a) where the viscous dissipation is equal
to the enstrophy flux —(q,) = 7, while the large scale en-
strophy dissipation (g,) is negligible for large Reynolds
numbers [9].

We observe that in the decomposition (2) all terms
are local, involving products of the vorticity field and
its derivatives. This is the main difference with respect
to the balance for the energy cascade in which a non-
local term, given by the pressure gradient, is present.
Although the pressure forces on average do not contribute
to the kinetic energy balance, in 3D they are responsible
for the redistribution of energy from slow to fast particles
and for the asymmetry of the probability density function
(PDF) of energy power. The absence of the analogous
of the pressure forces in (2) suggests that the statistics
of metenstrophy in the 2D direct cascade will be very
different from the statistics of power in 3D.

III. NUMERICAL RESULTS

We have integrated the Navier-Stokes Equations (1)
on a doubly periodic square domain of size L = 27 at
resolution N? = 10242, by means of a standard fully-
dealiased pseudospectral code, with 4th-order Runge-
Kutta scheme with implicit integration of the linear dissi-
pative terms. In order to avoid large scale contamination
of the enstrophy cascade [18] the linear friction term —aw
has been numerically replaced by an hypo-friction term
—aV~%w which confines the dissipation to the largest
scales.

Because the variations of the enstrophy along a La-
grangian trajectory are only due to the contributions of
the forcing and dissipation, we have performed two sets
of simulations aimed to investigate separately the effects

of the viscous dissipation and of the external forcing on
the metenstrophy statistics.

In the following, all the results are non-dimensionalized
with the enstrophy flux n and with the characteristic time
of the flow defined as 7, = n~ /3.

A. Dependence on Reynolds

We performed a first set of simulation (Set A) to
investigate the dependence of the statistics on the
Reynolds number by gradually reducing the viscosity
and keeping fixed the forcing. In these simulations we
use a deterministic, time-independent forcing f(z,y) =
Fsin(kyx)sin(kyy). The forcing scale is defined as £y =
27/(ky+/2) and the parameters of the simulations are re-
ported in Table I. The statistics is computed over 2000
independent vorticity fields, sampled every 1.27,,.

In Figure 1 we show the PDFs of the metenstrophy
q for the simulations of the Set A at different Reynolds
numbers. Even if the mean value of ¢ vanishes, because
of the statistical time-stationarity, the full statistics re-
veals a noticeable violation of the time symmetry. In
particular, at increasing Re we observe the development
of a large left tail in the PDF and the third moment of ¢
become negative.
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FIG. 1. (Color online). Probability density functions of

metenstrophy ¢ at increasing Re (from the inner to the outer
PDF).

Figure 2 shows the second moment (¢?) and the third
moment (¢*) of the distribution of metenstrophy as a
function of the Reynolds number. Both moments are
found to grow monotonically with Re, in particular the
dimensionless quantity —{¢3)/n® which provides a suit-
able measure of irreversibility, similarly to what observed
for the statistics of power in 3D turbulence [3]. At vari-
ance with the 3D case, here we are unable to find a clear
power-law scaling for the two moments but this could
still be due to finite Reynolds effect.

The inset of Fig. 2 shows that the skewness S =



Re v —(qv)

—(ga)

(gr) E z

78 x10%2 1073

248 x 107! 2.4 x 1072 2.72 x 107! 1.06 x 10~ 1.99
1.5x10° 5x107* 224 x 107! 2.8 x 1072 2.53 x 107! 1.30 x 107! 2.53
3.7x10% 2x107* 213 x 107! 3.4 x 1072 247 x 107! 1.68 x 10~ 3.62
7.3x10% 1x107% 2.07 x 107! 3.7 x 1072 2.44 x 107! 1.38 x 107! 4.25
1.5 x10* 5x 107° 2.05 x 107! 4.0 x 1072 2.46 x 107! 2.27 x 107! 5.75

TABLE I. Parameters of the simulations with deterministic forcing (Set A). The amplitude of the force is F' = 1 and the forcing

wavenumber k;y = 4. The hypo-friction coefficient is o = 1.
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FIG. 2. (Color online). Second (red circles) and third (blue
square) moments of the PDF's of metenstrophy ¢ as a function
of Re. Inset: Skewness of metenstrophy as a function of Re.

(¢*)/(¢?)*/? also increases in magnitude with the
Reynolds number of the flow and suggests a possible sat-
uration to a constant value for large values of Re.

We remark that in the case of the energy cascade in
both 2D and 3D turbulence, the skewness of the PDF of
the power is found to be nearly independent on Re [3].

In order to understand which physical process is re-
sponsible for the breaking of the time-symmetry, we have
analyzed the different contributions (2) to the metenstro-
phy, due to the forcing g¢, the viscous dissipation ¢, and
the large-scale friction ¢g,. In Figure 3 we compare the
PDF of ¢ for the run at Re = 1.5 x 10 with the PDFs
of ¢r, ¢, and g,. We find that the large left (negative)
tail of the PDF of ¢, is dominated by local events of in-
tense viscous dissipation, which can be 600 times more
intense than their mean. Conversely, the statistics of the
forcing contributions g is more symmetric, and it pre-
vails in the right (positive) tail of P(g). As expected, the
contribution of the large-scale friction is negligible on the
statistics of q.

It is remarkable that we observe a signature of the
presence of strong dissipative events (associated to the
left tail in Fig. 3) also in the statistical convergence of
the moments of ¢, which displays abrupt changes of the
averages during the time evolution of the system. A vi-
sual inspection of the vorticity field during one of these

FIG. 3. (Color online). PDF of the metenstrophy ¢ for the
case Re = 1.5 x 10* (back solid line), and of the different con-
tributions: viscosity ¢, (red, dashes line), friction ¢o (green,
dotted line), forcing ¢; (blue, dash-dotted line).

events reveals the presence of extremely intense and tiny
filaments of vorticity (see Figure 4). These vorticity fila-
ments, which are generated by the chaotic stretching of
the direct enstrophy cascade [19], causes localized events
of strong viscous dissipation, which are clearly visible in
the corresponding field ¢, shown in Fig. 4).

In summary, the results of this set of simulations re-
veal a significant breaking of the time-asymmetry in the
statistics of the metenstrophy. The irreversibility in-
creases with Reynolds, and it is intrinsically related to
the chaotic-stretching nature of the direct enstrophy cas-
cade, which produces tiny and intense filaments of vor-
ticity localized both in space and time.

B. Dependence on the forcing correlation time

Considering that the intense dissipative events must
be balanced on average by the forcing, it is natural to
suppose that the statistics of the metenstrophy cannot
be universal with respect to the forcing itself. We ad-
dressed this issue with a second set of simulations (Set
B), in which we keep fixed the viscous dissipation and
we have changed the time-correlation 74 of the external
forcing. For this purpose, we forced all the wavenumbers
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FIG. 4. (Color online). Snapshots of the vorticity field w
(upper plot) and viscous enstrophy dissipation rate ¢, (lower
plot) at the same time for the simulation at Re = 3.7 x 10°.

in the shell k& € [k, k2] with independent stochastic
Ornestein-Uhlenbeck processes dfir = —(1/7f) fopdt +
V2F dWy k., where W, are independent Wiener pro-
cesses. The amplitude F' of the forcing has been tuned
to obtain (a posteriori) similar enstrophy fluxes in the
simulations with different 7y. We define the mean square
forcing wavenumber as k% = (|(K|*)rejk,, k;s) and the
forcing scale as ¢y = 2w /ky. The parameters of this sec-
ond set of simulations are reported in Table II. Also in
this case, the statistics is computed over 2000 indepen-
dent vorticity fields, sampled every 1.27,,.

The PDFs of the metenstrophy computed in the sim-
ulations with different forcing are shown in Figure 5.
When the forcing has a long correlation time 74 (longer
than 7,), we observe a PDF characterized by a strong
asymmetry, due to a pronounced left tail, similar to what
observed for the stationary forcing of the Set A. However,
we find that the asymmetry diminishes as we reduce the
correlation time of the forcing.

The symmetrization of the PDF is accompanied by a
broadening of its tails. This is well captured by the de-
pendence of the second and third moment on 7y shown in
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FIG. 5. (Color online). PDFs of metenstrophy ¢ for differ-
ent correlation times 7y (77/7. increases from outer to inner
curve).

Figure 6. As the correlation time is reduced, we observe
an increase of the second moment, which corresponds to
the broadening of the PDF’s tails, and a reduction of the
third moment of the distributions, which indicates the
reduction of the asymmetry.
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FIG. 6. (Color online). Second (red circles) and third (blue
square) moments of the PDF of metenstrophy ¢ as a func-
tion of the forcing correlation time 77. Inset: Skewness of
metenstrophy as a function of 7.

The combined growth of (¢?) and the decrease of (¢*)
results in a reduction of the skewness S = (¢°)/(¢?)%/? at
reducing the correlation time of the forcing (see Figure 6).

The analysis of the different contribution to the meten-
strophy, (the forcing g, the viscous dissipation ¢, and
the friction g, ) reveals that the fluctuations of the forc-
ing are the main responsible for the broadening of the
tails observed in the case of short-correlated forcing (see
Figure 7). The PDF of the viscous dissipation ¢, displays
a clear asymmetry, but its contribution to P(g) is in this
case much weaker than that of the forcing.



Re Tt/ 1y F

—(qv)

—(4a) (ar) E Z

1.60 x 10* 0.15
1.55 x 10* 0.29
1.63 x 10*  0.60
1.55 x 10* 1.15
1.57 x 10* 2.91

0.25 2.5 x 107! 2.08 x 10~*
0.50 5.8 x 1072 1.89 x 107!
1.00 2.0 x 1072 2.18 x 10!
2.00 5.7 x 1073 1.87 x 107 ¢
5.00 1.8 x 1072 1.96 x 107!

3.8x1072 250 x 107! 1.60 x 10! 3.52
3.5%x 1072 2.25 x 107! 1.55 x 107! 3.45
4.1 %1072 2.60 x 107! 1.80 x 107! 4.05
3.7%x 1072 2.25 x 107! 1.68 x 107! 3.90
40x1072 237x 107! 1.92 x 107! 3.53

TABLE II. Parameters of the simulations with Ornestein-Uhlenbeck forcing (Set B). The wavenumber forcing shell is 5 < k < 6.
The viscosity is v = 5 x 1075 and the friction coefficient is a = 1.
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FIG. 7. (Color online). PDF of the metenstrophy ¢ for the
case 750’3 = 0.15 (back solid line), and of the different con-
tributions: viscosity . (red, dashes line), friction ¢. (green,
dotted line), forcing ¢; (blue, dash-dotted line).

Our findings have a simple explanation. Reducing the
time correlation of the forcing causes also a reduction
of the correlation between the force field and the vor-
ticity field. The mean, positive enstrophy input (which
is fixed) is therefore the result of cancellations between
larger and larger positive and negative fluctuations of
the input, which have no reason to be asymmetric. The
broad, symmetric tails of P(qy) which develops in the
limit 74 — 0 overwhelm the asymmetric contributions of
P(q,), originated by the generation of the tiny vorticity
filaments.

IV. CONCLUSIONS

In this work we have investigated the statistics of the
metenstrophy ¢, time derivative of the enstrophy along
a Lagrangian trajectory, in a two-dimensional turbulent
flows in the regime of the direct enstrophy cascade sus-
tained by deterministic and stochastic forcing.

The main result of our work is that the statistics of ¢ is
characterized by a strong violation of the time-symmetry.
The irreversibility increases with the Reynolds number,
and it is deeply related to the mechanism of the direct en-
strophy cascade, which generates tiny filaments of vortic-

ity by means of chaotic stretching. At the viscous scales,
these filaments causes intense events of enstrophy dissi-
pation, therefore giving strong contributions to the left,
negative tail of the PDF of q.

Being the results of balance between forcing and dis-
sipation, the statistics of the metenstrophy depends on
the forcing mechanisms. In particular we have shown
that the irreversibility is reduced in the case of stochas-
tic forcing with short correlation time, whose broad and
symmetric fluctuations overcomes the asymmetric con-
tribution given by the viscous dissipation.

The mechanism which causes the symmetry breaking
is essentially the chaotic stretching of the flow. This sug-
gests that our results can be extended also to other sys-
tems in similar conditions, in particular to the statistics
of a scalar field transported a turbulent of a chaotic flow.
More generally, the study of single point irreversibility in
different turbulent models will allow to build a general
picture of possible universal features of how time sym-
metry breaks in far from equilibrium systems.

Two dimensional turbulence is characterized by the
presence of two simultaneous cascades of energy and en-
strophy. The irreversibility of the two cascades can be
measured by the asymmetry of the statistics of the power
and the metenstrophy, respectively. The third moments
of the power (p3) and of the metenstrophy (¢3) are both
negative, but the mechanisms for the symmetry break-
ing in the two cascades are different. In the case of the
inverse energy cascade it is mainly due to inertial con-
tributions of the pressure gradients [3]. Conversely, in
the case of the direct enstrophy cascade it is caused by
extreme dissipative events. Moreover, the irreversibility
measured by (¢3) grows with the the extension of the in-
ertial range of the direct enstrophy cascade; at variance
with (p3) which grows with the extension of the inertial
range of the inverse energy cascade [3]. The turbulent
flows investigated here is sustaned by a large-scale forc-
ing and the inverse cascade is absent. Consistently, we
observe values of (p3) ~ 0 (within statistical uncertain-
ties). It would be interesting to investigate the correla-
tions between the statistics of power and metenstrophy
by means of simulations which resolve simultaneously the
two cascades, changing independently their extension.

An attempt to unify the two measures of irreversibil-

ity could be made by introducing a combination of the
energy and enstrophy, e.g., ¥ = [k*[Z(k) + k}E(k)] =



J k“(k* + k3)E(K), where E(k) is the energy spectrum,
Z(k) = k*E(k) is the enstrophy spectrum, and 0 < a <
2/3. Assuming a Kraichnan spectrum FE(k) ~ k=5/3
for ki < k < ky and E(k) ~ k73 per ky < k < ko,
one has that the quantity ¥ is dominated by the energy
contribution in the low-wavenumber range with a factor

6

(ky/k1)?/37% and by enstrophy in the high-wavenumber
range with a factor (ko/ks)®. The statistics of time
derivatives (or time increments) of ¥ along Lagrangian
trajectories, could therefore provide a suitable globale
measure of the irreversibility of 2D turbulence, encom-
passing the phenomenology of the dual cascade.
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