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THE ASYMPTOTIC OF TRANSMISSION EIGENVALUES FOR A DOMAIN
WITH A THIN COATING

H. BOUJLIDA *, H. HADDAR!, AND M. KHENISSI *

Abstract. We consider the transmission eigenvalue problem for a medium surrounded by a thin layer of
inhomogeneous material with different refractive index. We derive explicit asymptotic expansion for the transmission
eigenvalues with respect to the thickness of the thin layer. We prove error estimate for the asymptotic expansion
up to order 1. This expansion can be used to obtain explicit expressions for constant index of refraction.
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1. Introduction. This work is a contribution to the study of transmission eigenvalues [11, 4,
6] and their relation to the shape and material properties of scatterers. These special frequencies
are associated with the existence of an incident field that does not scatter. They can be equiva-
lently defined as the eigenvalues of a system of two coupled partial differential equations posed on
the inclusion domain. One of these equations refers to the equation satisfied by the total field and
the other one is satisfied by the incident field. The two equations are coupled on the boundary
by imposing that the Cauchy data coincide. This eigenvalue problem can then be formulated as
an eigenvalue problem for a non-selfadjoint compact operator. Although non intuitive, it can be
shown that this problem admits an infinite discrete set of real eigenvalues without finite accumu-
lation points [7, 26]. These special frequencies can be identified from far field data as proved in
[5, 19, 4]. Since they carry information on the material properties of the scatterer, transmission
eigenvalues would then be of interest for the inverse problem of retrieving qualitative information
on the material properties from measured multistatic data [14, 15]. In this perspective, it appears
important to study the dependence of these eigenfrequencies with respect to the material prop-
erties and the geometry. Several works in the literature have addressed this issue by considering
asymptotic regimes and quantifying the dependence of the first leading terms in the asymptotic
expansion of the transmission eigenvalue with respect to the small parameter [10, 8, 21, 16]. We
here consider the case of a scatterer made of a thin coating which corresponds to frequently en-
countered configurations in the stealth technology for instance. The goal is to characterize the
dependence of the first order term on the material properties and the thickness of the coating. A
first work on this topic was done in [10] where the case of coated perfect scatterer is considered.
One proves in particular for the latter case that the first order term depends only on the thickness.
We here address the more complicated configuration of a coated penetrable media. The analysis
indicates that the first order asymptotic resembles to the shape derivative for the buckling plate
equation [17] and contain non trivial dependence on the material properties. More importantly,
this expansion allows us to obtain explicit (approximate) expressions for the thin layer index of
refraction in terms of the thickness of the layer, the transmission eigenvalue for the coated medium
that can be extracted from the measurements and the transmission eigenvalues and eigenvectors
for the coated free medium that can be evaluated numerically. This indeed can be useful for the
solution of the inverse problem.

Although the formal derivation follows the systematic procedure using the classical scaled
expansion method (as in [3, 2, 13] for instance), the rigorous justification is much more involved.
For instance the arguments in [10] are hard to extend to the present case since special uniform
estimates have to be obtained for the transmission problem. We restrict ourselves here to the jus-
tification of the first two terms in the asymptotic expansion using the abstract theory developed
in [23, 21]. We follow the procedure developed in [8] for the case of small obstacles asymptotic.
The main technical point in the proof is to obtain the corrector for the main operator, which is
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2 H.BOUJLIDA , H. HADDAR AND M.KHENISSI

here the biharmonic operator. Our main result provides explicit expansion for simple transmis-
sion eigenvalues and for multiple transmission eigenvalues that are associated with a generalized
eigenspace spanned only by eigenvectors.

We analyze the problem where the contrast in material properties affect only the lower order
term in the Helmholtz equation. We finally indicate that although the problem is considered
only in dimension 2, the results of the main theorem (including the expression of the first order
asymptotic term) remain true for three dimensions (up to more complicated technicalities in the
proof related to differential geometry).

The paper is organized as follows. We first introduce the transmission eigenvalues and write
them as the eigenvalues of a non selfadjoint operator. We then present the main result of our paper
and discuss applications to the inverse problem. We present next the outline of a classical formal
procedure to obtain the expression of the asymptotic expansion. We give the expression till the
second order term. We explain in particular why the expression of the second order term would
have less interest in practice. We then proceed with the main part of the paper that provides
explicit expressions and an error estimate for the first two terms in the asymptotic expansion.

2. Problem statement and main results. Let  C R? be a bounded domain with a
smooth boundary I". We denote by
W ={reQ, dzT)>¢}
and its boundary
I.={zecQ, dx,)=¢e =09,
for € > 0 a small enough parameter, where d(x,I") denotes the distance of a point  to the boundary
I. Let Q. = Q\Q0 be the layer of thickness e around QY (see Figure 1).

Fic. 1. Stretch of the geometry

We consider the following transmission eigenvalue problem:

Aw, + E*n(r)w. =0 in Q,
Ave + kv =0 in Q,
(1) We = Ve on L,
Owe  Ove I
ov  Ov on ’

where k. denotes the unknown eigenfrequency and v the unitary normal to I' directed to the
interior of ). The index of refraction n. is defined as follows:

ne() = {no(x) in Q0

ni(z) in Q,

where ng and n; are non negative real valued functions € L>(R?) that are independent from e.
For the sake of simplicity, we assume that the restriction of ng and n; to €2 are constant functions
along the normal coordinate to I' for e sufficiently small. We finally assume that the function
1/(1 — n) is either positive definite or negative definite on €. We remark that this assumption
also implies that 1/(1 — ng) is either positive definite or negative definite on Q and that

(2) 1/l = ne(x)| >~y >0 forae z€q
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ASYMPTOTIC EXPANSION OF T.E 3

with + being independent from (sufficiently small) e
The main goal of this paper is to find the asymptotic expansion of eigenfrequencies k. with respect

to €. Assuming that 7 € L>=(Q), the transmission eigenvalue problem (1) can be reformulated
- Tle

as the nonlinear eigenvalue problem for A, := k? € R and u, := w. — v, € HZ(Q2) such that

(A + Aene) (A+A)uc=0 inQ,

1—n,

which in variational form, after integration by parts, is formulated as finding A. € R and non-trivial
function u, € HZ(Q2) such that

1
(3) / . (Auc + Aeue) (Ad + Acneg)de =0, Vo € HF ().
.
Q
The space H3(£2) denotes the closure in H?(Q) of the set of regular compactly supported functions

in Q. We shall work with the reformulation of (3) as a linear eigenvalue problem for a non
selfadjoint compact operator [4]. First observe that (3) can be written as

(4) Aue + A Beue + )\ECEUE =0 in HS(Q)

where
At H3(Q) — HZ(Q), Be:HZ(Q)— H3(Q), C.:HZ(Q)— H(Q)
are defined by the Riesz representation theorem as

1

(5) (Aete, ®) m2(q) = / T

0 l—

1
0 (Bete: Doy = | o (00 + m )
and

Ne

(7) (Cete, ¢)H§(Q) = /Q 1—n, Uepdz.

Note that A, : H3(Q2) — HZ(£) is a bounded, self-adjoint and invertible operator (thanks to (2)),

B : H3(Q) — HZ(R) is a bounded, compact and self-adjoint operator and C, : HZ(2) — HZ(Q2)

is a (non negative or non positive) bounded, compact and self-adjoint operator. Observe that

since A is invertible, A\ # 0. In order to avoid distinguishing the cases of 1 — n, being positive or
1 1

negative we shall abusively set C& = —(—C¢&) in the case where 1 — n, non positive.

1
Setting Ue = (e, AcCZu), the transmission eigenvalue problem (4) can be transformed into
the linear eigenvalue problem, 7. € R, U, € HZ(2) x HZ(£2) such that

(8) (Te =7)U. =0, with 7= )\i

for the compact non-selfadjoint operator T, : HZ(Q) x HZ(2) — HZ(Q) x HZ(S) defined by
_ A1 _ 1 2

(9) A
ce

We set

—1 1
(10) To= <‘A0130 —h C)
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4 H.BOUJLIDA , H. HADDAR AND M.KHENISSI

where Ay, By and Cy are defined by (5), (6) and (7) respectively for n. = ng in 2. We state here
the main result of this paper which will be proven in Section 4. In the following a transmission
eigenvalue )\ is called simple if the corresponding 79 = 1/X¢ has an algebraic multiplicity equal
to 1. We refer to Theorem 4.11 for the case where Ay has an associated eigenspace formed
only by eigenvectors (and therefore an algebraic multiplicity that coincides with the geometrical
multiplicity).

THEOREM 2.1. Assume that ng,n1 € C*(Q). Let \g € R be a simple transmission eigenvalue
of (3) with n. = ng in Q and let ug € HF(Q) be an associated eigenfunction. This implies in
particular that

,_ 1 2 2 2
ﬁo = /Q 71 g (/\O’I’LQ|UQ| |A’U,O| )dﬂ? 7’5 0.

If we suppose in addition that uy and Ao_luo are in C%(Q), then, for sufficiently small € > 0, there
exists a transmission eigenvalue Ae of (3) such that
Ae = Ao + €A + O(e3)

where \1 is given by the following expression

>\0/ ng — ny 2
)\ = P E—— A’LL dS xX).
1 ﬁo 1" (1 — n0)2 | 0| ( )

This theorem is an immediate consequence of Theorem 4.8 that is stated and proven in the
last section of this paper.

The formal calculations in Section 3 show that the formula for \; is generically valid whenever
Bo # 0. However, we remark that in the case of transmission eigenvalues with multiplicity greater
than 1, this is not automatically ensured (See Theorem 4.11 for a rigorous expression of A\; that
involves all eigenvectors associated with Ag).

From the practical point of view, this theorem implies in particular that A\; gives a measure for
the contrast ng —ny. For instance, if n is constant and ng is constant on I', one can approximate
the value of n; using the identity

Ae — Ao

€Q

1 1
(11) n1|F:n0|p— /Q 1= ng ()\on0|u0|2—/\—O|Auo\2)da:+0(e%)

L |AUO|2 s(z
“o /r (1 *no)Zd (@)

For the inverse problem where one would like to determine n; from multistatic measurements of
scattered waves, the value of A, can be approximated using sampling methods as in [5, 4] (see
also [19] for an alternative approach). The values of A\g and ug can be computed numerically if
one has a priori knowledge of ng and € (see for instance [12, 18, 20] for numerical methods to
approximate Ag and ug). We finally indicate that, although not carefully checked, we conjecture
that the expression for \; remains true in three dimensions (corrections due to the curvature of I'
only affect higher order terms).

with

3. Formal asymptotic expansion. In this section, we derive the formal asymptotic ex-
pansion for transmission eigenvalues and give explicit formulas for the terms up to order 2. The
idea here is to provide a systematic formal way to quickly obtain the explicit expression of A; in
Theorem 2.1 and also higher order terms. The latter turn out to have complicated expressions
that would be of marginal interest for the solution of the inverse problem mentioned above. This
formal stage will also be helpful in establishing the rigorous proof based of Osborn’s theorem [23].
It allows one to have an intuition for the expression of the corrector in the asymptotic of the main
operator A..

We assume the following expansions for the transmission eigenvalues :

(12) A=) €N,
§=0
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ASYMPTOTIC EXPANSION OF T.E 5

and then follow a classical technique for thin layers asymptotics based on rescaling and asymptotic
expansion with respect to the thickness e. We shall mainly follow the approach in [10].

3.1. Scaling. We assume that the boundary I' is C°°-smooth, although much less regularity
is needed if we restrict ourselves to only few terms in the expansion. The issue of optimal regularity
assumptions for I is not discussed here. However, one can check that at least a C? regularity is
needed to get the expression of A\;. We parametrize I" as

I'={ar(s),s € [0, L[},
with L being the length of I' and s is the curvilinear abscissa. At the point zp(s), the unit tangent

vector is 7(s) 1= dxp(s)7 the curvature k(s) is defined by:
dr(s) dv(s)
2 = —k(s)v(s) or Fra k()T (s).

Within these notations, the boundary of QU is parametrized as
I'e = {zr(s) + ev(s),s € [0,L[}.
This parametrization of the surface I, is equivalent to the definition of ', for € > 0 a small enough
parameter.
For a function u defined in €., we consider @ defined on [0, L[x]0, €[ by

(13) a(s,n) = u(p(s,n)) where ¢(s,n) := wr(s) +nv(s).

Then, the gradient and Laplace operators are expressed in the local coordinates as:

1 0 0 _
Vu= (W%T(S) + %V(S))U,

C \(1+nK)0s(1+nk)ds  (14+nk)dn  On?

u.

(14)

To make the formal calculations, we need to separate the thin layer and scaled it with respect
to the thickness so that the equation are posed on a domain independent from e. We therefore
rewrite the transmission eigenvalue problem (1) in the following equivalent form

Aw} + E2njwt =0 in Q,
Aw. + k2now; =0 in Qo
Ave + kv =0 in Q,
owr  ow;
(15) wh =w_, g); = ;U; on r.,
wl = v, on T,
owr v
€ _ € F
v v on

We denote by £ = ! the stretched normal variable inside Q. and define
€
we @ G=1[0,L[x]0,1] — Q.

(s,€) = pe(s,§) = zr(s) + efv(s).
Then the expression of the Laplace operator in the scaled layer is:

Lo 1 o s 0 18
(14 &er) Os (1 + Eer) Os + (14 &er) ¢ ta g2

(16) Au = ( )u N

for i(s,§) == u(pe(s, £)).

The next step is to write the equation for w} in the scaled domain and solve for the asymptotic
expansion of w} in terms of the boundary values on I'. These boundary values are given by the
asymptotic expansion of v.. More specifically, setting w.(s, &) := w (pc(s,£)), we have that

(17) A ethe + Acnyibe = 0 in G
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6 H.BOUJLIDA , H. HADDAR AND M.KHENISSI

together with the boundary conditions

1{)66({7 0) = ve(xg(s)) s€[0,L],
(18) L0 =T sclLl
We assume that
(19) We(s, &) = Zejwj(s,f), (s,£) €G and v (x)= Zejvj(z), z e

for some functions w; defined on G and v; defined on () that are independent from e. Multiplying
(17) by €2(1 + £ex)? and using (12), we obtain

Ze A =0,

where (Ag)g—o...5 are differential operators of order 2 at maximum with the following expressions
for the first fourth terms:

Ao 288527
Ay = (;922 +3§2"€2887§2 + 26k % + Xon1,
53“33652 + &0 ag %% +&n 522 +3Xoniék + Ainy.

Inserting the ansatz (19) in (17) and (18) we obtain after equating the terms of same order in €
and using the convention w; = v; = 0 for j <0,

352 ZAW’J k in g,
(20) w;(s,0) = UJ(SUF( )) s e [0, L],

8wj 3Uj—1

¢ (s5,0) = B (zr(s)) s€][0,L].

These equations can be solved inductively to get the expressions of w; in terms of the boundary
values of vy, I < j. One gets for j =0,1,2 and 3

wo(s, &) = vo(xr(s)),
1(5,6) = S0 er(s))€ +urlan(s),

(21)
2 W 2ws U1

12(5,8) = — 5 (K00 (ap(5)) + T (ap(5)) + omang (oe(5))) + b e ()6 + vo(arn(s)),

and
3 wy 2wy V)
by (s, €) = %( - 2n2%(:¢p(s)) - 3“88520 (er(s)) — wAoniwy (zr(s)) + )\Om%(xp(s)))
3 3'[) we
& (G or () =i or()

(22)

2 (Y
+ 5 ($92 () + domen (e () + Aimwg (ar()) + 52 (ar ()€ + (e (5))
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ASYMPTOTIC EXPANSION OF T.E 7

Now, we also postulate the following expansion for w_ :

(23) we (z) = ) dwj (x)
j=0

with w;” : © — R are functions independent of . Then (w;,v;) solves

J
Aw; + Aonow; = — Z Ninow;_; in Q,
(24) ;i
Avj + /\QUj = — Z /\ﬂ}j_l in Q.
=1

Note that the functions w; are defined in all €2 and not only 00 and therefore (23) gives a extension

of w_ to all 2. The continuity conditions at I' can be written as

ow; 1 0w,

W= (s,€) = we(s,1) and é”; (s,0) = = 52 (s,1)

where w_ is defined from w_ using the local change of variables (13) in a neighborhood of T.
Using Taylor’s expansion (up to the second order, which is sufficient to compute the first three

terms in the asymptotic expansion) we get

ow; €2 02w

_ o & 9w, o
(25) 07 (5,6) = i (5,0) F €5 (5,0) + G 5 (5,0) 4 0(e?) = s, 1)
and
Bl Rl O €2 3w o 10w,
€ — € € - € — _ 1).
(26) 67’] (S7€> 87] (S’O) +e 6772 (8’0) + 2 67]3 (870) +0(6 ) € 65 (87 )

Injecting (19) and (23) into (25) and (26), we respectively obtain the following continuity conditions
onT,

1) Wi (e (5)) + (e (s) = (s, 1),
owy 1 0%wy

and
iy
0 = 876(8, 1),
awa - 81131
(25) ol ar(s)) = G (a1,
8wf 8211}(; 811?2

System (24) coupled with the boundary conditions (28) and (27) provide an inductive way to
determine (wj_, v;). We obtain the set of equations satisfied by these terms after substituting the
expressions of w;(s, 1) given by (21),(22). We hereafter summarize the set of equations obtained

for (w;, vj) and how to use them to get the expressions of A;, j =0,1,2.
We first obtain that the couple (wy ,vo) solves

Awy + Xnowy, =0 in Q,
Avg + Agvg =0 in Q,
(29) wy — v =0 on T,
ow, Ovg on r

o v
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8 H.BOUJLIDA , H. HADDAR AND M.KHENISSI

This means in particular that )y is a transmission eigenvalue for the limiting problem where the
thin layer is removed. We then obtain that the couple (w; ,v;) satisfies

Awp + Aonow; = —Ainowy in Q,

A'Ul + )\01)1 = —)\11)0 in Q,

(30) wy —v; =0 on T,
ow;y 0

| - ﬂ = )\Q(TZQ - 'fl1)wo_ on TI.

ov ov

Since \g is an eigenvalue of the associated homogeneous system, this problem is solvable only if
a compatibility condition is satisfied by the right hand sides. This compatibility condition can be

obtained by multiplying the first equation with w, and the second equation with g, taking the
difference then integrating by parts and using (29). One ends up with

/ Xo(ng — n1)|wa\2ds(x)
r

[ (nolui P = uof?) o
Q

which coincides with the expression of given in Theorem 2.1 expressed in terms of uy = wy — vo.
Although not covered by the analysis of convergence, we also provide the expression of the third
term in the asymptotic expression. One get that the couple (w; ,v2) solves

AL =

Aw; + Anow, = —Ainow; — Aanow,  in Q,
Avg + Agva = —A\1v1 — A2vg in Q,
(31) wy —ve = hy on T,
ow,  Ovy
—_ 222 _p T
Ov Ov 2 on ’
where )
10°wy; 1 _
h1 = —5 (9V2 — 5/\0(710 — nl)wo
and

D?wy Tk 0%wy

B Tk 9 n\Owy  3kdwy 3 PBwgy
ha = ov? 2 0s? +(2l€ +Ao(no + 2)> Ov 2 Os +281/352
n _ Q*wy  Owy
+ ()\1(2n1 —ng) + )\0(5(7 — no)))wo ~ K 5

Writing the compatibility condition for (31), we obtain the following formula for Ay
1 1 1 1
A (1Al - A 2)d :—AQ/(—A 0 2)d
Q/Q 1= ng /\0| UO‘ 07L0|’LLO| X 1 0 % UoUo + 17n0|UO| X
1
-\ / (ulAﬂo + ngAuq g + 2n0)\0u1ﬂ0)dm
al—no

(32) +/Fhlaay(1(A+Ao)ﬂo)d8(x)—/

1-”0 T

1

s (A + 2o)ig ) ds(x).
1-— Un)

This complicated expression shows in particular a nonlinear dependence of Ay in terms of ny. It

suggests that the use of Ay for solutions to the inverse problem of determining n; may not be

appropriate.

4. Convergence analysis. The main goal of this section is to prove Theorem 2.1 that
provides a rigorous mathematical justification of the formal asymptotic expansion for simple real
transmission eigenvalues up to the first order. The proof is split into several steps. The first one is
to establish the convergence in norm of the operator 7¢ to 7. This ensures the convergence of A,
to Ag. In order to get to the term of order 1 in €, we shall apply the Osborn theorem which requires
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ASYMPTOTIC EXPANSION OF T.E 9

for instance a characterization of the pointwise asymptotic expansion of T¢(U) up to order 1 in €
(for some given function U € HZ(Q) x HZ()). The latter can be obtained from the asymptotic
expansions of A-'u, B.u and C.u for some u € H3(Q). The difficult part to get the expansion of
A= 'u since for the two others, the first order terms are vanishing. This critical result is provided
by Lemma 4.5.

In all the following we use the notation

(f,9) = (f,9nz@) = /QAngdx and |9l == (9:9) 2 (o)

For an operator A : V. — V., ||A]| denotes the operator norm. To simplify the writing, C' will
denote a generic constant whose value may change but remains independent from € as € — 0.

4.1. Pointwise convergence of the spectrum of 7. . In this first step, we prove pointwise
convergence of the spectrum of the operator 7¢ to the spectrum of 7y. This is a direct consequence
of the following convergence in norm [23, 8].

THEOREM 4.1. Assume that ng € C2(Q2). Let T, and To be defined by (9) and (10) respectively.
Then T. converges to Ty in the operator norm.

Proof. The proof follows from Lemma 4.2 and Lemma 4.4 below, using the definition of 7.
and 7. 0
In the first lemma we prove norm convergence for B, and C..

LEMMA 4.2. Let B, Ce, By and Cy be the operators defined by (6) and (7). Then, for suffi-
ciently small e,

(33) 1B — Bol| < Cet and [|CZ — CZ| < Ce.

Proof. From the definitions of B, and By, we have that for u,¢ € HZ(Q)

((Be — Bo)u, ¢) :/Q Ty (uAfb + neAW)dﬂ? - /Q 1 _1n0

:/S‘ (1 —lnl — 1_1n0><uA¢+Au¢)dx.

(uA(b + noAuqﬁ) dx

Therefore,

((Be = Boyu, 6)| <C (lull sl A0l 202y + 16l 0| At 0, ).

Using the Sobolev embedding theorem and the Cauchy Schwartz inequality, we get

|((Be = Bo)u, ¢)| < Ce? (|[u]l a0 9]l 12 0)-
By choosing ¢ = (B, — Bg)u, we get

1
[(Be — Bo)ullgz (o) < Ce2 ||ullmz(q)-
The proof is similar for the second inequality. For u, ¢ € HZ(Q2), we have

(5 - 12 Jusde < (10l lul oy I6l~con)

(€.~ Copuo) = [

QE

From the Sobolev embedding theorem, we obtain

((Ce = Coyu, @) < Ce(llullmz 6l 300 )-
By choosing ¢ = (C. — Cy)u, we have

(34) [(Ce = Co)ullmz) < Cellullmz(a)-

Using the square root Lemma in [24] and the fact that C* converges to C§ at the same order

1 1
O(e), we conclude that CZ converges to C§ at the same order O(e). Hence we have

1

1
(35) [(Ce = C )ullgza) < Cellullmz()- O
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Now we show convergence in the HZ(Q) norm for AZ!f assuming smoothness of f. This will be
useful in the proof of Lemma 4.4 since the operators B, and C, are regularizing.

LEMMA 4.3. Let A, and Ag be defined by (5) for € > 0 and € = 0, respectively and f € HZ(Q).
If Aalf € C%(Q), then for sufficiently small e,

(36) IAZYf — AgHfI| < Cez.

Proof. For a fixed f € HZ(Q), define z. and 2y in H3(Q) as z. = AZ' f and zy = Ay f. Since
Acze = Agzo = f, we have that for ¢ € H3(Q)

1 1
(37) (Ac(ze — 20), ¢) = (Aozo — Aczo, ¢) = /Q (1 T 1o nl)AzoAQde.
If 29 € C%(Q2), we get
1 1 1
/ ( - )AZOArj)dx < C||Az0\|oo/ Addr <Ce? ||6l| 20
o \l—=ng  1-—mn Q. 0

Thus, we have shown that
(Ae(ze — 20),9) < Cez ||¢HH§(Q)-
By plugging in ¢ = z. — zp, we obtain the desired convergence using the coercivity of A. 0
LEMMA 4.4. Assume that ng € C?(Q). Let A., B, C., Ay, By and Cy be defined by (5), (6)
and (7) for e > 0 and € = 0, respectively. Then for sufficiently small e,

IAZ'B, — A7 Bo|| — 0 and [|[A-1CE — AZ1CZ || — 0.
€ 0 e—0 € 0 0o
Proof. From (37), we have that for f,¢ € H3(Q) and with z. = A-'f and 2z = Ay ' f

(Ac(ze — 20),9) < CIAAG fllz2 ) 19]l 112 ) -
Furthermore,
IAZ'Bef — Ay ' Bofllmz) <I(AZ" = Ag Y Bofllmze) + 1A (Be = Bo) fllmz (0
(38) <C[IAAG Bofll 2.y + IAZ I(Be = Bo) 1 £l 20 -

For estimating ||AAO_1BOf||L2(Q€), observe that Bou € HZ(Q) is the weak solution
1
AABou = A(—2—y) + Au in Q.
1-— no 1-— no o
Classical regularity results [22, 25] and the fact that ng € C2(Q) imply that Bou € H*(Q) N HZ(Q)
and therefore

1AAG Bofllar @) < Cllf a2
By the Sobolev embedding theorem, this implies that
IAAS " Bofllze) < Cllfllr2(0),

1 1
forp>2. Let p=1% > 1 and ¢ such that — + - = 1.
p q

_ — 1 1
(39) IAAG  Bofl72(0,) < IAAT Bof |70l ® < Ce2 | fll2)-

From (33) we obtain

(40) IAZHII(Be = Bo)lll fll ez ey < CexlIfll ez -

Using (38), (39) and (40) we have that
1A Be = Ag " Boll —3 0.
€E—
The second convergence result follows from similar arguments. ]
Now we would like to obtain explicit formula for the correction term in the asymptotic expansion

for the operator T.. More precisely, we define explicit formula for the corrector term associated
with A7! — Aal.
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4.2. Corrector term for A-! — Aj'. In this subsection, we construct a corrector function
and use it to estimate the convergence rate of z, = A-'u for u € H3(Q). Let 2o = Ay 'u € HZ(Q),
i.e 29 € H3() solution of

(41) =AAu in Q.

Inspired by the formal calculations on the previous section, namely problem (30), we define z;
solution of

A Az =0 in Q,
1-— no
(42) 21 =0 on T,
621 1
- - 1) A r.
5~ (7o~ )220 on
We expect that z. = 29 + €21 + O(€2) in Q0. We extend 21 in €, as Z{ defined by
. QO
(43) =1 o
z1— Y in Q.

where 1 is a polynomial of order < 3 and satisfying the boundary conditions:

P =0, a—w (17 fl)Azo on T,
(44) ov 1—ngp
Y= a—w =0 on r
- ov <
This gives the following expression of ¢ (that plays the role w9 in the formal calculations)
~ 1-—n
U(x) = wlp(s, €€)) = D(s,€) = e( 77 — 1) Azolpls, 0))E(1 ~ €.

The choice of ¢ ensures in particular that 2§ € H2(). To simplify the notation we set

(= =)
m = — .
1—7’L0 1—n1

Now we have the following Lemma. -

LEMMA 4.5. Assume that no and ny are in C*(Q). Let u € Hg(Q) then set zc = AZ'u and
20 = Agtu. We define %5 as in (43) and assume that zg € C%(Q). Then we have, for sufficiently
small €,

. 3
HZe —Z0 — 621||H§(Q) < Cez.
Proof. For any ¢ € HZ(Q2) we have that

(45) (Ac(ze — 20 — €21),9) = (Ac(ze — 20), @) — €(AeZY, 0).

We recall that

(Ac(ze — 20), 0) Z/Q (1 _1n0 -1 —1n1>AZOA¢dx'

Furthermore, we have that

(46) (Aezi, ¢) = /Q L T Aaldds + /

Q Lt~

Az — ¥)Addzx.

Using the fact that A Az; = 0 and the Green formula yield,

—ng

(Acz5, 0) = /F mAzlyds(x) + /r (% (%mAzl) - %(1 — A21)>¢ds(x)

+/FE 1_1n1A¢%ds( ) — /n;u(l—mw pds(x

Using the expression of 1) we have
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1 1 ~ 2
374 ) 1— néA’(/} r. — 1_ m AS7£’(/)(85 1) z EmAZO((p<S7O))7
) 1 _ 0 1 1 17 ~ _ E

T e Al = (e Al = Ty e (A5, 1) = GmAe(e(s.0)
376 We then get after substitution of these expressions

- 2 0
317 (435,0) = [ m(Bale(s,) + 2 Asalo(s,0))) gods(z)

L. €
0 6
378 —/ (a (Az (p(s ,e)) + A2 (p(s,0)))pds(a / A _nlAqudx
379 / O / Papds(z
380
381  where we have set 9
382 @5(8) :=mAz1(p(s,€)) + gmAzo(go(s,O)),
0 6

383 d5(s) == ma(Azl(gp(s, €))) + gmAZO(w(s,O))

381 using the parametrization of the curve T, s — ¢(s,€) with ¢ defined by (13). Using this
385 parametrization and setting ¢(s,n) := ¢(p(s,n)) in Q. we have

386 / ¢>€ 8¢ / ¢1 (s,€)(1 +er)ds —/ / ¢1 1+ er)dsdn.
387 6 a

388 From the definition of ¢§ we then get for ¢ € HZ(Q),

) L e 9% ,
389 /¢e ¢ /O /0mAZo(@(S’O))aTﬁ(S,U)deU+O(€§)||¢||H2(Q)-

390

391  Here and in all the following O(€") denotes a function such that O(e") < Ce” for a constant C'
392 independent from the test function ¢ but that may depend on Hzo||cﬁ(ﬁ). Using Taylor’s expansion

393 we also get for ¢ € HZ(Q),

394 / P5pds(x / / ¢52a (s,m) (1 + er)dsdn + O(e %)||¢HH2(Q)
. 2 1
i = mAzo ©(s,0)) on 5 (8,m)dsdn + O(€2)]|8]| u2(a)
where the last equality is obtained after substituting the expression of ¢5. One ends up with
0 0? 3
[ 5% asonisr=— [ [ macales.00 5 s + 0ol
397  Equation (45) then gives
398 (Ac(ze — 20 — €2), / mAzoAddr — €(AcZ], P)
. ¢
399 mAzo (p(s,m)Ad(p(s,m))(1 + nk)dsdny — mAzo (s,0) 8 5 (p(s,m))dsdn
100 - e/ AiAwqﬁdx + O(e%)||¢>\|H2(Q).
101 o Ll-m
402 We use the expression of the Laplacien in local coordinates B
. 0 1 0¢ 0¢ 0%
103 (4 )80 (5,1) = 50 (T g () + g, (5:0) + (L 0m) 5 (5,)
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to make the decomposition

[ [ mascatotsmsotets. i+ weasin = [ [ mazotots,m 2 (12 m)

w [ [ mantets i (L6 + w2 ssm) + [ [ mante. S S,

To estimate the first term, we integrate by parts on [0, L[, we obtain

/ /mAzo o(s, ﬁ))i(lngf( ))dnds
/ / 1+nm85 (mAzo(p(s, ﬁ)))g¢(s n)dsdn

= — 9
- _6/0 /0 " Jrefn 83A o(p(s, 65)) (5 e§)dsd¢
Eort o € 52
= —6/0 /0 m%AZO(@(S,O)K | 3n8¢s(s’n)dn)d8d§+0(62)||¢||H2(Q)

= 0(2)[|¢l| 2 (0 -

For the last term we proceed similarly to obtain

/ [ mazatots n>g¢’<s n)dsdy = / / m Az (p (s, ¢€)) f<s e€)edsde

€€ 52 .
= [ [ masotetson( [ Gt apan)astc - ool = O el

Observing in addition that
L € 62(,2; 5
| [ mem(Asatiots,m G s mydsd = O ol
0 0

one ends up with

97

(e~ -y = [ / Bo(p(s,m) — Aa((5,0) 5.5 ()
(s

— €

To conclude we just observe that the two remaining terms are also of the form O(e2)| | H2(Q)-
For the first term, we simply use a Taylor expansion for Azy while for the second one we just use
that, due to the regularity of ng and nq,

1
A
1—7’L1

A € Lo(Q).

In conclusion,
- 3
(Ae(ze — 20 — €27),¢) < Ce ||¢||H2(Q)~
Choosing ¢ = z. — z9 — €Z{ , since the coercivity constant associated with A is independent from
€, we get
- 3
l[2e = 20 — €2{[|uz(q) < Ce?
which ends the proof. ]
LEMMA 4.6. Assume that ng and ny are in CH(Q). If u € CS(Q)NHZ (), then for sufficiently
small €,

(47) 1Bo(A:t — Ag Hull g2y < Ce and ||Cg (A7 — Agull gz () < Ce
where C' independent of €.
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Proof. From the estimate of Lemma 4.5 we have that
ze — 20 — €35 || 12(q) < Cle3.
Since €||Z{[|z2(q) = O(€), then
lze = 20llL2() < Ce.
Since By is two orders smoothing, we have that
[ Bo(ze — Zo)||H§(Q) < lze — 20l z2(0) < Ce

The same proof holds for CO% . 0
Now to derive the eigenvalue expansion, we will apply the Theorem of Osborn [23], which we state
here for reader’s convenience. Suppose X is a Hilbert space with inner product denoted by (,)
and K, : X — X is a sequence of compact linear operators such that K, converge in the operator
norm to K. It then follows that the adjoint operators also converges in norm. Let 4 be a nonzero
eigenvalue of K of algebraic multiplicity m . It is well known that for n large enough, there exist m
eigenvalues of Kp: uy', i3, ..., piyy, such that p jjgou pour tout j = 1,...,m. Let E be the spectral

projection onto the generalized eigenspace of K corresponding to eigenvalue pu. The space X can
be decomposed in terms of the range and null space of E as X = R(E) @ N(F). Then form the
proof of Theorem 3 in [23], one can state the following theorem.

THEOREM 4.7. Let ¢1,¢a, ..., bm be a normalized basis for R(E), and let ¢F, ¢35, ..., %, be the
dual basis of R(E) such that (v,¢5) = 0 for all v € N(E). Then there exists a constant C such
that :

1 — 1 —
(48) (u - Zu? - Z (K = Kn)oj,¢5)| < CI(K — Kn)|re I (K™ = K| rz)-
j=1 j=1

In order to apply Theorem 4.7 and obtain explicit expression for the first order asymptotic
Z;n:l (K — Kn)dj, ¢}), one has to construct the basis ¢7. Remark that in the case of selfadjoint
operators, ¢ = ¢;, but this does not apply to our problem. One easily check that ¢ are necessarily
a basis of the generalized eigenspace of K* associated with f.

We now turn our attention to application of this theorem with K, = 7. and K = 7y and
X = HZ(Q) x HZ(2). We already showed that 7. converges to 7Ty in the operator norm in
Theorem 4.1. In order to simplify the calculations we define the inner product on H3(Q) x H3(€2)

by:
U w

< < v >,< . > > = (Aou, w) g2 () + (v, 2) g2(0)-
Let 7y be a simple real eigenvalue of 7, then for € small enough, some eigenvalue 7. of T¢ is such
that 7. — 9.

e—0
U
Let Uy = (/\ C'O% ) be an eigenvector of 7y associated with 79. Using the expression of 7y one
0L Uo
. u
easily observes that Uj = ( N C?% is an eigenvector of 7, associated with 7. Then this
—Aolg Uo

eigenvector is proportional to the dual basis of Uy if and only if
(49) — 60 = <U0, Ug> = (AoUO, uo) - /\%(Couo,’llo) 7é 0.

We remark that since 7y is assumed to be a simple eigenvalue (i.e. also with geometrical multiplicity
equals 1), then (49) holds. We then can define the dual vector as
1 -~
Ui =—=—U;
0

and apply Theorem 4.7 to get that
(50) 70 — Te — ((To = T)Uo, Ug) | < C[(To — Te)Uollmz o | (To" — TE)Ug | 12 () -

We are now in position to prove the main result of Theorem of this paper. We refer to Theorem
4.11 for an extension to the case of transmission eigenvalues with higher multiplicities.
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A75 THEOREM 4.8. Assume that ng and ny are in C*(Q). Let \o be a simple real transmission
176 eigenvalue corresponding to ng and let ug € H3(Q) be the corresponding eigenvector. This implies
477 in particular that (49) holds. Further assume that ug and Ay ug are in C°(Q). Then, for e > 0
478 small enough, there exists a transmission eitgenvalue Ae corresponding to ne such that

1 1 € ng — 3
179 (51 —_——— == Augl“ds(z) + O(e?).
RGN . el Ps(e) + O(e)
. . . 1
480 Proof. Using estimate (50) with A\g = —, we have
70
1 1 * * * *
481 (52) N N ((To = T)Uo, Ug) | < Cl[(To = Te)Uoll uz oy (To" — TG || 12 ()

482 From the definition of (9) of 7¢, we have

1 _ 1 2

483 T.Uy = —Ac" Beuo )‘0 C Co uo

CZUO
184 _ (A0 Bewo - AoAalcf%CO%UO + <_(Ae_1 — Ay M) (Bouo + AoCouo>

CEUO 0
485 + (_(Ae_l — Ay ") (Be — Bo)ug — Ao(A7Y — Agh)(CE — C@)Cgu())

0

486

487  Using the definition (10) of Ty, we obtain

1 —1(AF _ A3\

- T — To)00 = ( AGH(B. = BoJug = DAz (CE = CF)C u0>
(Cf - Co Juo

489 T ( )((J)BOUO + AoCoUo))
. . ( = AN (B, — Boyuo - M(AZ - A (Ch - ehcd u)
, 0
491
492 From (33) and (36), we have
195 (53) 1(7c = T6)Uoll 12 () = O(€?).

494 On the other hand, we have

OCB\D—‘

€

495 (TF = THUE = (B BO)AEfUO — Bo(Ac -~ Ail)“‘) = Xo(CE = C)Cuo
<0 —(CZ — CZ) Ay g — CF (A1 — A5 )ug

496

497

1 ((Bf ~ B)(4;" Aal>uo>
~(CH - YA — A7 g

498 From estimates (33) and (47), we obtain
199 (54) I(TE = T5)Us 1z (0) = O(e).

500 Next, (52) implies

1 1

T v = (T = To)Uo, U) + O(e?).
Ae o
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502 Using the expression of Uj we see that

1 1 1 11
503 <(T %)U{), UO> B ((B Bo)’LL(), 'LL(]) + BO )\0((052 — 002 )002 Uuo, UO)
1 _
504 %(Ao((A — Ay M) (Bouo + AoCouo), uo)
1 L 1 3
505 + —((C& — C¢)u, )\OCO up) + O(e2)
506 Bo
507 Recall that, by definition of ug
508 (55) Agug + Ao Boug + )\%CouO =0.
509 Since CO% is self-adjoint, we have
N 1 2 1 11
510 ((Te = To)Uo, Ug) = %((Be — Bo)uo, uo) + %AO((Q2 — C§)C§ uo, uo)
11 1 3
511 — ——((4; — Ay )Aouo,Aouo) + O(e2).
512 Bo Ao
513  We then deduce
514 L1 LB~ Bouo,uo) + 220 ((CF — C2)CEuo, uo)
9ls 3 TN = ) a ’
N N B 0)Uo, Uo ) 0 0 )Co Uo, Uo
11
515 (56) — — Z((A7Y =AY Agug, Agug) + O(€?).
516 Bo Ao
517 In order to conclude, we use the results of the two lemmas below that treat the asymptotic for
518 each term in (56).
519  Applying Lemma 4.9 with v = ug and ¢ = ug we have
520 (57) ((B. — Bo)ug, ug) < Ce?
521 and with u = ug and ¢ = C'O%uo, we obtain
520 (58) (C& = CF Yup, Cgug) < Ce2.
523
524 Applying Lemma 4.10 with u = Agug (therefore zg = ug) and ¢ = ug, we get, using the fact
525 that Ag is selfadjoint,
1 1 b ong —m g
526 ((A; — A(; )A()UO, Aouo) = 6/ mAUO( (S, 0))AUO(§0(8, 0))d8 + 0(65)
527 0 — o
528  We finally obtain
2 (59) LI ¢ /L 20 = N (ip(5, 0)) [2ds + O(e?) 0
52 —_—— = , €2
T W SVl AR Il
530 which corresponds with the formula announced in the theorem and concludes the proof.
531 LEMMA 4.9. Under the assumptions of Theorem 4.8 one has
. 1 1
532 ((Be = Boyu, ¢) < Ce3 ¢l o) and ((C2 = C§)u, ) < C[| 2o
533 for some C' independent of € and ¢.
534 Proof. Since

1 1

1—7’),1 1—n0

535 (B — Bo)u, ¢) = /Q ( )(uA¢ + Aug)da
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Using the local coordinates in €)., we obtain

1

/Qe (1 —ny 11— nO)AWbdm - / / mAu(p(s, €€))p(s, e€)e(1 + Eer)dsde

Hence ((B. — Bo)u,¢) < Ce? @l 2 () Similarly, we compute the asymptotic formula of

:/0 /0 mAu(gp(s,O))(/{jégj?f(s,n)dn)e(l—f—fem)dsdf

< O3 |l 2o

(= oty = [ [ T utiolo, apto, €)1 + Eenyisi

_ no € 9u € 9
_/0 /0 7(5777)6177/0 %(s,n)dn)e(l + Eer)dsde

1—n0 0o On
< CEe| ol 2o

17

Using the square root Lemma in [24] and the fact that C? converges to CJ at the same order

1 1
O(€?), we conclude that CZ converges to C¢ at the same order O(e?). Thus we have

LEMMA 4.10. Under the assumptions of Theorem 4.8 one has for any ¢ € HZ(Q) NC*(Q)

L oy
(Ap(AZY — A7 VY, ) = € / s A (e(s,0) Ad(e(s.

((C2 = C¢)u,d) < CE||@] m2(a

where zg := Ao_luo.

Proof. With z. := AZ'ug,

J

17710

1 1 1

lfno_lfn€

Alze — 20)A¢dz = /Q (

:/ mA(ze — 2o — €27) Addx + / mA(zg + €27)Addx
Qe

Applying Lemma 4.5 we obtain

J

1
l—ﬂo

= / mAzgApdr — e/ mAYpApdr + O(e
Q. Qe

Making use of the local coordinates we show

A(ze — 20)A¢pdz = / mA(zp + €27)Apdz + O(e
Qe

3
2

)

3
2

L 1
[ mianods = [ [ mAsa(e(s,c€)A0(e(5, €)1 + c6rdsd
Qe 0 0

L
= 6/0 mAzo(p(s,0))Ab(p(s,0))ds + O(e?).

For the second term

€

Q.

mAYApdr = 6/ VAMApdr — 6/ m—A¢dS

e

0))ds + O(e?)

)AZEA¢d$=/ mAz. Apdx
Qe

).
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1—n
17’&0

Or ¢|r =0 and %h = ( - 1)Az0( (s,0)). Then we have
e/ﬂe mAYA¢dr = e/ @/}AmAngdfce/FmZ:/;Aqﬁds(x)

= e/ / (s, ) AmAG(p(s, €€))e(1 + e€k)dsdE

- e/ m(l : o 1)Azo(<p(s, 0))A¢(p(s, €€))ds

0 no
L -—n 3

= e/ m(l — L 1)Azo(<p(s,0))A¢(<p(s, 0))ds + O(e?)

0 1o
Consequently
/ L AG = 20)Adda = e/L 20 Azo(p(s,0) Ad((s, 0))ds + O(e?)
Ql—no € 0 0 (1—%0) 0 9 PLs,

which implies

L

_ — Nng—n 3

(Ao(Art = 45M0) = ¢ [ O A (o(5,0) Ad(ip(s. 0))ds + O(eh)
0 _

and concludes the proof. ]

We now indicate a possible extension to the case where the eigenvalue 7y is not simple. We need

in that case to assume that the geometric multiplicity m coincides with the algebraic multiplicity

, J
so that a basis of R(E) is formed by eigenvectors of Ty that we denote by Uj = "o
)\0002 ’LL(J)
basis of R(E)* is then formed by UJ* := uo . If we assume that
_)\QC 2 uo
(60) - B(J) = <U87 Ug*> (A0u07 uO) )‘0(00%7 UO) 7é 07
then we can define the dual basis as )
Bo

Notice that the assumption on ﬁg is not guaranteed in general. Making this assumption makes
the expression of the dual basis easier to express and allows us to follow the same calculations as
above to express the leading term in

(To — TOUZ, UZ™).

We then obtain the following result as a consequence of the application of Theorem 4.7.

THEOREM 4.11. Assume that ng and ny are in C*(Q (7) Let \g be a real transmission eigenvalue
corresponding to ng such that the associated eigenspace is formed only with eigenvectors “0 €
H2(Q), j =1,...m. Assume in addition that 3} defined by (60) does not vanish and that u?, and
Aglug) are in C6( ). Then, for € > 0 small enough, there exists m transmission eigenvalues N
corresponding to ne such that

1 <& 1 1 e 1

1 ng .

" 2 T T T m 2 T =z Aol ds (@) + Ofe).

( ) mizl)\ﬁ Ao )\(]mzz:;ﬂ(ﬂ) (1—ﬂ)2| | () ( )
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