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Our basic understanding of plant litter decomposition informs the assumptions underlying 37 

widely applied soil biogeochemical models, including those embedded in Earth system 38 

models. Confidence in projected carbon cycle-climate feedbacks therefore depends on 39 

accurate knowledge about the controls regulating the rate at which plant biomass is 40 

decomposed into products such as CO2. Here, we test underlying assumptions of the 41 

dominant conceptual model of litter decomposition. The model posits that a primary 42 

control on the rate of decomposition at regional to global scales is climate (temperature and 43 

moisture), with the controlling effects of decomposers negligible at such broad spatial 44 

scales. Using a regional-scale litter decomposition experiment at six sites spanning from 45 

northern Sweden to southern France – and capturing both within and among site variation 46 

in putative controls – we find that contrary to predictions from the hierarchical model, 47 

decomposer (microbial) biomass strongly regulates decomposition at regional scales. 48 

Further, the size of the microbial biomass dictates the absolute change in decomposition 49 

rates with changing climate variables. Our findings suggest the need for revision of the 50 

hierarchical model, with decomposers acting as both local- and broad-scale controls on 51 

litter decomposition rates, necessitating their explicit consideration in global 52 

biogeochemical models. 53 

 54 

The dominant conceptual model of litter decomposition posits that the primary controls on the 55 

rate of decomposition are climate, litter quality and decomposer organisms1. These controls are 56 

hypothesized to operate hierarchically in space, with climate and litter quality co-dominant at 57 

regional to global scales2-4, and decomposers operating only as an additional local control whose 58 

effect is negligible at broader scales5. Consequently decomposers have been omitted as controls 59 
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from biogeochemical models, whereas a recent surge of interest in their inclusion has shown that 60 

carbon-cycle projections depend strongly on whether and how microbial decomposers are 61 

represented6-9. Yet evidence that microbial decomposers regulate decomposition rates at 62 

regional- to global-scales, independent of climate variables such as temperature and moisture, is 63 

generally lacking. One possibility for this lack of evidence is suggested by scaling theory, where 64 

the influence of mechanisms that act locally can be obscured in emergent, broad-scale patterns10.  65 

Pattern and scale has been described as the central issue in ecology, where the inherent 66 

challenge to prediction and understanding lies in the elucidation of mechanisms, which 67 

commonly operate at different scales to those on which the patterns are observed10. This scale 68 

mismatch appears true for at least some ecosystem processes, such as plant productivity10,11. 69 

Decomposition processes, also, are controlled by variables operating at finer scales than those at 70 

which the variables are typically measured and evaluated1. For example, extensive empirical 71 

support for the hierarchical model of litter decomposition has been provided through multi-site 72 

climate gradient studies12-15. These multi-site studies have some common characteristics, which 73 

include collecting few observations (typically 2 to 4 per site per litter species per collection) – 74 

from which a mean decomposition rate is determined – and also use of site-mean data to estimate 75 

climatic controls1. Yet the hierarchical model, and its representation in the structure of 76 

biogeochemical models, is based on the assumption that controls act at the microsite level, by 77 

regulating the activities of decomposer organisms5,16. That is, the hierarchical model is 78 

conceptually grounded in local (i.e. microsite) dynamics, but has been developed and 79 

substantiated with site-mean data that represents climate control of decomposition as an among-80 

site relationship. 81 
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Understanding controls on litter decomposition across regional scales is then necessarily 82 

intertwined with scaling theory. This body of theory10 suggests that broad-scale patterns might 83 

emerge from distinct, local-scale causative relationships, which contrasts with the assumption of 84 

the hierarchical model that among-site patterns in decomposition approximate patterns operating 85 

at the microsite (Fig. 1). We refer to this as the “assumption of scale invariance” (Fig. 2a). Two 86 

lines of evidence question the validity of the assumption of scale invariance for litter 87 

decomposition. The first is that the activities of decomposer communities are shaped by 88 

environmental selection for a subset of functional traits, which then uniquely dictate how 89 

decomposition rates respond to changing climatic controls17-20. The second is that microclimate 90 

can vary widely within a site21,22. As such, site-mean climate data are likely a poor surrogate for 91 

the range in microclimate experienced by decomposer organisms within a site21. Both lines of 92 

evidence support the possibility that among-site patterns in decomposition rates emerge from 93 

distinct microsite-level relationships (the “assumption of scale dependence”, Fig. 2b). 94 

We use a multi-site, litter decomposition study to test between the competing 95 

assumptions of scale invariance and dependence (Figs. 1,2). We worked across a climate 96 

gradient in Europe at six grassland sites spanning boreal climate in northern Sweden to 97 

Mediterranean climate in southern France. We predicted two specific patterns would emerge if 98 

the assumption of scale invariance were to be falsified. Prediction 1 was that relationships 99 

between climate and decomposition rates should differ when site-mean versus microsite-level 100 

climate data are analysed. That is, the emergent regional-scale pattern from microclimate data 101 

should differ from the pattern observed with site-mean climate data. Prediction 2 was that any 102 

variable expected to be an important control at the microsite-level (e.g. microbial biomass), 103 

should have a strong effect when regional-scale patterns are analysed using microsite-level data. 104 
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Litter quality was included in our experimental design, by using two grass species with 105 

contrasting litter functional traits, but was not under test. Instead, standardizing known 106 

controlling variables can improve estimated effects of other controls under study. In addition, 107 

litter traits are expected to interact with controls such as temperature23 and so including this 108 

variable allowed us to test this possibility. In total, we measured four controls (temperature, 109 

moisture, microbial biomass and soil nitrogen availability) that naturally varied among 110 

microsites. All four variables are expected to act as strong local and, in the case of the climate 111 

variables, broad-scale controls on decomposition1,5,24,25. We then built a set of regression models, 112 

structured to represent and test between assumptions of scale invariance versus dependence in 113 

controls (see Methods), to compare the estimated effect sizes of these different variables on litter 114 

decomposition rates. 115 

 116 

Results and discussion 117 

Decomposition rates varied within and among sites and between the two litter types (Fig. 3a,b). 118 

As expected, mass carbon (C) loss over the 3-month field incubations was approximately twice 119 

as great for the higher quality Holcus litter (33.8±11.62%; mean±SD) than for the Festuca litter 120 

(16.8±7.15%). However, there was considerable variation, with loss rates for Holcus ranging 121 

from 7.72 to 53.7%, and for Festuca from 0.50 to 35.3%. Similarly there was marked variation in 122 

the values of the climate controls, temperature and moisture, although they had contrasting 123 

within versus among site distributions. Soil temperatures clustered within sites, meaning that 124 

variation was much greater among sites (Fig. 3c), ranging from 10.0 to 25.3°C for the most 125 

northern to southern site means. In contrast, microsite litter moisture only clustered around the 126 

site mean at the two most southern sites, where mean site moisture was lowest (11.7 and 7.5%). 127 
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At the most northern site the mean moisture was 51.6% but varied among microsites from 12.8 128 

to 81.3% (Fig. 3d). Microsite soil nitrogen (N) availability and microbial biomass were more 129 

clustered than moisture but within- versus among-site variation was still large (Figs. 3e,f). Soil N 130 

varied among sites from means of 9.0 to 32.8 μg N g soil-1 but within the most northern site 131 

alone from 2.3 to 70.6 μg N g soil-1. Equally, microbial biomass site means varied ~2-times from 132 

0.96 to 2.03 μg CO2 g soil-1 h-1, but within sites from about 1.6-times (most northern) to about 133 

2.75-times (most southern). 134 

Prediction 1 was that emergent patterns between mean-site climate and decomposition 135 

might fail to capture relationships occurring at the microsite scale. We found no support for this 136 

prediction for temperature, with the “Microclimate” and “Site-mean climate” models (see 137 

Methods) giving similar temperature coefficients (Table 1) and effect sizes (Fig. 4a). That is, the 138 

temperature-decomposition relationship was scale invariant (Fig. 1). This perhaps is not 139 

surprising given that microsite soil temperature clustered around the site mean (Fig. 3c). 140 

Consequently the regional temperature-decomposition relationship should be, and was, 141 

approximately equivalent whether microsite or site-mean values were explored (Fig. 4a). There 142 

is evidence that microsite temperature can differ markedly to the site mean in some 143 

environmental contexts22. However across 60 sites spanning a broad range in eco-climatic 144 

conditions, Loescher et al.21 found that microsite soil temperatures were representative of the site 145 

mean, suggesting that our finding that the temperature-decomposition relationship is scale 146 

invariant might generalize to numerous ecosystem types. 147 

In contrast, the moisture-decomposition relationship was strongly scale dependent: there 148 

was a pronounced moisture-decomposition relationship for the Microsite model but a weak one 149 

for the emergent pattern estimated from the Site-mean model (Table 1, Fig. 4b). Specifically, 150 
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across the large observed range of microsite moisture availability (5.7 to 83.2%), the Site-mean 151 

model projected mass loss values ranging from a low of 27.4% to a high of 28.7%. In contrast, 152 

the Microclimate model estimated a shift in decomposition across the same range in moisture 153 

from 23.9 to 33.2% mass loss (Fig. 4b). Site means therefore poorly captured regional 154 

heterogeneity in microsite moisture availability, generating a scale mismatch between local 155 

mechanism and broad-scale pattern. Our data (Fig. 4b) consequently suggest that patterns 156 

emerging from among-site comparisons of site-mean moisture may fail to represent causative 157 

relationships operating at the much finer spatial scales at which decomposer organisms respond 158 

to the environment. These findings raise questions about the use of site-mean (or coarser 159 

resolution) hydroclimatic data to parameterise ecosystem models. Overall, our data suggest that 160 

assumptions of the hierarchical model about scale invariance in climatic control are variable 161 

dependent, cautioning against its general application as a conceptual and numerical 162 

representation of controls on decomposition. 163 

Using the “Microsite interactions” model (see Methods), we evaluated Prediction 2 that 164 

variables considered locally important should retain a strong influence at broad spatial scales. 165 

Following this prediction, the effect size of microbial biomass on decomposition rates was of 166 

similar magnitude to those for the climatic variables (Fig. 5a). Specifically, estimated 167 

decomposition rates varied by ~16% mass C loss with temperature change, ~11% with moisture 168 

change, and ~12% with microbial biomass change (Fig. 5a). Not surprisingly, given that we 169 

experimentally generated marked differences in litter quality, estimated mass loss increased 170 

~24% (from 17 to 41%) with increasing initial litter N (Fig. 5a). The soil N effect size was by 171 

contrast small, leading to about a 2% positive change in estimated mass C loss but, as with all the 172 

other variables, the main effect coefficient was significant (P<0.05; Table 1, Fig. 5a). Although 173 
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some 2-way interaction coefficients were of comparable or greater magnitude to the main effects 174 

for temperature, moisture and microbial biomass (Table 1), qualitatively the estimated effect 175 

sizes of these variables from the Microsite interactions and Microsite main effects models were 176 

similar (Figs. 4, 5b). That is, when interactions were removed, litter quality, temperature, 177 

moisture and microbial biomass all retained strong control on decomposition at the regional scale 178 

of our study (Table 1, Supplementary Fig. 1). 179 

Exclusion of soil animal decomposers does alter litter decomposition rates in at least 180 

some biomes15,24,26-28 but microbial effects were not explicitly examined. However, the 181 

representation of microbial biomass or growth in biogeochemical models can improve predictive 182 

power9,29 and such variables are argued to relate most directly to spatial and temporal variation in 183 

biogeochemical process rates7,8,30. In support of these arguments, the absolute size of our 184 

estimated effects of microclimate on decomposition depended strongly on microbial biomass. 185 

Specifically, using the Microsite interactions model we set microbial biomass at five values 186 

representing the observed range of microsite variation, and then varied temperature and moisture 187 

(Fig. 5c,d). Higher microbial biomass values generated a much greater absolute change in 188 

decomposition rates with increasing temperature or moisture (Fig. 5c,d). For example, estimated 189 

mass loss rates across the microsite moisture range only varied by ~5% in absolute terms when 190 

microbial biomass was low, to as much as ~25% (from 28.5 to 54.2% mass loss) when it was 191 

high. This influence of microbial biomass was primarily additive given that, when it was dropped 192 

from the modelling (giving the Microclimate model), there was minimal influence on the relative 193 

effect sizes of litter quality, temperature and moisture (Fig. 4, Table 1). An outstanding question 194 

is whether the microbial traits selected by a site’s climatic context17,18 in turn influence the 195 

magnitude of microclimate effects on decomposition, as is similarly observed through climate 196 
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selection of plant functional traits23,31. Nevertheless, our data do support emerging numerical 197 

frameworks showing that explicit representation of microbes as controlling variables can 198 

dramatically change expected effects of climate on broad-scale decomposition dynamics6,8,32. 199 

We found positive but relatively weak effects of soil N availability on decomposition 200 

(Supplementary Fig. 1), despite the fact stoichiometry is considered a key control on microbial 201 

growth efficiencies and hence biogeochemical process rates33-36. The effects might have been 202 

stronger had the litter been of lower quality (e.g. <1% initial N), requiring microbes to source N 203 

from the environment for growth and enzyme production35. Such possibilities emphasize the fact 204 

that the effect sizes we report are specific to the spatial and temporal scale of our study. For 205 

example, the relative effect size of controls changes with how progressed litter decay is37-39. 206 

Future work will need to test whether the hierarchical model can approximate controls on later 207 

decomposition stages, in other biomes and at even broader spatial scales37,38, when challenged 208 

with microsite data. Where the model cannot approximate controls (i.e. where broad-scale 209 

emergent patterns do not reflect microsite relationships), new microsite-level studies will be 210 

needed to re-estimate parameter values for important controls. Such studies should test whether 211 

measuring fine-scale temporal as well as spatial variation might also necessitate a re-evaluation 212 

of how decomposition rates are controlled. Notably, our study leaves unresolved how microsite 213 

variation in litter quality might influence the nature of this co-dominant control. Further, it 214 

suggests a need to re-design multi-site litter decomposition studies but does not address the 215 

challenge of making these studies practical given the very large number of observations 216 

apparently required to test when and to what extent emergent broad-scale patterns fail to capture 217 

microsite-level mechanisms1. 218 



 11

We acknowledge that three aspects of our design may have influenced our findings: 219 

enclosing litter in mesh can alter the microclimate40; the litter species do not occur at every site; 220 

and the microsite scale we measured may also be mismatched with the litterbag scale of the 221 

response variable41. However, these caveats also apply to the multi-site litter decomposition 222 

experiments that have helped build and reinforce the hierarchical model12-15. The important 223 

caveat that we remove from these previous studies is the assumption that aggregate (i.e. site-224 

mean) data accurately capture the relationships between decomposition and the variables 225 

regulating it that operate at local (microsite) scales. Notably, there is growing evidence that C- 226 

and N-cycling processes in soil are driven to a large extent by microsite variation in controlling 227 

variables across landscape to regional scales42-44. Those working in population and community 228 

ecology have wrestled with the insight that aggregate data may not represent local behaviour and 229 

hence lead to false conclusions and projections45; it seems the same insight may need to be 230 

grappled with in ecosystem ecology. 231 

 232 

Conclusions 233 

Scaling theory in ecology describes how emergent patterns can arise from distinct and causative 234 

relationships operating at finer-scales10. However, the issue is nested within a broader inferential 235 

challenge traditionally debated in the social sciences and increasingly so in the natural 236 

sciences42,46-48. Although apparently named without reference to the field of ecology, the issue is 237 

termed “ecological inference” and refers to the process of using aggregate data to draw 238 

conclusions about individual-level behaviour48. Causative relationships inferred from aggregate 239 

data often fail to represent the variables that control how individuals respond to and act on the 240 

environment49. By comparison, relationships inferred from site-mean data in regional- to global-241 
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scale litter decomposition experiments may operate locally, or instead emerge from a set of 242 

distinct local-scale relationships and controlling variables. We have referred to these two 243 

possibilities as the assumption of scale invariance versus scale dependence (Fig. 2). Although we 244 

find temperature control scale invariant, our findings for moisture and microbial biomass control 245 

suggest that the hierarchical model may be the product of a logical inference fallacy. That is, it 246 

arises because aggregate data are falsely assumed to represent finer-scale causative 247 

relationships42,48,49. Encouragingly, the rich body of work on scaling theory and the ecological 248 

inference fallacy50 provides a platform for ecosystem ecology to test and potentially reformulate 249 

its conceptual and numerical models used to explain and predict how biogeochemical processes 250 

respond to a changing environment. Our findings help reinforce calls to test and reconsider 251 

which environmental variables predominantly regulate biogeochemical process rates at regional- 252 

to global-scales, and when doing so emphasize the need to work at the microsite scales at which 253 

organisms perceive the environment. 254 

 255 

Methods 256 

Experimental design. Site layout. Our research was conducted in grasslands spanning ~20° 257 

latitude in Western Europe (Fig. 1). At each of six study sites, we established four 30-m linear 258 

transects between 50 m and up to 2 km apart. Transects were chosen to capture within-site 259 

heterogeneity in microclimate and land-use intensity (e.g. with or without grazing). Along each 260 

transect we established 20×20 cm quadrats at 5-m intervals, resulting in 7 quadrats per transect. 261 

In the context of this study, ‘quadrat’ serves as the ‘microsite scale’. Between 28 April and 16 262 

May 2015, we placed two nylon mesh bags (5×10 cm; mesh size 0.9×1 mm) at each quadrat, ~10 263 

cm apart. The mesh size presumably minimized the effect of larger soil fauna (e.g. earthworms) 264 
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on decomposition rates, and so our decomposition rates were likely primarily the product of 265 

microbes and micro- and mesofauna24,40. Each mesh bag contained 1 g air-dried grass foliar litter 266 

of either Holcus lanatus L. or Festuca rubra L., which differ in their litter chemical properties 267 

(see below). This resulted in a total of 6 locations × 4 transects × 7 quadrats × 2 litter types = 336 268 

litterbags. Litterbags were placed flush with the soil surface, within the existing litter layer and 269 

were retrieved after ~3 months. Of the 336 bags placed, 32 were lost in the field to such events 270 

as consumption by cows and accidental site mowing. The litter used to fill the litterbags was 271 

collected as freshly senesced material in grasslands local to the Dutch site. 272 

 273 

Leaf litter. Mean litter properties for H. lanatus versus F. rubra were pH of 6.12 vs. 5.61, %N of 274 

1.78 vs. 1.03, C:N of 24.7 vs. 43.7, and lignin, calcium, magnesium and potassium contents of 275 

157 vs. 175, 3.72 vs. 2.75, 1.31 vs. 0.79, and 6.55 vs. 1.50 mg g-1, respectively. That is, 276 

regardless of the chemical property measured, H. lanatus was always less recalcitrant. By 277 

including the two contrasting litter types at every site, we generated equal within and among site 278 

variation in this variable. Doing so provided a statistical control whereby the strong within-site 279 

litter type effect should be approximated by the among site effect, and so generate a scale 280 

invariant pattern (Fig. 2a). Second, standardizing known controlling variables can improve 281 

estimated effects of the controls under study (e.g. microclimate). Third, litter traits are expected 282 

to interact with other variables, such as temperature23, and so including this variable allowed us 283 

to test this possibility. 284 

 285 

Measurements. Field. At each quadrat we determined microclimate at the start, after ~6 weeks 286 

and at the end of the field incubation period. We collected three measures per quadrat and time 287 
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point of soil temperature at 5-cm depth using a hand-held thermometer. Such repeated spot 288 

measurements are effective at characterizing relative variation in microclimate42, and so our 289 

measures are not indicative of absolute values experienced by the decomposing litters but instead 290 

capture generally warmer vs. cooler microsites, or drier vs. wetter, across the course of the study. 291 

At the mid and end time point, soil moisture content was determined gravimetrically in three soil 292 

cores (5 cm depth, 2 cm diam.) from each quadrat; cores were pooled and dried at 105°C until 293 

constant mass. We had intended to use these measures (plus initial soil moisture) to estimate 294 

microsite moisture conditions, but marked differences in soil texture from clay (Umeå) to loamy 295 

sand (Wageningen) meant that soil gravimetric moisture was a poor surrogate for litter layer 296 

moisture conditions. Instead, we used litter moisture values (see Testing Prediction 1 below). 297 

Additionally, at the start point of the field incubations, 8-10 soil cores of the same size were 298 

taken and pooled per quadrat and were used to determine soil gravimetric moisture, microbial 299 

biomass and N availability. Initial soil samples and retrieved litterbags were shipped to the 300 

Netherlands Institute of Ecology to ensure common processing. Collectively these measures 301 

were intended to give estimates of four variables identified as important controls of 302 

decomposition either at broad-scales (i.e. temperature and moisture), or at local-scales (i.e. 303 

microbial biomass and N availability)32,35,51,52. For soil microbial biomass, it is probably fairer to 304 

consider this an estimate of the spatial variation in soil community activity, which includes 305 

invertebrate decomposers, many of which will have been able to access the litter24,40, and 306 

potentially also microbes not involved in litter decomposition. 307 

 308 
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Laboratory. Retrieved litter was cleaned of roots, fauna and soil, before mass was determined 309 

fresh and after drying at 65°C. It was next milled to a fine powder and analysed for total C 310 

content through elemental analysis (Flash 2000, Thermo Fisher Scientific, Bremen, Germany). 311 

 The initial 168 soils (6 locations × 4 transects × 7 quadrats) were passed through a 4-mm 312 

sieve and sub-sampled for gravimetric moisture, microbial biomass and N availability. We used 313 

the substrate-induced respiration (SIR) method to estimate active microbial biomass53, modified 314 

per Fierer et al.54. We estimated soil N availability by determining potential net N mineralization 315 

rates as the difference between salt-extractable N-NO3
- and N-NH4

+ at time zero and after 14 d of 316 

incubation at 20°C and 65% water holding capacity55. Soils were extracted with 1M KCl and 317 

extracts measured using an auto-analyser (QuAAtro Segmented Flow Analyser; SEAL 318 

Analytical; Norderstedt, Germany). 319 

 Initial litter properties were estimated using seven randomly collected samples per 320 

species, matching the sub-sampling for the litterbags. Total C and N content were measured as 321 

described above, lignin after a chloroform/methanol extraction and hydrolysis with HCl, 322 

following Poorter & Villar56. Mineral nutrient concentrations and pH were measured following 323 

methods described in Hendry and Grime57 and Cornelissen et al.58, respectively. 324 

 325 

Data and inferential analysis. Overview of approach. We built a set of regression models, 326 

structured to represent and test between assumptions of scale invariance versus dependence in 327 

controls on litter decomposition (Fig. 2), to compare estimated effect sizes on decomposition of 328 

the four controlling variables under study. Specifically, we estimated the relative effect size for 329 

temperature, moisture, soil N availability and microbial biomass, across the range of observed 330 

values within and among our six sites. The relative effect size depends on the slope coefficient 331 
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for the specific variable, the slope coefficient for any interaction it is involved in, and the range 332 

of observed values of the variable. We generated the coefficients by fitting linear mixed-effect 333 

models (LMMs). The effect size of a variable on mass C loss was estimated using these 334 

regression parameters, while holding all other variables constant (i.e. the mean of all 335 

observations for each variable), and systematically varying the variable of interest across its 336 

measured range of values. That is, we plotted the regression equation for a model using the 337 

coefficients from the respective LMM, the mean value across all 168 quadrats for the controls 338 

not under test, and then for the control under test we estimated decomposition rates by 339 

systematically increasing the value of the control from the lowest to highest observed values 340 

across the 168 quadrats.  341 

The choice of variables to measure and then include in our statistical models (described 342 

next) was based on the approach of Hobbs et al.59, which rejects model selection on 343 

philosophical and operational grounds. Philosophically, we investigated only variables where 344 

biological mechanism as to their influence on decomposition is firmly established. Operationally, 345 

there is subjectivity and lack of agreement in statistical model selection approaches, with 346 

different decisions leading to markedly different conclusions as to effect sizes. Instead, 347 

coefficients and hence effect sizes are generally most robust when all terms are retained, 348 

assuming that each is included with well-established biological foundation. 349 

 350 

Testing Prediction 1. Prediction 1 was that relationships between climate and decomposition 351 

rates should differ when site-mean versus microsite-level climate data are analysed. This 352 

prediction was evaluated by comparing whether temperature and moisture effects on mass C loss 353 

differed when the slope coefficients were estimated from microsite versus site-mean data. We 354 
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established a single model structure to test Prediction 1. It included only recognized broad-scale 355 

controls as variables (i.e. temperature, moisture and litter type), but involved different data 356 

aggregation. The “Microclimate” model was tested with observations of mass C loss for each 357 

litterbag and quadrat-level microclimate. The “Site-mean climate” model was also run with all 358 

litterbag observations – to minimize changes in predictive power associated with changing 359 

values of n – but the values of the climate variables were the mean per site of the microclimate 360 

(i.e. quadrat) observations. Hence in the Microclimate model the dataset had 168 unique 361 

temperature and moisture observations, whereas in the Site-mean climate model there were only 362 

six possible values (one per site) of temperature and moisture. Specifically, microsite control 363 

values were determined from the quadrat-level measures, and site mean values determined from 364 

the mean of the 28 quadrat-measures within a site (i.e. they were based on the exact same set of 365 

measurements). To account for potential spatial auto-correlation among the quadrats within a 366 

site, we fit a random error structure accounting for the spatial hierarchy in the design (quadrat 367 

nested within transect, with transect nested within site), assuming a common slope but spatially-368 

dependent intercept50,60. 369 

Similarly, litter type was included as the litterbag-level %N value, or as the mean %N per 370 

litter type, respectively (note that climate effect sizes were independent of how litter type was 371 

included). To determine a litterbag-level initial %N value, we randomly assigned to each 372 

litterbag a %N value (to the nearest 0.1%) drawn from the measured range of initial %N values 373 

from seven additional litterbag samples (Fig. 3b). We did this to acknowledge that there was 374 

variation among litterbags in initial %N and so using the mean initial %N would give a false 375 

account of the among-bag variation. For quadrat-level temperature, we calculated the mean soil 376 

temperature across the three field measurement periods. For quadrat-level moisture, given that 377 
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soil gravimetric moisture was not useful given soil texture differences among sites, we calculated 378 

quadrat-level moisture as the mean of the Holcus and Festuca litterbag moisture values on 379 

collection. We acknowledge that litters were probably drier at collection than at earlier points of 380 

the field incubations, given increasing temperatures and declining precipitation across the 381 

incubations, and so these values provide an estimate of relative spatial differences in moisture 382 

only. We used the mean across the two litter types, given that species-specific moisture values 383 

are often a product of leaf litter traits and are thus correlated with litter quality4. 384 

 385 

Testing Prediction 2. Prediction 2 was that any variable expected to be an important control at 386 

the microsite-level, should have a strong effect when regional-scale patterns are analysed using 387 

microsite data. Specifically, we evaluated whether effect sizes of the soil microbial biomass and 388 

N availability variables had effect sizes comparable to recognized broad-scale controls 389 

(specifically temperature and moisture). We developed three model structures. The “Microsite 390 

interactions” model included all variables (i.e. temperature, moisture, microbial biomass, N 391 

availability) and their 2-way interactions. We included two-way interactions among the main 392 

effects given expectations that the relative effects of our variables should depend on one another. 393 

For example, the decomposition rate of more recalcitrant litters is expected to be more 394 

temperature sensitive61,62. The “Microsite main effects” model removed the 2-way interactions to 395 

determine whether the effect sizes of the variables were primarily additive. The “Microclimate” 396 

model was used again but to evaluate whether dropping the soil microbial biomass and N 397 

availability terms altered inferences about temperature and moisture controls on mass C loss. 398 

Litter type (as initial %N) was again included in all models. 399 

 400 
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Statistical model specifics. The LMMs were fit with a Gaussian error distribution in the “lme4” 401 

package for the “R” statistical program (version 3.1.3), using the “lmer” function. 402 

Decomposition was calculated as the proportional mass C loss from the litterbags. Site, transect 403 

and quadrat were fit as random variables to the LMMs, with the finer scale variables nested 404 

within the broader scale variables, given the potential for autocorrelation caused by spatially 405 

clustering the litterbags60. Before we tested the model structures described above, we tested the 406 

data distributions. A single and highly influential observation (based on Cook’s D) was dropped 407 

from the dataset; it had a mass C loss value of 69.9%, far higher than any other observation (Fig. 408 

3a), and markedly affected residual fits. The remaining data conformed to assumptions of 409 

normality, and a second-order temperature term was included given the observed unimodal 410 

relationship between temperature and mass loss. Also, initial extractable N was a better choice 411 

(i.e. higher standardized coefficient) than potential N mineralization for soil N availability, and 412 

litter moisture (mean per quadrat) performed better than gravimetric soil moisture. Litter initial 413 

%N was used to represent litter quality given that it is a strong predictor of early-stage 414 

decomposition in grasses such as H. lanatus39,63. 415 

The square-root variance inflation factors (vif) were <2 for the main effects, indicating 416 

low collinearity. As would be expected, there was a strong correlation between temperature and 417 

its second-order term, and where the effect of one variable strongly interacted with another. We 418 

reduced these ‘vif’ values by standardizing the observed value of each variable by subtracting the 419 

mean and dividing by two standard deviations64. The resulting standardized coefficients also 420 

permit coefficients to be directly compared for variables measured on different unit scales. 421 

Confirming the validity of our inferences in spite of introduced collinearity when second-order 422 

terms and interactions were permitted, variables with large effect sizes calculated on the basis of 423 
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the unstandardized coefficients also had large standardized coefficients. In addition, in the 424 

‘Microsite main effects’ model all 2-way interactions were dropped, removing collinearity and 425 

concerns about over-fitting, and the relative magnitude of the coefficients were largely 426 

unchanged (Table 1). 427 

All reported P-values are quasi-Bayesian but retain the same interpretation as frequentist 428 

P-values65. We considered coefficients with P<0.05 to be significant and coefficients with 429 

P<0.10 marginally significant. We calculated the r2
 values for each model following Nakagawa 430 

and Schielzeth66. Calculation of r2
 values is common practice when modelling decomposition 431 

and a high value associated with a specific explanatory variable is often associated with that 432 

variable having a strong effect size. This reasoning makes no sense within the context of our 433 

study because litter type was experimentally controlled and accurately measured within and 434 

among sites, whereas the other variables relied on observed variation and measurements that 435 

represented – but likely did not fully characterize – the conditions that acted on decomposer 436 

activity. The latter conditions make data more “noisy”, lowering r2 values, but in the absence of 437 

systematic bias will not change the coefficient estimates and hence effect sizes1. We therefore 438 

only report the r2 value for each model, to verify they had the potential to explain a substantive 439 

degree of the variance in decomposition rate. 440 

 441 

Data availability 442 

Experimental data in the support of these findings and the R code for the statistical models are 443 

available via the Dryad Digital Repository (http://dx.doi.org/10.5061/dryad.c44h0). 444 
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 618 

Figure 1 ⏐Study design and site characteristics. Spatial organisation and operational 619 

definitions of the study extent and observational grain are given in the hierarchical figure (site to 620 

microsite). Sites are named for the closest city and their climate data are from climatedata.eu for 621 

the months (May-June) of litterbag incubation, giving the range across months in the average 622 

high and low temperature and precipitation. Soil data are the mean soil temperature and litter 623 
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moisture data measured across the study period. Latitude and longitude data are for one transect 624 

in each site. 625 

Figure 2 ⏐Competing assumptions for how decomposer communities affect relationships 626 

between climate and decomposition rates at regional to global scales. Ecosystem theory 627 

holds that soil decomposer communities influence functional relationships between controls and 628 

decomposition rates in a spatially invariant manner. For example, broad-scale patterns among 629 

site-mean climate conditions are representative of a common relationship operating at finer 630 

spatial scales (a): the assumption of scale invariance. Increasingly there is empirical evidence 631 

that decomposer communities can be functionally distinct, meaning that broad-scale patterns 632 

may instead emerge from distinct fine-scale (in this case within-site) relationships (b): the 633 

assumption of scale dependence. 634 

Figure 3 ⏐ Measured variation in decomposition rates and controlling variables within and 635 

among sites. The response variable (decomposition) is shown in (a), litter quality in (b), climate 636 

variables in (c) and (d), soil nitrogen availability in (e) and an estimate of the active decomposer 637 

biomass in (f). Points represent individual observations (n=303) and are jiggered around the site 638 

number to help prevent similar observations obscuring one another. Sites are described in Fig. 1. 639 

Figure 4 ⏐ Estimated effects of temperature and moisture controls on decomposition rates. 640 

Effect sizes are estimated for temperature (a) and moisture (b) using the coefficients from the 641 

models presented in Table 1. Specifically, these coefficients were used in a regression equation, 642 

along with the mean value across all 168 quadrats for the controls not under test, and then for the 643 

control under test by systematically increasing the control from the lowest to highest observed 644 

values across the 168 quadrats. Comparisons of effect sizes between the Microclimate versus 645 

Site-mean climate models test whether patterns between site-mean climate and decomposition 646 
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rates (effect sizes from the Site-mean climate model) approximate those operating at the 647 

microsite scales at which decomposer organisms perceive the environment (effect sizes from the 648 

Microclimate model). The temperature-decomposition relationship appears scale invariant 649 

whereas the moisture-decomposition relationship is scale dependent (Fig. 2). The two Microsite 650 

models ask whether inclusion of microbial biomass and N availability as additional variables 651 

alters the estimated effects of temperature and moisture. Their inclusion does not appear to 652 

strongly affect the climate-decomposition relationships. 653 

Figure 5 ⏐ Estimated effects of controls on decomposition rates. Effect sizes are estimated 654 

from the Microsite interactions model presented in Table 1, and in (b) also from the Microsite 655 

main effects model, following the procedure described in the legend of Fig. 4. In (a), plots for 656 

each variable are generated using unstandardized coefficients from the “Microsite interactions” 657 

model and the measured range in microsite conditions. The levels of each variable are 658 

relativized, ranging from the minimum (0%) to maximum (100%) measured value, revealing that 659 

microbial biomass (Microbe) has an effect size approximately equivalent to both temperature and 660 

moisture. In (b), comparison of the two models asks whether the effect size of the microbial 661 

biomass is additive or non-additively dependent on the other controlling variables. Its effect 662 

seems primarily additive, given the similarity in the two plots. However, the effect sizes plotted 663 

in (c) and (d) reveal that this additive effect of microbial biomass can still strongly determine 664 

temperature and moisture effects on decomposition rates. The level of microbial biomass is 665 

relativized, with five values shown ranging from the minimum (0%) to maximum (100%) 666 

observed value. There are much stronger absolute decomposition responses to temperature and 667 

moisture when microbial biomass values are greater. 668 

 669 
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Table 1 ⏐Coefficients, significance and r2 values for the linear mixed models used to evaluate 670 

controls on litter decomposition rates. 671 
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Table 1 Coefficients, significance and r2 values for the linear mixed models used to evaluate 

controls on litter decomposition rates1. Shown in the second column are standardized coefficients 

for the full model, where “Microsite” refers to the level at which the variables were observed, 

and “interactions” to the inclusion of all 2-way interactions among the predictors. 

Unstandardized coefficients were used when plotting Figs. 4, 5 and Supplementary Fig. 1. The 

consequence of aggregating microsite variation to generate “Site means” for the predictor 

variables was examined, but microsite variation in the response variable was retained to maintain 

the number of observations (n=303). Significant (P<0.05) and marginally-significant (P<0.1) 

coefficients are shown in bold and italic fonts, respectively. 

 Model 

Variables 
Microsite 

interactions 

Unstandardized coefficients 
Microsite 

interactions 
Microsite main 

effects 
Microclimate  Site-mean 

climate 
Intercept 27.0±0.689 -70.0±14.629 -17.1±6.264 -15.6±6.365 -24.1±6.960 
Litter N 16.1±0.856 45.3±5.998 19.3±1.173 19.2±1.198 22.6±1.283 
Temperature -4.49±1.600 5.03±1.344 1.05±0.702 1.73±0.681 2.81±0.759 
Temp2 -6.84±3.285 -0.069±0.033 -0.047±0.018 -0.063±0.018 -0.100±0.021 
Moisture 7.23±1.256 0.240±0.156 0.141±0.023 0.120±0.022 0.017±0.028 
Soil N 0.732±1.075 0.151±0.158 0.014±0.028 na na 
Microbe 4.59±1.165 4.70±7.575 4.93±1.477 na na 
Lit ×Temp -13.9±1.888 -1.72±0.233 na na na 
Lit × Moist -0.275±2.057 -0.007±0.049 na na na 
Lit × soilN 1.58±1.666 0.053±0.056 na na na 
Lit × Mic 0.347±1.997 0.535±3.077 na na na 
Temp × Moist -7.03±4.157 -0.014±0.008 na na na 
Temp × soilN -3.09±2.035 -0.009±0.006 na na na 
Temp × Mic -1.46±2.172 -0.185±0.276 na na na 
Moist × soilN -3.02±2.536 -0.002±0.001 na na na 
Moist × Mic 4.55±2.923 0.111±0.071 na na na 
soil N × Mic -0.409±1.226 -0.014±0.042 na na na 
model r2  66.3 66.3 57.1 55.2 57.6 
 

1Mean coefficients, their SD and significance are estimated using an MCMC sampling approach, 

and model r2 values using a method that retains the random effects structure (see Methods).  

Model r2 values were identical for the fixed and full (i.e. fixed + random) effects. 



Note: In the standardized Microsite interactions model, all sqrt VIFs were <2 except 

Temperature2 which was 2.98 and Temperature × Moisture which was 2.30. In the 

unstandardized Microsite interactions model, all sqrt VIFs were <10 except Temperature which 

was 16.0 and Temperature2 which was 14.8. 

In the unstandardized Microsite main effects model, all sqrt VIFs were <2 except Temperature 

and Temperature2; and the same was observed with the Microclimate model, and the Site-mean 

climate model. 

na = not applicable 
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