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Abstract

Inferring the directionality of interactions between cellular processes is a major challenge in

systems biology. Time-lagged correlations allow to discriminate between alternative mod-

els, but they still rely on assumed underlying interactions. Here, we use the transfer entropy

(TE), an information-theoretic quantity that quantifies the directional influence between fluc-

tuating variables in a model-free way. We present a theoretical approach to compute the

transfer entropy, even when the noise has an extrinsic component or in the presence of

feedback. We re-analyze the experimental data from Kiviet et al. (2014) where fluctuations

in gene expression of metabolic enzymes and growth rate have been measured in single

cells of E. coli. We confirm the formerly detected modes between growth and gene expres-

sion, while prescribing more stringent conditions on the structure of noise sources. We fur-

thermore point out practical requirements in terms of length of time series and sampling time

which must be satisfied in order to infer optimally transfer entropy from times series of

fluctuations.

Introduction

Quantifying information exchange between variables is a general goal in many studies of bio-

logical systems because the complexity of such systems prohibits mechanistic bottom-up

approaches. Several statistical methods have been proposed to exploit either the specific depen-

dence of the covariances between input and output variables with respect to a perturbation

applied to the network [1], or the information contained in 3-point correlations [2]. These

methods are potentially well suited for datasets obtained from destructive measurements, such

as RNA sequencing or immunohistochemistry.

However, none of these methods exploits the information contained in time-lagged statis-

tics, which is provided for instance by non-destructive measurements obtained from time-
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lapse microscopy of single cells. Such experimental data should be quite relevant to understand

functional relationships since they merely reflect the time delays present in the dynamics of

the system. Time-delayed cross-correlations between gene expression fluctuations have indeed

been shown to discriminate between several mechanistic models of well characterized genetic

networks [3]. However, such methods become difficult to interpret in the presence of

feedback.

This situation is illustrated in reference [4] where the fluctuations in the growth rate and in

the expression level of metabolic enzymes have been measured as a function of time by track-

ing single cells of E. coli with time-lapse microscopy. The interplay between these variables has

been characterized using cross-correlations as proposed in [3]. To circumvent the difficulty of

discriminating between many complex and poorly parametrized metabolic models, the

authors reduced functional relations to effective linear responses with a postulated form of

effective couplings.

In the present work, we instead use a time-lagged and information-based method to analyze

the interplay between the two fluctuating variables. A crucial feature in this method is that it is

model-free and it is able to disentangle the two directions of influence between the two vari-

ables, unlike the cross-correlations discussed above. This type of approach was first proposed

by Granger [5] in the field of econometrics and found applications in a broader area. More

recently, transfer entropy [6], which is a non-linear extension of Granger causality, has become

a popular information-theoretic measure to infer directional relationships between jointly

dependent processes [7]. It has been successfully applied to various biomedical time series (see

for instance [8]) and used extensively in the field of neurobiology, as shown in Ref. [9] and in

references therein. This is the tool that will be used in this work.

The plan of this paper is as follows. We first introduce two measures of information dynam-

ics, transfer entropy (TE) and information flow (IF). We then illustrate our numerical method

on a well controlled case, namely a simple linear Langevin model, and show that we can prop-

erly estimate these quantities from the generated time series. We then analyze experimental

data on the fluctuations of metabolism of E. coli taken from Ref. [4]. We provide analytical

expressions for the transfer entropy and information flow rates for the model proposed in that

reference. After identifying a divergence in one TE rate as the sampling time goes to zero, we

introduce a simplified model which is free of divergences while still being compatible with the

experimental data. We conclude that the inference of information-theoretic dynamical quanti-

ties can be helpful to build physically sound models of the various noise components present

in chemical networks.

Information theoretic measures

Unlike the mutual information I(X : Y) that only quantifies the amount of information

exchanged between two random variables X and Y as defined in the section on Methods, the

transfer entropy (TE) is an asymmetric measure that can discriminate between a source and a

target [6]. Consider two sampled time series {‥xi−1, xi, xi+1‥} and {‥yi−1, yi, yi+1‥}, where i is the

discrete time index, generated by a source process X and a target process Y. The transfer

entropy TX!Y from X to Y is a conditional, history-dependent mutual information defined as

TX!Y ¼
X

Pðyiþ1; y
ðkÞ
i ; x

ðlÞ
i Þ ln

Pðyiþ1jy
ðkÞ
i ; x

ðlÞ
i Þ

Pðyiþ1jy
ðkÞ
i Þ

;

¼
X

i

½Hðyiþ1jy
ðkÞ
i Þ � Hðyiþ1jy

ðkÞ
i ; x

ðlÞ
i Þ�

ð1Þ

where yðkÞi ¼ fyi� kþ1; � � � ; yig and xðlÞi ¼ fxi� lþ1; � � � ; xig denote two blocks of past values of Y
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and X of length k and l respectively, Pðyiþ1; y
ðkÞ
i ; x

ðlÞ
i Þ is the joint probability of observing

yiþ1; y
ðkÞ
i ; x

ðlÞ
i , and Pðyiþ1jy

ðkÞ
i ; x

ðlÞ
i Þ; Pðyiþ1jy

ðkÞ
i Þ are conditional probabilities. In the second line,

H(.|.) denotes the conditional Shannon entropy (see Section on Methods for definition). In the

first equation, the summation is taken over all possible values of the random variables

yiþ1; y
ðkÞ
i ; x

ðlÞ
i and over all values of the time index i.

To put it in simple terms, TX!Y quantifies the information contained from the past of X
about the future of Y, which the past of Y did not already provide [7, 8]. Therefore, it should be

regarded as a measure of predictability rather than a measure of causality between two time-

series [10]. For instance, when xðlÞi does not bring new information on yi+1, then

Pðyiþ1jy
ðkÞ
i ; x

ðlÞ
i Þ ¼ Pðyiþ1jy

ðkÞ
i Þ and the transfer entropy vanishes because the prediction on yi+1

is not improved. With a similar definition for TY!X, one can define the net variation of trans-

fer entropy from X to Y as ΔTX!Y� TX!Y − TY!X. The sign of ΔTX!Y informs on the direc-

tionality of the information transfer.

The statistics required for properly evaluating the transfer entropy rapidly increases with k
and l, which in practice prohibits the use of large values of k and l. The most accessible case

thus corresponds to k = l = 1, which we denote hereafter as �TX!Y . This quantity is then simply

defined as

�TX!Y ¼
X

i

½Hðyiþ1jyiÞ � Hðyiþ1jyi; xiÞ�; ð2Þ

When the dynamics of the joint process {X, Y} is Markovian, one has Pðyiþ1jy
ðkÞ
i ; x

ðlÞ
i Þ ¼

Pðyiþ1jyi; xiÞ and since Hðyiþ1jy
ðkÞ
i Þ � Hðyiþ1jyiÞ one has �TX!Y � TX!Y (see Ref. [11]). There-

fore, �TX!Y represents an upper bound on the transfer entropy. In the case of stationary time

series, which is the regime we consider in this work, it is natural to also introduce the TE rate

T X!Y ¼ lim
t!0

HðytþtjytÞ � Hðytþtjxt; ytÞ
t

¼ lim
t!0

Iðytþt : yt; xtÞ � Iðytþt : ytÞ
t

;

ð3Þ

where the continuous time variable t replaces the discrete index i. In practice T X!Y ’
�TX!Y=t,

but only for sufficiently small time step τ.

The most direct strategy to evaluate Eq (1) would be to construct empirical estimators of

the probabilities from histograms of the data. Although this procedure works well for evaluat-

ing other quantities, for instance the entropy production in small stochastic systems [12], it

completely fails in the case of transfer entropy. Indeed, such a method leads to a non-zero TE

even between uncorrelated signals, due to strong biases in standard estimators based on data

binning. In order to overcome this problem, we used the Kraskov-Stögbauer-Grassberger

(KSG) estimator which does not rely on binning, as implemented in the software package

JIDT (Java Information Dynamics Toolkit) [13]. Using estimators of this kind is particularly

important for variables that take continuous values.

In the following, the inference method will be applied to time series generated by diffusion

processes. It will then be interesting to compare the TE rate T X!Y to another measure of infor-

mation dynamics, the so-called information flow [14–16] (also dubbed learning rate in the

context of sensory systems [11, 17]), which is defined as the time-shifted mutual information
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[18]

I flow
X!Y ¼ lim

t!0

Iðyt : xtÞ � Iðyt : xtþtÞ

t
: ð4Þ

In the special case where the two processes X and Y experience independent noises (the system

is then called bipartite) [15], one has the inequality I flow
X!Y � T X!Y [17], which in turn implies

that

I flow
X!Y � T X!Y ð5Þ

when the joint process is Markovian. Observing a violation of this inequality is thus a strong

indication that the noises on X and Y are correlated. As will be seen later, this is indeed the sit-

uation in biochemical networks, due the presence of the so-called extrinsic noise generated by

the stochasticity in the cell and in the cell environment [19] which acts on all chemical reac-

tions within the cell, and thus induces correlations.

Results

Test of the inference method on a Langevin model

In order to benchmark our inference method and perform a rigorous test in a controlled set-

ting, we first applied it on times series generated by a simple model for which the transfer

entropy and the information flow can be computed analytically. The data were obtained by

simulating the two coupled Langevin equations

m _v ¼ � gv � ay þ x;

tr _y ¼ v � y þ Z
ð6Þ

that describe the dynamics of a particle of mass m subjected to a velocity-dependent feedback

that damps thermal fluctuation [16, 20, 21] (in these equations, the dependence of the variables

on the time t is implicit). Here, ξ(t) is the noise generated by the thermal environment with vis-

cous damping γ and temperature T, while η(t) is the noise associated with the measurement of

the particle’s velocity v(t). The two noises are independent and Gaussian with zero-mean and

variances hξ(t)ξ(t0)i = 2γkBTδ(t − t0) and hη(t)η(t0)i = σ2 δ(t − t0). a is the feedback gain and τr is

a time constant.

The two Langevin equations were numerically integrated with the standard Heun’s method

[22] using a time step Δt = 10−3, and the transfer entropy in the steady state was estimated

from 100 time series of duration t = 2000 with a sampling time (i.e., the time between two con-

secutive data points) τ = Δt. We first checked that the TE in the direction Y!V does vanish in

the absence of feedback, i.e. for a = 0, whereas it is non-zero as soon as a> 0. We then tested

the influence of the measurement error σ2 for a fixed value of the gain a. As can be seen in

Fig 1, TV!Y diverges as σ2! 0, a feature that will play an important role in our discussion of

the model for the metabolic network. In the figure, the color of the symbols correspond to

three different values of the parameter k which represents the history length in the definition

of the transfer entropy (see Eq (1)). One can see that the estimates of TV!Y for k = 1 are in very

good agreement with the theoretical prediction for �TV!Y (upper solid line). Moreover, the esti-

mates decrease as k is increased from 1 to 5, and one can reasonably expect that the theoretical

value of TV!Y (lower solid line) computed in Ref. [16] and given by Eq (21) in the section on

Methods would be reached in the limit k!1.

Information-theoretic analysis of the directional influence between cellular processes
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Finally, by estimating the information flow and the transfer entropy, we checked that

inequality (5) holds, as a result of the independence of the two noises ξ and η (see section on

Methods).

Analysis of stochasticity in a metabolic network

Experimental time series. We are now in position to analyze the fluctuations in the

metabolism of E. coli at the single cell level obtained in Ref. [4] using the information-theoretic

notions introduced and tested in the previous section. Since there are a multitude of reactions

and interactions involved in the metabolism of E. coli, a complete mechanistic description is

not feasible, and our model-free inference method has a crucial advantage. In Ref. [4], the

length of the cells was recorded as a function of time using image analysis, and the growth rate

was then obtained by fitting this data over subparts of the cell cycle. In the same experiment,

the fluorescence level of GFP, which is co-expressed with growth enzymes LacY and LacZ was

Fig 1. Transfer entropy TY!V for the feedback model governed by Eq (6) as a function of the noise intensity σ2 for k = 1 (blue

circles), k = 3 (green circles) and k = 5 (red circles). The parameter l present in the definition of Eq (1) is fixed to 1. The lower red (resp.

upper blue) solid line represents the value of TY!V (resp. �T Y!V ) obtained by multiplying the theoretical rate T Y!V (resp. T Y!V ) given by Eq

(21) (resp. Eq (23) by the sampling time τ = 10−3. The parameters of the model are T = 5, γ = m = 1, τr = 0.1, and a = 8.

https://doi.org/10.1371/journal.pone.0187431.g001
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recorded. Three set of experiments were carried out corresponding to three levels of an

inducer IPTG: low, intermediate and high.

The two time series have a branching structure due to the various lineages, which all start

from a single mother cell as shown in Fig 2. The experimental data thus come in the form of a

large ensemble of short times series which represent a record of all the cell cycles. There are

about *3000 time series, with 2 to 8 measurement points in each of them which are repre-

sented as colored points in Fig 2. In order to correctly estimate the transfer entropy from such

data, we have analyzed the multiple time series as independent realizations of the same under-

lying stochastic process. For the present analysis, we fix the history length parameters k and l
to the value k = l = 1, which means that we focus on �T rather than T. We infer the values of �T
in the two directions, from growth (denoted μ) to gene expression (denoted E) and vice versa.

The results obtained for the three concentrations of IPTG are represented in Table 1. The neg-

ative value of �T m!E which is found in the intermediate case is due to the numerical inference

method and should be regarded as a value which cannot be distinguished from zero.

Based on this analysis, we conclude that the influence between the variables is directed pri-

marily from enzyme expression to growth in the low and intermediate IPTG experiments,

while it mainly proceeds in the reverse direction in the high IPTG experiment. Such results are

Fig 2. Pedigree tree representing the evolution of the colony of E. coli. studied in Ref. [4]. The splitting

of the branches corresponds to cell division events, each colored point is associated to a measurement of a

single cell and the colors represent the growth rates as shown in the bar in the lower part of the figure.

https://doi.org/10.1371/journal.pone.0187431.g002

Table 1. Inferred values of the transfer entropies in the directions E!μ and μ!E, and the difference

D�TE!m ¼
�TE!m �

�T m!E for low, medium and high concentrations of IPTG based on the data of ref. [4].

The TE are given in nats.

Conc. of IPTG Low Intermediate High

�T E!m
2.35 � 10−2 1.37 � 10−2 1.06 � 10−3

�T m!E 2.16 � 10−2 −4.08 � 10−3 9.94 � 10−3

D�T E!m
1.84 � 10−4 1.78 � 10−2 −8.88 � 10−3

https://doi.org/10.1371/journal.pone.0187431.t001
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in line with the conclusions of Ref. [4] based on the measured asymmetry of the time-lagged

cross-correlations. Moreover, the present analysis provides an estimate of the influence

between the two variables separately in the two directions from E to μ and from μ to E. In par-

ticular, we observe for the low experiment that the values of TE in the two directions are of

same order of magnitude, whereas in the intermediate experiment the TE from E to μ is larger,

a feature which could not have been guessed from measured time delays.

Theoretical models. We now turn to the analysis of the model proposed in Ref. [4] to

account for the experimental data. The question we ask is whether the model correctly repro-

duces the above results for the transfer entropies, in particular the change in the sign of D�TE!m

for the high concentration of IPTG.

The central equation of the model describes the production of the enzyme as

_E ¼ p � m � E; ð7Þ

where E is the enzyme concentration, p its production rate, and μ the rate of increase in cell

volume. Although the function p is typically non-linear, its precise expression is irrelevant

because (7) is linearized around the stationary point defined by the mean values E = E0 and

μ = μ0. This linearization then yields

d _E ¼ dp � dmE0 � m0dE; ð8Þ

in terms of perturbed variables δX(t) = X(t) − X0, where X0 denotes the mean of X.

The model of Ref. [4] is essentially phenomenological in nature because it approximates the

noises as Gaussian processes. Although this approximation is often done in this field, it may

not always hold since fluctuations due to low copy numbers are generally not Gaussian [23].

In any case, the model contains three Gaussian noises: NG is a common component while NE

and Nμ are component specific to E and μ. These noises are assumed to be independent Orn-

stein-Uhlenbeck noises with zero mean and autocorrelation functions hNiðtÞNiðt0Þi ¼
Z2
i e
� bi jt� t0 j (i = E, μ, G). As commonly done, the three Ornstein-Uhlenbeck noises are generated

by the auxiliary equations

_Ni ¼ � biNi þ xi; ð9Þ

where the x
0

is are zero-mean Gaussian white noises satisfying hxiðtÞxjðt0Þi ¼ y
2

i dðt � t0Þdij with

yi ¼ Zi

ffiffiffiffiffiffiffi
2bi

p
. Introducing the constant logarithmic gains TXY that represent how a variable X

responds to the fluctuations of a source Y, the equations of the model read [4]

dp
E0m0

¼ TEE
dE
E0

þ TEGNG þ NE;

dm

m0

¼ TmE
dE
E0

þ TmGNG þ Nm;

ð10Þ

where specifically TEμ = −1 and TμG = 1. Then, eliminating δp from Eqs (8) and (10), one

obtains the coupled equations

_x ¼ m0½ðTEE � 1Þx þ TEmy þ TEGNG þ NE�

y ¼ TmEx þ TmGNG þ Nm;
ð11Þ

where we have defined the reduced variables x = δE/E0, y = δμ/μ0. We stress that NG is an

extrinsic noise that affects both the enzyme concentration and the growth rate, whereas NE

(resp. Nμ) is an intrinsic noise that only affects E (resp. μ). Note that the two effective noises

Information-theoretic analysis of the directional influence between cellular processes

PLOS ONE | https://doi.org/10.1371/journal.pone.0187431 November 9, 2017 7 / 26

https://doi.org/10.1371/journal.pone.0187431


TEGNG + NE and TμGNG + Nμ acting on _x and y are colored and correlated, which makes the

present model more complicated than most stochastic models studied in the current literature.

In fact, since we are mainly interested in the information exchanged between x and y, it is con-

venient to replace one of the noises, say NG, by the dynamical variable y. Differentiating the

second equation in Eq (11), using Eq (9) and performing some simple manipulations, one

then obtains a new set of equations for the four random variables x, y, u� NE, v� Nμ:

_x ¼ a1x þ a2uþ a3v þ a4y

_y ¼ b1x þ b2uþ b3v þ b4y þ xy

_u ¼ � bEuþ xE

_v ¼ � bmv þ xm;

ð12Þ

where the coefficients aj and bj (j = 1. . .4) are defined by Eq (24) in the section on Methods

and ξy = ξμ + ξG is a new white noise satisfying hxyðtÞxyðt0Þi ¼ ðy
2

m
þ y

2

GÞdðt � t0Þ and

hxyðtÞxmðt0Þi ¼ y
2

m
dðt � t0Þ.

The calculation of the transfer entropy rate T X!Y (which coincides with T E!m since the TE

is invariant under the change of variables from E to x and μ to y) is detailed in the section on

Methods, together with the calculation of the information flows. The final expression reads

T X!Y ¼
1

4ðbmZ2
m
þ bGZ2

GÞ

Z

dx dy pðx; yÞ½�g 2

yðx; yÞ � g2

yðyÞ� ð13Þ

where p(x, y) is the steady state probability distribution and the functions �g y and gy are defined

in Eqs (40) and (43), respectively. This result agrees with that obtained in Refs. [11, 18] and in

[24] in special cases.

In Table 2, we show the results of the analysis of the time series generated by Eq (12) using

our numerical inference method with a sampling time τ = 1min (equal to the time step Δt used

to numerically integrate the model). One can see that the estimates of T E!m are in good agree-

ment with the predictions of Eq (13), with the values of the model parameters taken from

Table S1 in Ref. [4]. Note that the negative number given by the inference method in the high

IPTG experiment signals that the actual value of T E!m cannot be distinguished from zero,

which is indeed the theoretical prediction. In contrast, the estimated and theoretical results for

T m!E do not agree, as the inference method yields finite values in all cases whereas the theoret-

ical values diverge.

This behavior is due to the absence of a white noise source directly affecting the dynamical

evolution of x in the set of Eq (12). Indeed, as pointed out in Ref. [6] and also observed above

in Fig 1, a TE rate diverges when the coupling between the variables is deterministic. In the

Table 2. Comparison between the theoretical values of the transfer entropy rates T E!m and T m!E for

the model of Ref. [4] and the values inferred from simulation data. Averages are taken over 100 times

series of duration 106 min, sampled every 1 min.

Conc. of IPTG Low Intermediate High

�T E!m(in h−1) (theo.) 0.033 0.034 0

�T E!m (simul.) 0.031 0.034 −0.011

�T m!E (theo.) 1 1 1

�T m!E (simul.) 0.202 0.123 0.347

https://doi.org/10.1371/journal.pone.0187431.t002
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model of Ref. [4], this feature can be traced back to the fact that the noise NE affecting the

enzyme concentration is colored with a finite relaxation time b
� 1

E . Therefore, when taking the

limit τ! 0 in Eq (3), one explores a time interval t < b
� 1

E where NE is not really random. This

is illustrated in Fig 3a that corresponds to the low IPTG experiment: we see that the estimate of

T m!E with the inference method is indeed diverging when the sampling time τ approaches

zero. On the other hand, as expected, T E!m remains finite and the points nicely lie on the pla-

teau determined by Eq (13).

The obvious and simplest way to cure this undesirable feature of the original model is to

treat NE as a purely white noise, which amounts to taking the limit b
� 1

E ! 0. In fact, it is

noticeable that the values of b
� 1

E extracted from the fit of the correlation functions in Ref. [4]

(resp. b
� 1

E ¼ 10:7; 9:9 and 8.15 min for the low, intermediate, and high IPTG concentrations)

are significantly smaller than the time steps τexp used for collecting the data (resp. τexp = 28, 20

and 15.8 min). Therefore, it is clear that the experimental data are not precise enough to decide

whether NE is colored or not. This issue does not arise for the other relaxation times in the

Fig 3. Transfer entropy rates T E!m and T m!E in the low IPTG experiment. (a) Original model of Ref. [4] (b) Modified model where NE is a

white noise. The symbols are the estimates from the inference method when varying the sampling time τ, and the solid lines are the theoretical

predictions from Eq (13) in (a) and from Eq (60) in (b). Note that T m!E diverges as τ goes to zero in (a) but not (b).

https://doi.org/10.1371/journal.pone.0187431.g003
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model, b
� 1

m
¼ b

� 1

G and m� 1
0

, which are much longer (at least for the low and intermediate IPTG

concentrations), and can be correctly extracted from the experimental data.

We thus propose to modify the model of Ref. [4] by describing NE as a Gaussian white

noise with variance hNE(t)NE(t0)i = 2DEδ(t − t0) and the same intensity as the colored noise in

the original model, i.e. DE ¼ Z2
E=bE (which yields DE� 0.188h, 0.100h, 0.031h for the three

IPTG concentrations). Unsurprisingly, this modification does not affect the auto and cross-

correlation functions used to fit the data, as shown in Fig 4 (see also section on Methods for a

detailed calculation). On the other hand, the values of T E!m are changed (compare Tables 2

and 3) and, more importantly, T m!E, given by Eq (60) is now finite. As a result, the model pre-

dicts that the difference DT E!m ¼ T E!m � T m!E is positive at low and intermediate IPTG con-

centrations and becomes negative at high concentration, which is in agreement with the direct

analysis of the experimental data in Table 1. In contrast, DT E!m was always negative in the

original model as T m!E is infinite.

This new behavior of the TE rates is also manifest when the inference method is applied to

the time series generated by the model and the sampling time τ is varied. As observed in Fig

3b, the inferred value of T m!E no longer diverges as τ! 0 (compare the vertical scale with that

in Fig 3a). The estimates of T E!m and T m!E are also in good agreement with the theoretical

predictions, except for the shortest value of τ which is equal to the time step Δt = 1 min used to

numerically integrate the equations. It worth mentioning, however, that the error bars increase

as τ is decreased.

Table 3. Theoretical values of the transfer entropy rates T E!m and T m!E and their difference in the mod-

ified model.

Conc. of IPTG Low Intermediate High

�T E!m (h−1) 1.23 � 10−2 8.2 � 10−3 0

�T m!E (h−1) 1.9 � 10−3 5 � 10−4 2.97 � 10−2

D �T E!m (h−1) 1.04 � 10−2 7.7 � 10−3 −2.97 � 10−2

https://doi.org/10.1371/journal.pone.0187431.t003

Fig 4. (a) Autocorrelation function Rμμ(τ) for the three IPTG concentrations. Black lines: original model of Ref. [4], red circles: simplified model where NE is a

white noise. (b) Same as (a) for REE(τ). (c) Same as (a) for REμ(τ).

https://doi.org/10.1371/journal.pone.0187431.g004
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While the change in the sign of DT E!m is now confirmed by the model, which is the main

outcome of our analysis, one may also wonder whether the numerical values in Table 1 are

recovered. This requires to multiply the rates in Table 3 by the experimental sampling times

τexp which are different in each experiment, as indicated above. One then observes significant

discrepancies for the low and intermediate IPTG experiments. We believe that the problem

arises from the presence of many short time series in the set of experimental data. This is a

important issue that needs to be examined in more detail since it may be difficult to obtain

long time series in practice.

To this aim, we have studied the convergence of the estimates of DT E!m to the exact asymp-

totic value as a function of N, the length of the time series generated by the model in the sta-

tionary regime. As shown in Fig 5, the convergence with N is slow, which means that one can

make significant errors in the estimation of DT E!m if N is small. On the other hand, the con-

vergence can be greatly facilitated by choosing a value of the sampling time which is not too

short (but of course shorter than the equilibration time of the system), for instance τ = 6min

Fig 5. Inferred values of DT E!m for the low IPTG experiment as a function of the length N of the time series generated by the modified

model. Panels (a) and (b) correspond to sampling times τ = 6 min and τ = 1 min, respectively. DT E!mð1Þ is the exact asymptotic value.

https://doi.org/10.1371/journal.pone.0187431.g005
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instead of 1 min in the case considered in Fig 5. The important observation is that the sign of

DT E!m is then correctly inferred even with N� 1000. In contrast, with τ = 1min, this is only

possible for much longer series, typically N� 50000. This is an encouraging indication for

experimental studies, as the overall acquisition time of the data can be significantly reduced.

Finally, we briefly comment on the results for the information flows I flow
E!m

and I flow
m!E. As

already pointed out, the fact that the noises acting on the two random variables are correlated

invalidates inequality (5). This is indeed what is observed in Table 4. It is also noticeable that

I flow
E!m
6¼ � I flow

m!E, except in the high IPTG experiment where TμE = 0.

Discussion and conclusion

A challenge when studying any biochemical network is to properly identify the direction of

information. In this work, using the notion of transfer entropy, we have characterized the

directed flow of information between the single cell growth rate and the gene expression, using

a method that goes beyond what could be obtained from correlation functions, or from other

inference techniques which do not exploit dynamical information.

Another crucial challenge in the field is to properly model the various noise components. It

turns out that biological systems are generally non-bipartite due the presence of an extrinsic

component in the noise. The present work provides on the one hand analytical expressions for

the magnitude of the transfer entropy (or at least an upper bound on it) and of the information

flow when the system is not bipartite, and, on the other hand a numerical method to infer the

TE in all cases. Furthermore, we have shown that one can correctly infer the sign of the TE dif-

ference even with short time series by properly choosing the sampling time (see Ref. [25] for

more details on the dependence of TE on the sampling time).

To conclude, we would like to emphasize that the transfer entropy is a general tool to iden-

tify variables which are relevant for time series prediction [26]. As such, the method has a lot

of potential beyond the particular application covered in this paper: Predicting the current or

future state of the environment by sensing it is an adaptation strategy followed by biological

systems which can be understood using information-theoretic concepts [11, 27]. Similarly,

during evolution, biological systems accumulate information from their environment, process

it and use it quasi-optimally to increase their own fitness [28, 29]. In this context, transfer

entropy-based methods have the potential to identify the directional interactions in co-evolu-

tion processes, which could be for instance the genomic evolution of a virus compared to that

of its antigenes [30]. With the recent advances in high-throughput techniques and

Table 4. Comparison between the theoretical values of the TE rates and the information flows for the modified model and the values inferred from

simulation data (all quantities are expressed in h−1). The analysis was performed with a sampling τ = 6 min and 100 time series of 106 points.

Conc. of IPTG Low Intermediate High

�T E!m, analytical 0.0123 0.0082 0

�T E!m, simulation 0.0128 ± 6 � 10−4 0.0064 ± 6 � 10−4 −0.0002 ± 5 � 10−4

�T m!E, analytical 0.0019 0.0005 0.0297

�T m!E, simulation 0.0023 ± 6 � 10−4 0.0012 ± 6 � 10−4 0.0215 ± 7 � 10−4

I flowE!m
, analytical 0.0751 0.092 −0.0214

I flowE!m
, simulation 0.076 ± 10−3 0.09 ± 8 � 10−4 −0.018 ± 8 � 10−4

I flow
m!E, analytical 0.0455 0.0743 0.0214

I flow
m!E, simulation 0.047 ± 10−3 0.072 ± 10−3 0.015 ± 10−3

https://doi.org/10.1371/journal.pone.0187431.t004
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experimental evolution, we might soon be able to predict reliably the evolution of biological

systems [31], and without doubt tools of information theory will play a key role in these

advances.

Methods

In this section, we provide a detailed analysis of the information-theoretic quantities for the

various models considered in this paper. The section is organized as follows:

• Basic information-theoretic measures

• Transfer entropy and information flow in the feedback cooling model

• Transfer entropy rates and information flows in the model of Ref. [4] for a metabolic network

• Transfer entropy rates and information flows in the modified model for the metabolic network

Basic information-theoretic measures

Below we briefly recall some definitions and properties of the information-theoretic measures.

A fundamental quantity is the Shannon entropy which quantifies the uncertainty associated

with the measurement x of a random variable X:

HðXÞ ¼ �
X

x

PðxÞ lnPðxÞ; ð14Þ

where P(x) is the probability that event x is realized, given an ensemble of possible outcomes.

With this convention, the entropy is measured in nats. Similarly, for two random variables X
and Y, one defines the joint Shannon entropy

HðX;YÞ ¼ �
X

x;y

Pðx; yÞ lnPðx; yÞ; ð15Þ

and the conditional Shannon entropy

HðXjYÞ ¼ �
X

x;y

Pðx; yÞ lnPðxjyÞ; ð16Þ

where P(x, y) and P(x|y) are joint and conditional probability distribution functions, respec-

tively. The mutual information I(X : Y) is then a symmetric measure defined as

IðX : YÞ ¼
X

x;y

Pðx; yÞ ln
Pðx; yÞ

PðxÞPðyÞ
;

¼ HðXÞ � HðXjYÞ

¼ HðYÞ � HðYjXÞ;

ð17Þ

which quantifies the reduction of the uncertainty about X (resp. Y) resulting from the knowl-

edge of the value of Y (respX). The more strongly X and Y are correlated, the larger I(X : Y) is.

These notions can be readily extended to random processes X = {Xi} and Y = {Yi} viewed as

collections of individual random variables sorted by an integer time index i. The mutual infor-

mation between the ordered time series {xi} and {yi}, realizations of X and Y, is then defined as

IðX : YÞ ¼ IðY : XÞ �
X

fxi ;yig

Pðxi; yiÞ ln
Pðxi; yiÞ

PðxiÞPðyiÞ
; ð18Þ
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and characterizes the undirected information exchanged between the two processes. The con-

ditional mutual information is defined similarly.

In contrast, the transfer entropy TX!Y is a information-theoretic measure that is both asym-
metric and dynamic as it captures the amount of information that a source process X provides

about the next state of a target process Y. More precisely, as defined by Eq (1) in the introduc-

tion,

TX!Y ¼
X

i

½IðYiþ1 : XðlÞi ;Y
ðkÞ
i Þ � IðYiþ1 : Y ðkÞi Þ�; ð19Þ

where k and l define the lengths of the process histories, i.e., Y ðkÞi ¼ fYi� kþ1; � � � ;Yig and

XðlÞi ¼ fXi� lþ1; � � � ;Xig. In this work, we have focused on a history length of 1 (i.e. k = l = 1)

and denoted the corresponding TE by �TX!Y . Hence, �TX!Y ¼
P

i½HðYiþ1jYiÞ � HðYiþ1jXi;YiÞ�,

which is an upper bound to TX!Y(k, l) for l = 1 when the joint process {X, Y} obeys a Markov-

ian dynamics [11].

On the other hand, the information flow from X to Y is defined as the time-shifted mutual

information

I flow
X!Y ¼

X

i

½IðYi : XiÞ � IðYi : Xiþ1Þ�; ð20Þ

and informs on the reduction of uncertainty in Yi when knowing about Xi+1 as compared to

what we had with Xi only. In practice, I flow
X!Y can be obtained by shifting in time one time series

with respect to the other one. Contrary to the transfer entropy which is always a positive quan-

tity, the information flow I flow
X!Y may be negative or positive, depending on whether X sends

information to Y (or X gains control of Y), or Y sends information to X (or X looses control

over Y). In a bipartite system one has I flow
X!Y ¼ � I flow

Y!X in the stationary regime. This is no lon-

ger true when the system is non-bipartite.

Transfer entropy and information flow in the feedback cooling model

We first recall the theoretical expressions of the transfer entropy rates and the information

flows for the feedback-cooling model described by Eq (6). These quantities were computed in

Ref. [16]. The transfer entropy rates in the stationary state are given by

T V!Y ¼
g

2m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ
2T
gs2

s

� 1

 !

T Y!V ¼
1

2tr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ
a2s2

2gT

s

� 1

 !

:

ð21Þ

Note that 2T/(γσ2) is the signal-to-noise ratio that quantifies the relative size of the measure-

ment accuracy to the thermal diffusion of the velocity. Accordingly, the TE rate T V!Y diverges

when the control is deterministic. The information flow I flow
V!Y is given by

I flow
V!Y ¼

g

m
Thy2i

mjSj
� 1

� �

ð22Þ

where jSj is the determinant of the covariance matrix. The analytical expressions of the ele-

ments of the matrix, hv2i, hy2i and hvyi, are given by Eqs (A2) in Ref. [16]. In contrast with

T V!Y , the information flow I flow
V!Y remains finite as the noise intensity vanishes.
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The upper bounds to the transfer entropies (see Eq (2)) were computed in Ref. [24] in the

general case of coupled linear Langevin equations. For the feedback cooling model, one

obtains

T V!Y ¼
1

2s2hy2i
jSj

T Y!V ¼
a2

4gkBThv2i
jSj:

ð23Þ

As shown in Fig 1, the estimate of the transfer entropy obtained by the inference method is

in good agreement with the theoretical value (we stress that the figure shows the rates multi-

plied by the sampling time τ = 10−3). In Fig 6, we also obtain satisfactory agreement between

inferred value of the information flow I flow
V!Y and theoretical value, when representing these

quantities against the noise intensity σ2. These results of this figure confirm the inequalities

I flow
V!Y � T V!Y � T V!Y .

Transfer entropy rates and information flows in the model of Ref. [4] for a

metabolic network

Stationary distributions and correlation functions. We first compute the stationary

probability distributions (pdfs) associated with Eq (12) were the coefficients aj and bj are given

Fig 6. T V!Y ;T V!Y and I flow
V!Y as a function of the noise intensity σ2. The parameters of the model are T = 5,

γ = m = 1, τr = 0.1 and a = −0.7.

https://doi.org/10.1371/journal.pone.0187431.g006
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by

a1 ¼ � ½mE þ m0TmEðTEG � 1Þ�

a2 ¼ m0

a3 ¼ � m0TEG

a4 ¼ m0ðTEG � 1Þ

b1 ¼ TmE½bG � mE � m0TmEðTEG � 1Þ�

b2 ¼ m0TmE

b3 ¼ bG � bm � m0TmETEG

b4 ¼ m0TmEðTEG � 1Þ � bG:

ð24Þ

We recall that μE = μ0(1 + TμE − TEE) sets the timescale of E-fluctuations [4]. Since Eq (12)

describe a set of coupled Markovian Ornstein-Uhlenbeck processes, the stationary pdf

pxuvy(x, u, v, y) is Gaussian and given by

pxuvyðx; u; v; yÞ ¼
1

ð2pÞ
2
ffiffiffiffiffiffi
jSj

p e� 1
2
ðx;u;v;yÞ:S� 1 :ðx;u;v;yÞT ; ð25Þ

where S is the covariance matrix which obeys the Lyapunov equation [32]

ASþ SAT ¼ 2D; ð26Þ

where

A ¼

� a1 � a2 � a3 � a4

0 bE 0 0

0 0 bm 0

� b1 � b2 � b3 � b4

0

B
B
B
B
@

1

C
C
C
C
A
; and D ¼

0 0 0 0

0 bEZ2
E 0 0

0 0 bmZ2
m

bmZ2
m

0 0 bmZ2
m

bGZ2
G þ bmZ2

m

0

B
B
B
B
@

1

C
C
C
C
A
:

Information-theoretic analysis of the directional influence between cellular processes

PLOS ONE | https://doi.org/10.1371/journal.pone.0187431 November 9, 2017 16 / 26

https://doi.org/10.1371/journal.pone.0187431


Fig 7. Steady-state probability distribution of the growth rate for the three IPTG concentrations: Low (black), intermediate

(red), high (blue).

https://doi.org/10.1371/journal.pone.0187431.g007
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The solution of Eq (26) reads

s11 ¼
m2

0

mE

Z2
E

mE þ bE
þ

Z2
m

mE þ bm

þ
ðTEG � 1Þ

2

mE þ bG
Z2

G

" #

s12 ¼ s21 ¼
m0

mE þ bE
Z2

E

s13 ¼ s31 ¼
� m0

mE þ bm

Z2

m

s14 ¼ s41 ¼
m0

mE

�
m0TmE

mE þ bE
Z2

E þ
ðm0TmE � mEÞ

mE þ bm

Z2

m

þ
ðTEG � 1Þ½m0TmEðTEG � 1Þ þ mE�

mE þ bG
Z2

G

�

s22 ¼ Z2
E

s23 ¼ 0

s24 ¼ s42 ¼
m0TmE

mE þ bE
Z2

E

s33 ¼ Z2
m

s34 ¼ s43 ¼
mE þ bm � m0TmE

mE þ bm

Z2

m

s44 ¼
m2

0
T2

mE

mEðmE þ bEÞ
Z2

E þ
½ðm0TmE � mEÞ

2
þ mEbm�

mEðmE þ bmÞ
Z2

m

þ
m2

0
T2

mEðTEG � 1Þ
2
þ mE½mE þ bG�

mEðmE þ bGÞ
Z2

G

þ
2m0TmEðTEG � 1Þ�

mEðmE þ bGÞ
Z2

G

ð27Þ

From this we can compute all marginal pdfs, in particular

pxyðx; yÞ ¼
1

2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s11s44 � s2

14

p e
� 1

2

s44x
2 � 2s14xyþs11y

2

s11s44 � s2
14 ; ð28Þ

and

pxðxÞ ¼
1
ffiffiffiffiffiffiffiffiffiffiffi
2ps11

p e�
x2

2s11

pyðyÞ ¼
1
ffiffiffiffiffiffiffiffiffiffiffi
2ps44

p e�
y2

2s44 :

ð29Þ

As an illustration, the steady-state pdf pðmÞ ¼ 1

m0
py y ¼ m� m0

m0

� �
is plotted in Fig 7 for the three

different IPTG concentrations (low, intermediate, and high). The agreement with the experi-

mental curves displayed in Fig 1d of Ref. [4] is satisfactory.

For completeness, we also quote the expressions of Rpp(0) and Rpμ(0) (properly normalized)

obtained from the definition
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dp=ðm0E0Þ ¼ d _E=ðm0E0Þ þ dm=m0 þ dE=E0 ¼ ðTEE � TEGTmEÞx þ u � TEGðv � yÞ:

Rppð0Þ ¼ ðTEE � TEGTmEÞ
2
s11 þ s22 þ T2

EGðs33 þ s44Þ

þ 2ðTEE � TEGTmEÞ½s12 þ TEGðs14 � s13Þ�

þ 2TEGs24 � 2T2
EGs34

ð30Þ

Rpmð0Þ ¼
ðTEE � TEGTmEÞs14 þ s24 þ TEGðs44 � s34Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rppð0ÞRmmð0Þ

q ð31Þ

with Rμμ(0) = σ44.

The correlation functions Rμμ(τ), REE(τ), and REμ(τ), obtained by taking the inverse Fourier

transform of Eqs (6) in the Supplementary Information of [4] are plotted in Fig 4. In passing,

we correct a few misprints in these equations: i) The correct expression of Rμμ(τ) is obtained

by replacing AE(τ) by REE(τ) in the first term of Eq (12) in the Supplementary Information of

[4]. ii) Eq (10) corresponds to REμ(τ) and not to RμE(τ) = REμ(−τ). Eq (8) then gives the correct

expression of REμ(τ) (and not of RμE(τ)) provided the function AX(τ) defined in Eq (10) is

altered. For τ� 0, one should have

AXðtÞ ¼ y
2

X
m0

2bXðbX þ mEÞ
e� bXt: ð32Þ

Transfer entropy rates. We now address the computation of the conditional probabilities

py
x0y0 ðy; t þ tjx0; y0; tÞ and py

y0 ðy; t þ tjy0; tÞ at first order in τ. This will allow us to obtain the

expressions of the upper bounds to the transfer entropy rates defined by

T X!Y ¼ lim
t!0

I½ytþt : xt; yt� � I½ytþt : yt�
t

T Y!X ¼ lim
t!0

I½xtþt : xt; yt� � I½xtþt : xt�

t
;

ð33Þ

where I is the mutual information, for instance I½ytþt : xt; yt� ¼
R
dy dx0 dy0 py

x0y0 ðy; t þ
t; x0; y0; tÞ ln ½py

x0y0 ðy; t þ t; x0; y0; tÞ=½pyðyÞpxyðx0; y0Þ� in the steady state (where pxy(x0, y0) and

py(y) become time independent pdfs). Therefore,

T X!Y ¼ lim
t!0

1

t

Z

dy dx0 dy0 py
x0y0 ðy; t þ t; x0; y0; tÞ

� ln
py
x0y0 ðy; t þ tjx0; y0; tÞ
py
y0 ðy; t þ tjy0; tÞ

T Y!X ¼ lim
t!0

1

t

Z

dy dx0 dy0 px
x0y0 ðx; t þ t; x0; y0; tÞ

� ln
px
x0y0 ðx; t þ tjx0; y0; tÞ
px
x0 ðx; t þ tjx0; tÞ

:

ð34Þ

Note that the actual transfer entropy rates are defined as

T X!Y ¼ lim
t!0

I½ytþt : xt; fyt0 gt0�t� � I½ytþt : fyt0 gt0�t�
t

T Y!X ¼ lim
t!0

I½xtþt : fxt0 gt0�t; yt� � I½xtþt : fxt0 gt0�t�

t
:

ð35Þ
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where {xt0}t0�t and {yt0}t0�t denote the full trajectories of xt and yt in the time interval [0, t].
Since the present model is not bipartite, the calculation of these quantities is a nontrivial task

that is left aside.

The two-time distributions py
x0y0 ðy; t þ t; x0; y0; tÞ and px

x0y0 ðx; t þ t; x0; y0; tÞ are given by

py
x0y0 ðy; t þ t; x0; y0; tÞ ¼

Z

dx du dv du0 dv0 pzz0 ðz; t þ tjz0; tÞpxuvyðz
0Þ

px
x0y0 ðx; t þ t; x0; y0; tÞ ¼

Z

dy du dv du0 dv0 pzz0 ðz; t þ tjz0; tÞpxuvyðz
0Þ

ð36Þ

where pzz0 ðz; t þ tjz0; tÞ is the transition probability from the state z0 ¼ ðx0; u0; v0; y0Þ at time t to

the state z ¼ ðx; u; v; yÞ at time t + τ. From the definition of the Fokker-Planck operator LFP

associated with the 4-dimensional diffusion process described by Eq (12), the transition proba-

bility for small times is given by [32]

pzz0 ðz; t þ tjz0; tÞ ¼ ½1þ tLFPðz; tÞ þOðt2Þ�dðz � z0Þ

¼ dðz � z0Þ � t
X4

i¼1

@zi
giðz

0Þ �
X

j

y
2

i;j

2
@zj

" #

dðz � z0Þ
ð37Þ

where giðzÞ is the drift coefficient in the equation for zi (with z1 = x, z2 = u, z3 = v, z4 = y),

y2;2 ¼ yE; y3;3 ¼ y3;4 ¼ ym; y4;4 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

y
2

m
þ y

2

G

q

and all other θi, j being equal to 0.

Let us first consider the calculation of T X!Y . By integrating pzz0 ðz; t þ tjz0; tÞ over x, u, and

v, we readily obtain

py
z0 ðy; t þ tjz0; tÞ ¼ dðy � y0Þ � t@y½gyðz0Þ � bmZ2

m
@v � ðbmZ2

m
þ bGZ2

GÞ@y�dðy � y0Þ þOðt2Þ

where the terms involving @x, @u, @v cancel due to natural boundary conditions. Hence,

py
z0 ðy; t þ t; z0; tÞ ¼ py

z0 ðy; t þ tjz0; tÞpxuvyðz0Þ

¼ dðy � y0Þpðz0Þ � tpxuvyðz0Þ�

@y½gyðz0Þ � bmZ2
m
@v � ðbmZ2

m
þ bGZ2

GÞ@y�dðy � y0Þ;

ð38Þ

which yields

py
x0y0 ðy; t þ t; x0; y0; tÞ ¼ dðy � y0Þpxyðx0; y0Þ � tpxyðx0; y0Þ@y½�g yðx0; y0Þ

� ðbmZ2
m
þ bGZ2

GÞ@y�dðy � y0Þ:
ð39Þ

after integration over u0 and v0, where we have defined the averaged drift coefficient

�g yðx; yÞ ¼
1

pxyðx; yÞ

Z

du dv gyðzÞpxuvyðzÞ: ð40Þ

We thus finally obtain

py
x0y0 ðy; t þ tjx0; y0; tÞ ¼ dðy � y0Þ � t@y½�g yðx0; y0Þ

� ðbmZ2
m
þ bGZ2

GÞ@y�dðy � y0Þ þOðt2Þ:
ð41Þ

Similarly, by also integrating py
z0 ðy; t þ t; x0; y0; tÞ over x0, we obtain

py
y0 ðy; t þ tjy0; tÞ ¼ dðy � y0Þ � t@y½gyðy

0Þ � ðbmZ2
m

þ bGZ2
GÞ@y�dðy � y0Þ þOðt2Þ:

ð42Þ
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where

gyðyÞ ¼
1

pyðyÞ

Z

dx du dv gyðzÞpxuvyðzÞ

¼
1

pyðyÞ

Z

dx �g yðx; yÞpxyðx; yÞ:
ð43Þ

Due to the linearity of Eq (12) and the Gaussian character of the pfds, one simply has

�g yðx; yÞ ¼ ax þ by and gyðyÞ ¼ cy, where a, b, c are complicated functions of the model

parameters which we do not display here.

Eq (41) (resp. Eq (42)) merely shows that py
x0y0 ðy; t þ tjx0; y0; tÞ (resp. py

y0 ðy; t þ tjy0; tÞ) at the

lowest order in τ is identical to the transition probability associated with an Ornstein-Uhlen-

beck process with drift coefficient �g yðx; yÞ (resp. gyðyÞ) and diffusion coefficient bmZ2
m
þ bGZ2

G.

To proceed further, it is then convenient to use to the Fourier integral representation of the δ
function and re-express py

x0y0 ðy; t þ tjx0; y0; tÞ and py
y0 ðy; t þ tjy0; tÞ for small times as

py
x0y0 ðy; t þ tjx0; y0; tÞ ¼

1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pðbmZ2

m
þ bGZ2

GÞt
q e

� 1

4ðbmZ2
mþbGZ2

GÞt
½y� y0 � t�g yðx0 ;y0Þ�

2

ð44Þ

and

py
y0 ðy; t þ tjy0; tÞ ¼

1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pðbmZ2

m
þ bGZ2

GÞt
q e

� 1

4ðbmZ2
mþbGZ2

GÞt
½y� y0 � tgyðy

0Þ�2

: ð45Þ

up to corrections of the order τ2 [32]. This leads to

ln
py
x0y0 ðy; t þ tjx0; y0; tÞ
py
y0 ðy; t þ tjy0; tÞ

¼
1

4ðbmZ2
m
þ bGZ2

GÞ
½2ðy � y0Þ � t½�g yðx

0; y0Þ þ gyðy
0Þ��

�½�g yðx0; y0Þ � gyðy
0Þ�;

ð46Þ

and from Eq (39) and the definition of the transfer entropy rate [Eq (34)],

4ðbmZ2
m
þ bGZ2

GÞT X!Y ¼ lim
t!0

1

t

Z

dy dx0 dy0py
x0y0 ðy; t þ t; x0; y0; tÞ½2ðy � y0Þ

� t½�g yðx0; y0Þ þ gyðy
0Þ��½�g yðx0; y0Þ � gyðy

0Þ�

¼ lim
t!0

1

t

Z

dy dx0 dy0pxyðx
0; y0Þ½dðy � y0Þ � t@y½�g yðx

0; y0Þ

� ðbmZ2
m
þ bGZ2

GÞ@y�dðy � y0Þ�

�½2ðy � y0Þ � t½�g yðx0; y0Þ þ gyðy
0Þ��½�g yðx0; y0Þ � gyðy

0Þ�

ð47Þ

We then use

Z

dy ðy � y0Þ½dðy � y0Þ � t@y½�g yðx
0; y0Þ � ðbmZ2

m
þ bGZ2

GÞ@y�dðy � y0Þ� ¼ t�g yðx
0; y0Þ; ð48Þ

and

R
dx0 pxyðx0; y0Þ�g yðx0; y0Þ ¼ pyðy0Þgyðy

0Þ ¼
R
dx0 pxyðx0; y0Þgyðy

0Þ; ð49Þ
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to finally arrive at Eq (13), namely

T X!Y ¼
1

4ðbmZ2
m
þ bGZ2

GÞ

Z

dx dy pxyðx; yÞ½�g
2

yðx; yÞ � g2

yðyÞ�: ð50Þ

A similar expression can be found in Ref. [11] (see Eq (A.31) in that reference). Note also that

the result given in Ref. [24] is obtained as a special case.

Inserting into Eq (13) the values of the parameters given in Table S1 of Ref. [4], we obtain

the values given in Table 2. Note that T E!m ¼ 0 for the high IPTG concentration because

TμE = 0, and therefore μ(t) no longer depends on E(t) as can be seen from Eq (10).

There is no need to detail the calculation of T m!E (i.e. T Y!X) because it goes along the same

line, with y replaced by x. The crucial difference is that there is no white noise acting on _x.

Therefore, the denominator in Eq (13), which is the variance of the noise ξy, is replaced by 0.

This implies that T m!E is infinite.

Information flows. The information flows I flow
X!Y and I flow

Y!X are derived from the time-

shifted mutual informations I[xt+τ : yt] and I[yt+τ : xt]. Specifically,

I flow
X!Y ¼ lim

t!0

I½xt : yt� � I½xtþt : yt�
t

I flow
Y!X ¼ lim

t!0

I½yt : xt� � I½ytþt : xt�

t
:

ð51Þ

Let us first consider the second flow I flow
Y!X which requires the knowledge of

py
x0 ðy; t þ t; x0; tÞ whose expression is obtained by integrating Eq (39) over x0. This yields

py
x0 ðy; t þ t; x0; tÞ ¼ pxyðx0; yÞ � t@y½�g yðx0; yÞ

� ðbmZ2
m
þ bGZ2

GÞ@y�pxyðx0; yÞ þOðt2Þ:
ð52Þ

Hence

I½ytþt : xt� ¼

Z

dx0 dy py
x0 ðy; t þ t; x0; tÞ

� ln
py
x0 ðy; t þ t; x0; tÞ
pyðyÞpxðx0Þ

¼ I½yt : xt� � t

Z

dx dy @y½�g yðx; yÞ

� ðbmZ2
m
þ bGZ2

GÞ@y�pxyðx; yÞ ln
pxyðx; yÞ
pyðyÞpxðxÞ

:

ð53Þ

Table 5. Theoretical values of I flowX!Y ¼ � I flowY!X in the original model of Ref. [4].

Conc. of IPTG Low Intermediate High

I flowE!m
(in h−1) 0.0148 0.0088 -0.0243

https://doi.org/10.1371/journal.pone.0187431.t005
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We finally obtain

I flow
Y!X ¼

Z

dx dy @y½�g yðx; yÞpxyðx; yÞ

� ðbmZ2
m
þ bGZ2

GÞ@ypxyðx; yÞ� ln
pxyðx; yÞ
pyðyÞpxðxÞ

:

ð54Þ

A similar calculation yields

I flow
X!Y ¼

R
dx dy @x½�g xðx; yÞpxyðx; yÞ� ln

pxyðx; yÞ
pyðyÞpxðxÞ

; ð55Þ

where

�g xðx; yÞ ¼
1

pxyðx; yÞ

Z

du dv gxðzÞpxuvyðzÞ ð56Þ

is an averaged drift coefficient. Contrary to the case of the transfer entropy rate T Y!X , the

absence of a white noise acting on _x does not lead to an infinite result for I flow
Y!X . In fact, one

has the symmetry relation

I flow
X!Y ¼ � I flow

Y!X; ð57Þ

which is readily obtained by noting that pxy(x, y), the stationary solution of the Fokker-Planck

equation, satisfies the equation

@x½�g xðx; yÞpxyðx; yÞ� þ @y½�g yðx; yÞpxyðx; yÞ�

� ðbmZ2
m
þ bGZ2

GÞ
@

2

@y2
pxyðx; yÞ ¼ 0:

ð58Þ

Inserting the numerical values of the parameters given in Table S1 of Ref. [4], we obtain the

values given in Table 5 below. Interestingly, I flow
E!m

decreases as the IPTG concentration

increases and that it becomes negative at high concentration.

Transfer entropy rates and information flows in the modified model for

the metabolic network

We now repeat the above calculations for the modified model where NE is treated as a white

noise. Eliminating again the variable w (i.e. NG) in favor of y, the new set of equations that

describe the stochastic dynamics and replace Eq (12) reads

_x ¼ � ½mE þ m0TmEðTEG � 1Þ�x � m0TEGv

þm0ðTEG � 1Þy þ xx

_v ¼ � bmv þ xm

_y ¼ TmE½bG � mE � m0TmEðTEG � 1Þ�x þ ½bG � bm

� m0TmETEG�v þ ½m0TmEðTEG � 1Þ � bG�y þ ~xy;

ð59Þ

where we have defined the white noises ξx = μ0NE and ~xy ¼ xy þ TmExx satisfying

hxxðtÞxxðt0Þi ¼ 2DEm2
0
dðt � t0Þ and h~xyðtÞ~xyðt0Þi ¼ ðy

2

m
þ y

2

G þ 2DEm2
0
T2

mEÞdðt � t0Þ, respec-

tively. These two noises are correlated, with hxxðtÞ~xyðt0Þi ¼ 2DEm2
0
TmEdðt � t0Þ.
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The pdfs and the correlation functions can be computed as before. In fact, it is clear that

this simply amounts to taking the limit βE!1 with DE ¼ Z2
E=bE finite in the previous equa-

tions (for instance in Eq (27) for the covariances). The new correlation functions are plotted in

Fig 4. As expected, they are almost indistinguishable from those obtained with the original

model and they fit the experimental data just as well (this of course is also true for the pdfs).

Much more interesting are the results for the transfer entropy rates and the information

flows. Again, there is no need to repeat the calculations as they follow the same lines as before.

We now obtain

T X!Y ¼
1

4ðbmZ2
m
þ bGZ2

G þ DEm2
0
T2

mEÞ
�

Z

dx dy pxyðx; yÞ½�g
2

yðx; yÞ � g2

yðyÞ�
ð60Þ

T Y!X ¼
1

4DEm2
0

Z

dx dy pxyðx; yÞ½�g
2

xðx; yÞ � g2

xðxÞ�; ð61Þ

where

�g xðx; yÞ ¼
1

pxyðx; yÞ

Z

du gxðx; v; yÞpxvyðx; v; yÞ ð62Þ

�g yðx; yÞ ¼
1

pxyðx; yÞ

Z

du gyðx; v; yÞpxvyðx; v; yÞ; ð63Þ

and

gxðxÞ ¼
1

pxðxÞ

Z

dy �g xðx; yÞpxyðx; yÞ ð64Þ

gyðyÞ ¼
1

pyðyÞ

Z

dx �g yðx; yÞpxyðx; yÞ: ð65Þ

(Again, gx(x, v, y) and gy(x, v, y) denote the drift coefficients in Eq (59)). The crucial difference

with the results for the original model is that T Y!X is now finite. Similarly, we have

_I flowX!Y ¼

Z

dx dy @x½�g xðx; yÞpxyðx; yÞ

� DEm2
0
@xpxyðx; yÞ� ln

pxyðx; yÞ
pyðyÞpxðxÞ

ð66Þ

_I flowY!X ¼

Z

dx dy @y½�g yðx; yÞpxyðx; yÞ

� ðbmZ2
m
þ bGZ2

G þ DEm2
0
T2

mEÞ@ypxyðx; yÞ�

� ln
pxyðx; yÞ
pyðyÞpxðxÞ

:

ð67Þ

The numerical values of T E!m and T m!E are given in Table 3. For completeness, we also

compare these values with the estimates obtained by the inference method in Table 4. We see

that satisfactory results are obtained by properly choosing the sampling time τ. This is also true
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for the information flows I flow
E!m

and I flow
m!E. It is worth noting that the symmetry relation

_I flowE!m ¼ � _I flowm!E no longer holds, except for the high IPTG concentration (as TμE = 0). This

contrasts with the preceding case where NE was modeled by an Ornstein-Uhlenbeck noise. We

also observe that the information flows are not always smaller than the transfer entropy rates,

contrary to what occurs in bipartite systems. Therefore, the concept of a “sensory capacity” as

introduced in Ref. [11] is here ineffective.
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