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Stability conditions of Hopfield ring networks with discontinuous
piecewise-affine activation functions™

Amelie Aussel', Laure Buhry? and Radu Ranta3

Abstract—Ring networks, a particular form of Hopfield
neural networks, can be used in computational neurosciences
in order to model the activity of place cells or head-direction
cells. The behaviour of these models is highly dependent on
their recurrent synaptic connectivity matrix and on individual
neurons’ activation function, which must be chosen appropri-
ately to obtain physiologically meaningful conclusions.

In this article, we propose some simpler ways to tune this
synaptic connectivity matrix compared to existing literature so
as to achieve stability in a ring attractor network with a piece-
wise affine activation functions, and we link these results to the
possible stable states the network can converge to.

I. INTRODUCTION

In the hippocampus and the entorhinal cortex, some neu-
rons, such as place cells, grid cells and head-direction cells,
are capable of firing at different rates depending on an
animal’s position ([10]). When organized in a network, these
cells function as a “cognitive map” of one’s environment,
providing the basis of spatial orientation skills, but are
also involved in short-term memory, as they can encode
spatial information and retain it for some time even when
all external stimuli are removed.

Different computational models have been developed to
represent these structures, for examples see [9], mainly based
on Hopfield-like neural networks ([4]). In Hopfield neural
networks, each neuron’s activity s, is computed from the
weighted sum of the activity of all the N neurons of the
network, through an activation function ¢. As the synaptic
decay of biological neurons is known to have an exponential
shape, we have the following differential equation:

1 N-1
b= ——se+ ¢<; whisi + be) (1)
or, in a matrix format:
s = —%s+¢(Ws+b) (2)

where W is called the (recurrent) synaptic connectivity
matrix, 7 is a synaptic time constant and b is the external
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input provided to the system (see [11]). The term Ws + b
can be interpreted as the total synaptic input received by the
neurons, and the term ¢(Ws + b) as their firing rates (the
number of action potentials they emit in one second).

In the first studies of the latter model, the synaptic connec-
tivity matrix W was symmetric, and the activation function
¢ was C! and strictly increasing (often a sigmoid function),
which ensured the convergence of the system to a stable
point for any stimulation b (as shown in [5]). However, when
some of these constraints were lifted in order to account for
more realistic networks, the stability analysis of the model
became a much more complicated task (for a review, see
[13]). In particular, a few authors have studied Hopfield-like
neural networks with non-C! activation functions ¢, in order
to establish the conditions for a unique stable point to exist
(for example see [1]).

In [3], a necessary and sufficient condition for the stability
of a system with a non-C! activation functions ¢ was
presented. More precisely, with ¢(x) = max(z,0) it was
shown that the system converges to an equilibrium point for
all constant b and all initial conditions, if and only if the
matrix (1I — W) is copositive; that is, x” (1I — W)x > 0
for all nonnegative x, except x = 0.

However, it is not clear how to apply this reasoning for
a more complex activation function ¢. Also, the copositivity
of a matrix is not something easy to ensure when tuning
the connectivity matrix W. In addition, it provides no
information about the form of the solution at the stable
points.

Our point is that some other stability conditions can be
obtained, which may be weaker than those developed in
[3], but are also easier to verify when choosing the synaptic
connectivity matrix W. These conditions take advantage of
the periodic structure that can be imposed on W, when
considering place cells or head-direction cells.

Indeed, because networks made of these cells have to
be able to encode a continuum of positions, the associated
model should also present a continuum of stable points,
and such a continuous attractor dynamics is often achieved
by choosing a synaptic connectivity matrix with some kind
of periodicity (see [9]). This structure is coherent with
experimental results, as it has been observed that hippocam-
pal neurons are highly interconnected and tend to form
associative networks (see [7]).

In Section II of the present article, we will detail the model
we used, a ring-shaped, Hopfield-like neural network with a



piecewise affine activation function ¢, then we will present
the results we obtained regarding its stability of the form
of its stable states in Section III. Finally, in Section IV we
will show how these results can apply on a simulation of a
network with a gaussian synaptic connectivity matrix.

II. DEFINITION OF THE RING NETWORK MODEL

A. Network dynamics

We studied the stability of a network consisting of N
identical neurons, which activity s followed the dynamics
(2) with an activation function ¢ defined by:

o) ={ 577

where o and [ are positive real constants.

The stimulation b is chosen strictly positive and uniform
on all neurons (Vk € [0; N — 1], b, = b).

if >0

if x<0 3)

This definition of ¢ ensures that neuronal firing rates are
always positive, and it also represents the fact that neurons
can only fire if the total input they receive is greater than
a certain threshold. With @ > 0 and 8 = 0, the function
¢ represents the behaviour of type-I neurons (capable of
firing at frequencies close to zero when excited with stimulus
just above their threshold), and with @ > 0 and 8 > 0,
it represents the behaviour of type-II neurons (that have a
minimal firing rate).

It can be shown from equations (2) and (3) that, whatever
the initial conditions, the network activity s will always
become and remain non-negative after a certain amount
of time, and therefore, for simplicity reason, we will only
consider non-negative s.

With our definition of the activation function ¢ (equation
(3)), each neuron can follow two distinct linear differential
equations, depending on the input it receives:

¢ On the one hand, if a neuron k receives an input that is
greater than or equal to zero, it will be called “excited”
and follow the equation: s, = —%sk +a vazgl Wi Si +
ab+
¢ On the other hand, if it receives an input that is less
than zero, it will be called ”inhibited” and follow the
equation: $ = —%sk
Therefore, at any instant t, our whole network can be
described by one of 2% different linear systems depending on
which neurons are excited or inhibited. We can then consider
our model as a switched system in the form:

1

where Iy is the identity matrix of size N-by-N, 1 is the N-
by-1 all-ones vector and Py is a diagonal N-by-N matrix
containing ones at indexes corresponding to the excited
neurons at the instant t and zeros elsewhere.

B. The ring structure condition

In order to model structures such as head-direction
cells, we considered ring-shaped, rotation invariant networks,
which imposed some constraints on the synaptic connectivity
matrix W.

Each neuron was assigned a position so that they were
all uniformly distributed on a circle: for k in [O; N — 1]
the angular position of neuron k was 0y = —7 + %Tﬂ
Then, because all neurons were identical (same time con-
stant 7, same activation function ¢), the rotation invariance
was obtained by connecting all neurons to their neighbours
identically. In other words, the synaptic interaction between
any two neurons does not depend on their position on the
ring, but only on the angular distance between them (w;; =
f(6; — 0;)). This imposes that W is Toeplitz. So that there
was no discontinuity for 6; —6; = km, W was even chosen
circulant (which means that any line of W can be obtained
as a right-shift a the previous one).

We also chose to keep W symmetric, which means that
the function f is even, and that the synaptic interaction
associated with an angular distance is the same whether we
go clockwise or anti-clockwise. Our synaptic connectivity
matrix is therefore of the form:

Wwo w1 w2 - W2 W1
wy W wi - W3 W2
w2 W1 Wo tee wyg W3
W = &)
w2 w3 Wg4 - Wo W1
wp W2 w3 cee w1 Wo

The elements of W are all real values, but they can be
either positive or negative. A positive coefficient represents
an excitatory synapse and a negative one represents an
inhibitory synapse.

C. Connectivity matrix and submatrices eigenvalues

In order to analyze the stability of the system in the next
section, we had to determine the eigenvalues of the matrix
Ay = (f%IN + aPxW) for all possible matrices Py, as
defined in II.

Let us consider a matrix Py with k£ zeros along its
diagonal (so that it corresponds to a system with k inhibited
neurons), and let us consider Ay, = (—%IN +aPxW) and
Ao = (—1Iy + aW). The matrix PxW is obtained by
replacing by zeroes all the k lines of W' that corresponds to
inhibited neurons. Therefore, as it is also explained in [3], by
developing the determinant of Ay along these lines, we find
that Ay, has k eigenvalues equal to —%, and the other are
the eigenvalues of the matrix Ay, obtained by removing the
rows and columns of A corresponding to inhibited neurons.

Because W is a real symmetric matrix, it is noteworthy
that Ay, is also a real symmetric matrix and therefore all the
eigenvalues of the system are real. Moreover, we can infer
from [6] (Cauchy interlacing theorem) that the eigenvalues
of Ag all lie between the minimum and the maximum of
the eigenvalues of Ag.



As W is also circulant, its eigenvalues can be calculated
as the discrete Fourier transform of its first row’s coefficients:
for all m in [0; N — 1], the corresponding eigenvalue A, of
W is equal to:

N-1 ‘
Am = Z wnem% (6)
n=0
And the corresponding eigenvalue of Ay is:
Pm = QA — ! (7
T

In the next section, we will now present our results
regarding the stability of the system defined here, as well
as the possible stable states it can reach.

ITI. STABILITY ANALYSIS
A. Form of the stable states

All the stable states of the system presented in section II
can be seen as the equilibrium point of one of the subsystems
defined by a combination of excited and inhibited neurons
PN

(—ql_IN-FOéPZW) s+Px(ab+5)1=0 ()

The equilibrium points of the different subsystems can be
easily obtained.

The equilibrium point sy of the subsystem with Py, = 0
(all neurons inactive) is

so =0 9)

The equilibrium point Sy, Of the subsystem with Py =

Iy (all neurons active) is a state on which all neurons share
the same activity, due to the circulant property of W:

(10)

Scons = 171
The equilibrium point s* of a system with Py #
Iy,Pyx # 0 (at least one active and one inactive neuron)
verifies:
« For all inhibited neuron k, s} = 0.
« As for the excited neurons, § = Agl (ab+ )1 where
§> is the vector obtained by deleting all the elements

corresponding to inhibited neurons from s>.

However, not all the equilibrium points of the different
subsystems are also stable points for the whole system. For
example, the state defined by sy = 0 is the equilibrium point
of the subsystem when all neurons are inactive, but it is not
a stable point of the whole system, as is this state sg =
—1s0+ ¢(Wsp + b) = (ab+ B)1 # 0 (because b, > 0,
and 8 > 0).

In fact, an equilibrium point s* of a subsystem defined
by X is a stable point for the whole system if and only if it
verifies:

Vk active in %, sf > 0 and Wys® +b >0
Vk inactive in 2, si =0 and Wys¥ +b <0

(11
(12)

where W, denotes the k;j, line of W.

Initial conditions

0.2
0.15F 9
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Example of stable states
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Fig. 1. Example of the two types of stable points for ring networks,

achieved from the same initial conditions with two different synaptic
connectivity matrices. Top plot: Initial conditions. Bottom plot: two stable
states - consensus (red dashed line), and bump (blue solid line).

In this section, we will focus on the two following forms
of the stable points of the whole system:

Definition 1: A stable state of the system is called a
consensus if all the neurons share the same non-zero activity.
A stable state which is not a consensus is called a bump.

An example of consensus and bump are shown on Fig.1.

It can be easily checked that the only possible consensus
of the system is the state s.,,s defined previously ((10)).

As ring network models are generally used to encode
information in the form of localised activity around some
angular position, we want to achieve an equilibrium point
which is not a consensus.

B. Sufficient condition for stability

In [3], a necessary and sufficient condition for the stability
of the system was presented. More precisely, with our
notations and with 5 = 0, it can be shown that:

Theorem 1: The following statements are equivalent:

1) All positive eigenvectors of all submatrices of —Ag

have positive eigenvalues.

2) The matrix —Aj is copositive; that is, x7 (—Ag)x > 0

for all nonnegative x, except z = 0.

3) For all constant b and all initial conditions, the dynam-

ics converge to an equilibrium point.

However, we could not apply this reasoning with 5 > 0,
and even with 8 = 0, the copositivity of the matrix —Aj is
not something easy to ensure when tuning the connectivity
matrix W. What’s more, it provides no information about
the form of the solution at the stable points.

Then, let us first propose a sufficient condition for the
stability of the system.

Theorem 2: 1If all the eigenvalues of W are strictly less
than é, then the system converges to an equilibrium point,



for all constant b and all initial conditions. Under these
conditions, the consensus S..,s iS an equilibrium point of
the system if and only if Ay > —B%.

Proof: Let us suppose that the connectivity matrix W’s
eigenvalues verify:

1
Vm e [0; N — 1], A\, < —
aT

Then all the eigenvalues u,,, of Ay are strictly negative.
This also implies that all the possible matrices Ay =
—%IN + PxW defining our systems are negative definite.
The function V(x) = x?x is then a common Lyapunov
function for all our subsystems, as we have A% + Ay
negative definite for all possible Ay. This ensures that the
system converges to an equilibrium point, for all constant b

and all initial conditions.

Let us now prove that in that case, the consensus S.o,s
is an equilibrium point of the system if and only if we also
have \g > —ﬁ—bT.

Let us consider a network that verifies Vm € [O; N —

1], Am < -1, and the state Sco,s in which for all neuron,
the neural activity is equal to:
ab+ f
Scons = T >0 (13)
el Of)\()
We can compute for each neuron k (k € [0; N — 1]):
N-1 N-1
WiScons +b = (Z wik'si> +b = Scons (Z wik) +b
i=0 i=0

As W is circulant, we have Vk € [0; N — 1], Zﬁigl Wik =
Ao. Therefore:

b+ 5’7’)\()

w cons b= cons)\ b=
kS + 5 ot 1—ar)

As explained in III-A, this state is a stable state for the system
if and only if Wgscons +b > 0 for all k. Therefore the state
Scons 18 a stable state of the system if and only if \g > —ﬁ—l’T.
|
Summarizing this subsection, we have proposed a con-
servative sufficient for stability (A\; < 1/(a7), V %) corre-
sponding to region 1 in figure 2 (splitted in two subregions
depending on the type of equilibrium point). Moreover, we
have defined strict necessary and sufficient conditions for the
existence of a stable consensus (region la).
The next subsections partially tighten the stability condi-
tions for the other possible equilibirum (bump), both analyt-
ically (subsection C) and numerically (section IV).

C. Necessary condition for stability

In this section we will prove the following statement:

Theorem 3: If \g > $ then at least one neuron’s activity
diverges to infinity, for all constant b and all initial conditions
(we will say that the system diverges).

Such a network, with neural activity that diverges to
infinity, is of course highly unrealistic, so the region Ag > i
should be avoided when choosing the synaptic connectivity
matrix.

Proof: From the definition of the activation ¢ (equation
(3)), because « and 3 are positive, it is clear that:

Vo € R, ¢(x) > ax

Therefore, we can write the following inequality:

N-1 N-1 1 N—-1
;O g1, > ; (—Tsk- +a<; Wi * 8; +bk)> (14)

Also, because the synaptic connectivity matrix W in
circulant, we can show that:

N-1N-1 N-1 N-1 N—1
Z Z Wi * 85 = (Z wz) (Z Sk:> = Ao (Z 3k>
k=0 i=0 =0 k=0 k=0

Then, we can deduce from (14) that:

N-1 1 N-1
ZSkZ (—T+a)\0) <Z Sk) +Nab
k=0 k=0

As all the neuronal activities s are positive, and the
stimulation b is strictly positive, if the connectivity matrix
W is such that \g > i at any given time we will have
Zgz_ol 5k > 0 which means that the system will diverge to
infinity. [ ]

The eigenvalue )\ therefore plays a key role in the
behaviour of the system, as it provides a necessary condition
for stability of the system as well as necessary and sufficient
condition for the existence of a consensus. As this eigen-
value is obtained from the sum of synaptic weights, it can
be interpreted in terms of balance between excitation and
inhibition in the network: stronger excitatory connections in
the network (which increase \g) tend to make the network
diverge, whereas stronger inhibitory connections (which de-
crease \g) tend to stabilize it and promote localized activity,
as could be expected.

D. What about the remaining case ?

We will now focus on the case that was not addressed
before, that is when W has at least one eigenvalue which is
greater than = and Ao < L.

Under these conditions, we could not find any more
specific results regarding the stability of the system than
those stated in Theorem 1, but we addressed the issue of
the form of the solution when the system converges to an
equilibrium point.

If \p > —ﬂ—bT, as we also have \g < i, then it can
be easily shown that the consensus defined by s.ops
%Zfol is an equilibrium point of the system (with a similar
reasoning as in the proof for Theorem 2). However, as W
has at least one eigenvalue that is strictly greater than é it
implies that Ay has at least one eigenvalue which is strictly
greater than 0, and so this consensus is an unstable fixed
point.

Therefore, when the system converges to an equilibrium
point, if the initial state was not s = S.ons With Scons as
defined in (10), or if A\ < _Fbr then this equilibrium point
must be a bump.



IV. APPLICATION WITH A GAUSSIAN SYNAPTIC
CONNECTIVITY MATRIX

In order to verify our results, as well as tighten our stability
1

conditions for the case \g < i but 3i # 0,\; > -,
we focused on studying a network in which the function
used to generate the synaptic connectivity matrix W was
known, and performed numerical simulations. Note that
plausible synaptic connectivity matrices will usually have
one mode (connection weights decrease monotonically with
the distance). In this case, A; will be the highest eigenvalue
(corresponding to the lowest non null frequency revealed by
the Fourier transform), which makes it possible to analyze
the stability of the system regarding this eigenvalue only.
More precisely, the synaptic connectivity matrix W was

built from a gaussian function as follows:
Vi e [0; N —1],V5 € [0; N — 1],
wij = f(0i — 6;) + p
2

with f:xH{eQﬁ if ©#0

5)

0 if =0

This connectivity represents a ring in which all neurons
are excitatory, with an excitatory synaptic interaction f
decreasing as a gaussian of width o with distance. Because
neurons usually don’t send synapses to themselves, the
excitatory synaptic interaction is equal to zero for ¢ = 5. The
presence of inhibitory interneurons with a uniform action on
the network is represented by introducing effective inhibition
as a global shift of 4 < 0 of the synaptic connectivity,
as suggested in [2]. The connectivity matrix W can then
be tuned by chosing only the two parameters o and p
appropriately.

The parameters of the network were chosen as follows:
N=1000, 7=10ms, a=2, $=10, b=1. The initial state of the
network was chosen randomly, and the differential equations
were solved using Euler method with a time step of 0.5ms.

All the simulations were performed using Matlab (MAT-
LAB 8.1, The MathWorks Inc., Natick, MA, 2000).

With this synaptic connectivity matrix, for a large [V, the
eigenvalues of W can be approximated using the error func-

tion defined by erf(x) = ﬁ I, ~t* dt. More precisely, we
have: N
o
A~ (N-1Du+ erf 16
ox V-t SZet(T) a

and, among all the other eigenvalues of W, the largest
one is always:

et (U\f f))

We could then define the behaviour of the system in the
following regions, depending on ¢ and p:
e Region la (\g < ==, Ay < = and Ao > —5%): the
system converges to a consensus.

a7

—— XO=E

L ]
at

- k0=_%

= Border of the region of conver-
gence (simulation results)

Biais Border of the region of conver-

gence (numerical approximation) | 7

Region 2

Width ¢

Fig. 2. Stability analysis of a neural network with a Gausslan connectivity
matrix of parameters o and p. Red circled line: /\0 = ; Blue dashed

line: A1 = ——; Magenta squared line: \g = _[T Black lme Border of

the region of convergence as obtained in simulations; Green dash-dot line:
Border of the region of convergence, as predicted numerically.

e Region 1b (Ao < 25, A1 < 2 and \g < —z%): the
system converges to a bump.

e Region 2 (N > %): the system diverges to infinity.

As for Region 3, characterized by \g < == and \; > E’
even though we could not obtain theoretlcal results we used
numerical methods to predict the stability of the network as
well as the exact form of the solution.

To do this for a given matrix W, we considered all
the different combinations of active and inactive neurons X
on the ring (with regard to the rotation invariance of the
network), such that Ay, was negative definite (with Ay as
defined in II-C). For each of these X, we computed the
theoretical state s* in which the network would be if it were
to stabilize with active and inactive neurons as defined by
PN

o for each 1nact1ve neuron Kk, sk =0

« 8% = A;'(ab + B)1, with 87 the vector obtained

by selectlng only the indices corresponding to active
neurons in s*.
We then checked the nullity of §*.

When no ¥ could be found for which & = 0, we
concluded that the network defined by W was unstable
(Region 3a), whereas on the other case, we listed the possible
forms in which the network could stabilize (Region 3b).

In Region 3b, our observations were that only one form
of solution could be stable for a given matrix W, and this
form always corresponded to a X where all active neurons
were grouped together on the ring, thus forming a single
bump of activity on the ring.

With our simulations, we could then confirm our theoret-
ical predictions and complement our numerical observations
(as summed up in Fig.2):



o In Region 1la, the system converges to a consensus.

« In Region 1b, the system converges to a bump.

e In Region 2, the system diverges to infinity.

o In Region 3a, the system diverges to infinity.

o In Region 3b, the system converges to a bump of the
predicted form.

In order to build a network that will converge to a
bump, one should then choose the synaptic weight matrix
parameters o and p corresponding to region 1b or 3b.

V. CONCLUSION

In this work, we studied the stability of ring neural net-
works with piecewise-affine, discontinuous activation func-
tions. In comparison to existing literature, we obtained some
simpler necessary conditions and sufficient conditions for
convergence of the system depending on the eigenvalues of
the synaptic connectivity matrix, and we were able to link
them to the form of the solutions. When these theoretical
conditions were not met, we were able to predict the be-
haviour of the system numerically on an example network.
All of these results were then confirmed using simulations
of a network with gaussian-like connectivity matrix.

Understanding the theoretical aspects of the behaviour
of such systems could prove very useful in computational
neurosciences, in order to build more complex models of
place cells or head-direction cells, and easily tune them to
resemble physiological networks.

As for future works, it would be interesting to see if
the results of this study can be extended to activation
functions with more than two affine regions (e.g., with some
saturation), to piecewise non-linear activation functions, or
to systems with more complex dynamics (e.g., with some
noisy input, or with delays on the synaptic transmission).
Another perspective would be to study this network in terms
of memory, i.e., how long the network can maintain accurate
localized activity when the stimulation is removed.

REFERENCES

[1] M. Forti and P. Nistri, “Global Convergence of Neural Networks with
Discontinuous Neuron Activations”, IEEE Transactions on Circuits
and Systems I, vol. 50, no. 11, November 2003.

[2] W. Gerstner, W. M. Kistler, R. Naud and L. Paninski, Neuronal
Dynamics, From single neurons to networks and models of cognition,
Cambridge University Press, ch. 16.3.2, 2014.

[3] Richard H. R. Hahnloser, H. S. Seung and J. Slotine, “Permitted and
Forbidden Sets in Symmetric Threshold-Linear Networks”, Neural
Computation, vol.15, pp 621-638, 2003.

[4] J. J. Hopfield, “Neural networks and physical systems with emergent
collective computational abilities”, PNAS, vol. 79, pp 2554-2558,
1982.

[51 J.J. Hopfield, “Neurons with graded response have collective compu-
tational properties like those of two-states neurons”, PNAS, vol. 81,
pp 3088-3092, 1984.

[6] R.Horn and C. Johnson, Matrix analysis, Cambridge University Press,
p189, 1990.

[7]1 C. Le Duigou, J. Simonnet, M. T. Telenczuk, D. Fricker and R. Miles,
“Recurrent synapses and circuits in the CA3 region of the hippocam-
pus: an associative network”, Frontiers in Cellular Neuroscience, vol.
7, article 262, 2014.

[8] C. K. Machens and C. D. Brody, “Design of Continuous Attractor
Networks with Monotonic Tuning Using a Symmetry Principle”,
Neural Computation, vol. 20, pp 452-485, 2008.

[9] B. L. McNaughton, F. P. Battaglia, O. Jensen, E. I. Moser and M.
Moser, “Path integration and the neural basis of the ‘cognitive map’
”, Nature Review Neuroscience, vol. 7, pp 663-678, 2006.

[10] J. O’Keefe and L. Nadel, The Hippocampus as a Cognitive Map,
Oxford University Press, 1978.

[11] F. J. Pineda, “Dynamics and Architecture for Neural Computation”,
Journal of Complexity, vol. 4, pp 216-245, 1988.

[12] S. V. Savchenko, “Normal matrices and their principal submatrices
of co-order one”, Linear algebra and its applications, vol. 419, pp
556-568, 2006.

[13] H.Zhang and D. Liu, “A Comprehensive Review of Stability Analysis
in Continuous-Time Recurrent Neural Networks”, IEEE Transactions
on Neural Networks and Learning Systems, vol. 25, no. 7, July 2014.



