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Abstract

This paper deals with two ideas appeared during the last developing phase in Artificial

Intelligence: Reservoir Computing and Random Neural Networks. Both have been very

successful in many applications. We propose a new model belonging to the first class,

taking the structure of the second for its dynamics. The new model is called Echo State

Queuing Network. The paper positions the model in the global Machine Learning area,

and provides examples of its use and performances. We show on largely used benchmarks

that it is a very accurate tool, and we illustrate how it compares with standard Reservoir

Computing models.

1 Introduction

Artificial Neural Networks (ANNs) are a class of computational models which have been proven

to be very powerful as statistical learning tools to solve different complicated engineering tasks.

Several types of ANNs have been designed, some of them originating in the field of Machine

Learning while others coming from biophysics and neurosciences. The Random Neural

Network (RNN) proposed by E. Gelenbe in 1989 [10], is a mathematical model inspired by

biological neuronal behavior which merges features of Spiking Neural Networks and Queueing

Systems. It can be seen (and it is) as a new type of queuing system, with its own applications,

for instance in performance evaluation. The network is a connectionist model where spikes

circulate among the interconnected neurons. Each node has a state in N, the number of

customers if we are working in queuing problems, the neuron’s potential if we see the model

as a neural system. In the latter case, the neuron is said to be active if the potential is strictly

positive. The firing times of the spikes are Poisson processes (conditioning with respect to

the event “the queue is not empty”or, at the connectionist side, “the neuron is active”). The

potential of each neuron increases when a spike arrives or decreases after the neuron fires. In

order to use RNNs in supervised learning problems, a gradient descent algorithm has been

described in [17], and Quasi-Newton methods have been proposed in [3, 28]. Additionally, the
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function approximation properties of the model were studied in [13, 14]. The structure of the

model leads to efficient numerical evaluation procedures in many cases of interest, to good

performance in learning tasks and to easy hardware implementations. Consequently, since its

introduction the model has been applied in a variety of scientific fields. In particular, one of

the authors has developed a technology for automatically measuring the perceptual quality

of video or voice content received through the Internet, based on RNNs (see [34, 41]). See

also [40] for a queueing-based performance evaluation work applying this approach (which in

turn is based on G-networks, closing a funny loop).

Concerning connectionist models with recurrences (circuits) in their topologies, they are

recognized as powerful tools for a number of tasks in Machine Learning (both in classic ANNs

and in RNNs). However, they have a main limitation which comes from the difficulty, in

the general case, in implementing efficient training algorithms: convergence is not always

guaranteed, many parameters are involved, sometimes long training times are required [7, 30].

For these reasons, learning using recurrent neural networks is principally feasible for relatively

small networks.

Recently, a new paradigm called Reservoir Computing (RC) has been developed which

overcomes the main drawbacks of learning algorithms applied to networks with cyclic topolo-

gies. The two most important RC models are Echo State Networks (ESNs) [26] and Liquid

State Machines (LSMs) [32]. Both exploit the idea of using recurrent neural networks without

adapting the weight connections involved in recurrences. The network outputs are generated

using very simple learning methods such as classification or regression tools. The RC approach

has been successfully applied to many problems achieving goods results, specially in temporal

learning tasks [30, 32, 48].

As announced before, in this paper we introduce a new type of RC method whose non-

learning part has a dynamics based on RNNs. This article is an extended version of our

previous work in [4]. Observe that in the Machine Learning literature, the acronym RNN is

often used for Recurrent Neural Network, that is, a neural network with circuits. In this work
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we use it for Random Neural Network, since it is a central object in the paper.

The paper is organized as follows: we begin by describing in Section 2 the world of G-

networks and their main characteristics, from the point of view of the objectives of this

paper. The different subsections review G-queues and G-networks, then RNNs and finally, the

problem of temporal supervised learning. Section 3 presents the RC paradigm and discusses

the main properties of these models. Section 4 describes the main contribution of this article,

a new RC model based on G-nets, and it explores the main model’s parameters. Finally, we

present some experimental results illustrating the interest of the proposal, and we end with

some conclusions as well as a discussion regarding future lines of research.

2 G-nets

Taking inspiration from the behavior of neural systems, and the mathematical models repre-

senting them, Erol Gelenbe proposed, in the late 70s and early 80s, a new queueing paradigm

where customers belong to two types, called positive and negative [11]. Positive customers

behave as ordinary customers in classic queueing systems: they arrive, wait, are served, and

move instantaneously to another queue or to the system’s “outside”. Negative customers are

ephemeral objects: they disappear at the same time they arrive at a queue, but if the queue

is not empty, they also remove a customer (necessarily a positive one) from it (which one

depends on some rule specific to the considered system). When this happens, we also say that

the positive customer has been killed. This means that negative customers can’t be observed,

only their effects on positive ones can; at any point in time, only positive customers can be in

the system. Let us briefly review, in this section, the main characteristics of these models when

they are isolated and when they are interconnected in networks. Then, we resume how we can

see such a network as a statistical learning tool, the topic of this paper. The last subsection is

different: we very briefly describe another learning situation where the target is a time series,

that is, where there is a temporal dimension in the problem.
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2.1 G-queues

Consider a stable queue in equilibrium, fed by two independent flows of customers, one

of positive ones and the other one of negative customers (they not need to be Poisson for

the moment, let’s say that they are, for instance, renewal processes). Denote the respective

throughputs by T + and T −. The mean service time at the queue is S. Denote by % the system’s

load, that is, the probability that, in equilibrium, the queue (and thus, the server) is not empty.

Then, the mean intensity of the flow of positive customers leaving the system after service

is %/S, and of the flow of positive customers removed by negative ones is %T −. The mean

conservation flow equation then writes T + = %/S +%T −, leading to

%= T +

1

S
+T −

= T +S

1+T −S
. (1)

Observe that this expression only needs ergodicity assumptions, no need for any Exponential

distribution anywhere in the model. If the two arrival processes are Poisson with respective

parameters λ+ and λ−, and if the server is an Exponential one having rate µ, then the load is

%= λ+

µ+λ− . (2)

In this case, the number of customers in the system at time t is Markov, it is ergodic if and

only if λ+ <µ+λ−, and when this inequality holds, the stationary distribution of the process

is geometric: for any integer k ≥ 0, the probability that, in equilibrium, there are k customers

in the queue is (1−%)%k .

2.2 G-networks

When these these types of queues are organized in networks with classic Bernoulli switching,

positive customers can become negative when moving from a queue to another. For any

two queues (or nodes) i and j , we denote by p+
i , j the probability that a (positive) customer
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finishing its service at i , goes to j as a positive one, and p−
i , j the corresponding probability

that it goes to j as a negative customer. Any customer removed from a node by a negative

one disappears from the system. Observe that the probability that a customer having being

served at i leaves the network is di = 1−∑n
j=1

(
p+

i , j +p−
i , j

)
, where n is the number of nodes

in the network. Of course, switching probabilities must satisfy connectivity constraints (as

for Jackson networks) to avoid pathological situations where a node fills up and never sends

customers (positive customers) to another node or to outside, or where a node can never

receive customers (positive ones). The third situation that it is also uninteresting is the one

where the network is actually composed of disjoint parts.

Assume a basic Markovian situation: the external arrival flows are Poissonian, and the

service times at the nodes are Exponentially distributed. Also assume the usual independence

conditions (between arrival processes and services times). Node i receives ordinary customers

from outside with rate λ+
i and negative ones with rate λ−

i , and its service rate is µi > 0. Process

X = { X (t), t ≥ 0} with values in Nn , defined by X (t) = (
X1(t), . . . , Xn(t)

)
, where Xi (t) is the

number of customers at node i , is then Markov (homogeneous, irreducible). Assume stability

and consider the equilibrium regime. Denote by x → πx the stationary distribution of X ,

x ∈ Nn . The load at i , denoted by %i , that is, the probability that, in equilibrium, node i is

not empty, is given by %i =∑
x:xi>0πx . Then, the mean throughputs of positive and negative

customers arriving at node i , denoted respectively T +
i and T −

i , must satisfy

T +
i =λ+

i +
n∑

j=1
% jµ j p+

j ,i and T −
i =λ−

i +
n∑

j=1
% jµ j p−

j ,i . (3)

Writing now the mean flow conservation equation at i , we obtain, as in previous subsection,

that the load at i satisfies the equation

%i =
T +

i

µi +T −
i

. (4)

See that, necessarily, if X is stable, for all node i we must have T +
i < µi +T −

i . Always in this
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equilibrium situation, if we now replace πx in the Chapman-Kolmogorov equilibrium equa-

tions for X by the product form πx =∏n
i=1(1−%i )%xi

i , we can verify that this is the stationary

distribution of the system. Reciprocally, if we consider the non-linear system {(3), (4)} in the

variables (T +
1 , . . . ,T +

n ,T −
1 , . . . ,T −

n ), or equivalently, in the variables (%1, . . . ,%n), if this system

has a solution where for all i , %i < 1, then, the function x →∏n
i=1(1−%i )%xi

i is a distribution

probability onNn , strictly positive, and satisfying the equilibrium equations for X . Resuming,

X is stable if and only if system {(3), (4)} has a solution where for all i , %i < 1, and in that case,

it has the given product form.

The reader can wonder if something can be said about the nonlinear system {(3), (4)} alone.

Define the surviving probability sk at node k as the probability, always in equilibrium, that a

customer that arrived at k gets served (that is, is not killed before the end of its service). We

have

sk = %kµk

T +
k

= µk

µk +T −
k

.

We can then write another nonlinear system equivalent to {(3), (4)}:

T +
i =λ+

i +
n∑

j=1
T +

j s j p+
j ,i , T −

i =λ−
i +

n∑
j=1

T +
j s j p−

j ,i , s j =
µ j

µ j +T −
j

. (5)

Using this form, in [15] Brower’s fixed point on an appropriate function allows proving that

this system has a fixed point (T +
1 , . . . ,T +

n ,T −
1 , . . . ,T −

n ), and that it belongs to a specific rectangle

of Rn .

2.3 Random Neural Networks [12]

Assume that we want to learn (in the sense of Machine Learning) a function ~f : [0,1]I → [0,1]O

(if the function was from A ⊂RI to B ⊂RO , we can move to the first case by scaling variables

appropriately), from a data set composed of K pairs (~a(k),~b(k)), k = 1..K , where~b(k) = ~f (~a(k)).

For the sake of clarity, we make explicit vectors and matrices here. We then consider a G-

network having n ≥ max{I ,O} nodes, called in this supervised learning context neurons, where
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only I of them, called input neurons, receive positive customers from outside, and O of them,

called output neurons, send customers to outside. It is an usual assumption in this context

that no negative customer arrives from outside; negative customers can randomly appear

inside the network, when (positive) customers end service at some node and move to another

one. Denote by I the set of input neurons and by O the set of output ones.

For any two neurons i and j , denote by w+
i , j and w−

i , j the reals w+
i , j = µi p+

i , j and w−
i , j =

µi p−
i , j . These numbers are called weights in this context. Observe that for any neuron i , we

have
∑n

j=1

(
w+

i , j +w−
i , j

)= (1−di )µi .

This model can be used to learn ~f in the following way. Denote by~ν the function mapping

the I rates (λ+
i , i ∈I ) =~λ+ to the O loads (% j , j ∈O ) =~%; we write~%=~ν(~λ+). Now, look at the

weights as parameters of~ν, write them generically as w , and make them appear explicitly in~ν

saying that~%=~ν(w ;~λ+). Then, we can define the quadratic error function of w

E(w) = 1

2

K∑
k=1

∑
i∈O

[
νi

(
w ;~a(k)

)−bi (k)
]2

,

and look for weights that minimize E . If w∗ is one such argmin, and if E(w∗) is small enough,

a subsequent validation phase where another set of data is used, must verify that~ν(w∗;~c(k))

is close enough to ~d(k), for the elements of the second data set (~c(k), ~d(k)), k = 1..K ′, where

~d(k) = ~f (~c(k)). In that case, learning was successful. Somehow, w∗ (together with the whole

queueing network) captured the way ~f maps its input to its output. If not, something went

wrong in the process (not enough data, bad data composition, some problem in the optimiza-

tion procedure, etc., or perhaps very little content to learn, because ~f has a strong random

component), and we must start again after some appropriate change in the procedure. As

stated before, this process has proved to be very successful in many areas. In [22], the power

of RNNs for approximating any continuous function has been analyzed. It was found that it

is possible to define a multilayer RNN with a bounded number of layers such that it can ap-

proximate any continuous function in a compact space [20]. Many variations of the canonical
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RNN have also been introduced during the last two decades. For example, an extension of the

model that simultaneously process multiple data streams was presented as Multiple Signal

Class Random Neural Networks (MCRNNs) [21]. In this work, the gradient-based learning

algorithm has been extended to cover “multiple classes” that can represent several colors

in an image, or multi-sensory perception. The case of soma-to-soma interactions between

neurons (rather than just the usual synaptic excitatory-inhibitory interactions) has also been

considered and treated with a specific learning algorithm [23]. In addition, the RNN is fre-

quently used for real-time applications with Reinforcement Learning [18, 5], rather than just

gradient descent type algorithms. The model also have been applied as a tool in the recently

established paradigms Deep Learning and Big Data. For an example of the RNN’s application

to deep learning yielding very high recognition accuracy see [24]. An approach for using the

model on Big Data contexts is presented in [5]. For more details about other applications of

RNN, see [1, 47].

While the name G-networks is sometimes used for RNNs, the G-network model is signifi-

cantly more general [16, 19] and covers state transitions which are more complex in terms of

the jumps involved and that can include several nodes in one single transition.

2.4 Learning in a temporal context

Assume now a completely different context. Consider real-valued time series
(
σ(t ), t ≥ 0

)
, we

can observe its first values σ(0),σ(1), . . . ,σ(T ) for some time T ∈ N, and we want to predict

next value σ(T + 1). For this purpose, assume we have a dynamical system S in discrete

time, characterized by some parameters globally designed by w , mapping some input x(t ) at

time t to an output value y(t ), and having a state s(t ). Its dynamics is given by the parametric

function

s(t ) = F
(
w ; s(t −1), x(t )

)
, t ≥ 1 (6)
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giving the new state at t as a function of the old one s(t −1) and the new input x(t). The

output y(t ) at time t is given by a second parametric function

y(t ) =G
(
w ; x(t −1), s(t )

)
, t ≥ 1. (7)

So, input and state values start at time 0; outputs start at time t = 1.

The idea is to use this dynamical system to predict, from the piece of the target se-

quence
(
σ(t), 0 ≤ t ≤ T

)
, its future after T . To simplify, we consider simply the prediction

of σ(T +1). As in the standard supervised case previously described, we minimize the error

function

E(w) = 1

2

T−1∑
t=1

[
G

(
w ; σ(t −1), s(t )

)−σ(t +1)
]2

,

where for each t ∈ [1..T −1], s(t ) = F
(
w ; s(t −1),σ(t )

)
. Let w∗ be an argmin of E in the space

where w lives. Then, the prediction of σ(T +1) to use will be y(T ) = G
(
w∗; σ(T −1), s(T )

)
,

where s(t ) = F
(
w∗; s(t −1),σ(t )

)
, 1 ≤ t ≤ T .

The description above was made for an uni-dimensional time series. Of course, this

approach can be used in more general contexts, where, for instance, the series is multi-

dimensional (that is, for some value I > 1 the series has values in RI ). Another variation of

the problem is such that the goal is to predict future values of a sequence from past ones.

Instead of predicting one time step ahead, we use a free-run scheme for predicting values

in an arbitrary interval of time. Typically, we learn the sequence until time T , and then, we

predict values in a time window T +1, . . . ,T +W . The predicted value at time T +k is computed

using the predicted values at time T +k −1,T +k −2, . . . ,T +1, for any k ∈ [1..W ]. The move

from the previously discussed case to these situations is straightforward. Another case where

the situation is more general is when there are other external variables that participate in the

model prediction. The dynamical system has two types of inputs: explanatory variables (the

variables to be predicted by the model, some authors call them endogenous variables), and

external variables (also referred to as exogenous variables) [38].
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The reason of this short description of temporal learning problems, somehow discon-

nected from the previous subsections, is because our paper proposes this type of dynamical

system, for instance for the same temporal task. For that purpose, the paper merges two ideas,

one of them being the Random Neural Network one.

3 Reservoir Computing

As recalled before, a Recurrent Neural Network is a Neural Network where there are circuits

in the connections between neurons (we also say “recurrences”). The model is very useful

to represent non-linear relationships between input sequences and output sequences. In

particular, it is a quite powerful tool for modeling patterns that evolve with time, such as time

series or sequential data. Besides, it has good theoretical properties. For instance, it has been

shown that there exists a finite recurrent network composed by sigmoid neurons that is able

to simulate an universal Turing machine [45]. However, in spite of their computational power,

recurrent networks are much harder to use than structures with no circuits, basically because

of problems arising in the learning phase (slow convergence, and even convergence difficulties,

for instance). There are several optimization algorithms that work very well for training neural

networks without recurrences that can fail in the case of networks with circuits. A typical

example is the famous back propagation algorithm [42]. This technique and its variations

work well for some feedforward networks, but they have problems for training networks with

recurrences [35].

During the 90s, important effotts have been made in the community for developing

learning algorithms able of properly training neural networks with recurrences. The most

influential proposals include the Jordan network [27], Elman network [8], and the Long-

Short Term Memory (LSTM) network [25]. At the beginning of the 2000s, a new approach for

designing and training Recurrent Neural Networks was developed. The idea was presented in

the following models: Liquid State Machine (LSM) [31, 33], Echo State Network (ESN) [26] and
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Backpropagation Decorrelation (BPDC) [46]. All these models have been developed in parallel.

They share the same basic principles, which have been aggregated under the global name of

Reservoir Computing (RC) [48] that we now describe.

A RC model is composed of two different structures. One is a recurrent network whose

parameters are non-adaptable, called reservoir: the parameters are randomly initialized and

remain unchanged during the training and the utilization of the model. The other structure

called readout, is a parametric model, in general a very simple supervised learning tool known

to be fast and robust. It is the readout that is in charge of learning. Each structure then has a

different role: the reservoir gives to the model the ability of memorizing the input data, and

the readout provides the learning ability. This functional dissociation into two structures, of

which only one learns, is the main well-distinguished characteristic of this family of methods.

3.1 Formalization of the model

Let us focus on the most used RC model, called Echo state Network (ESN). Consider a learning

dataset L = {(~a(t ),~b(t )) :~a(t ) ∈A ,~b(t ) ∈B, t = 1, . . . ,T }, where A and B are typically sets of

(column) real vectors. A RC method is composed of two independent computational models.

First, a Recurrent Neural Network ψ1(·) that transforms a layout of points in the input space A

into points of a (much) larger space S . Once the projections from A to S are performed, a

parametric function ψ2 : S →B is computed. The results of ψ2(·) are the predictions of the

model. The reservoir is thus a hidden recurrent network ψ1(·) composed of H neurons. The

most popular RC models have a randomly initialized reservoir. So, we can seeψ1(·) as a random

projection from A to S . A matrix wr of dimensions H ×H collects the weight connections

between the reservoir neurons. The model has an input layer of units that transforms the input

patterns and feeds the reservoir. The forward weight connections between input neurons and

reservoir neurons are collected in a matrix win with dimensions I×H , I ¿ H . The discrete time

dynamics of the reservoir at each time t is represented by a column vector~s(t ) of dimension H .
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This vector represents the reservoir state at each unit of time, and is computed as follows:

~s(t ) =ψ1
(
win~a(t )+wr~s(t −1)

)
, t ≥ 0, (8)

where ψ1(·) in the original ESN was the hyperbolic tangent function.

Most often, function ψ2(·) is a linear model:

~y(t ) =ψ2(~s(t )) = wout~s(t ), (9)

where matrix wout of dimensions O ×H contains the forwards weights between the reservoir

neurons and the output neurons. For the sake of notational simplicity, we avoid the bias terms

in the linear regression.

The output weights wout are the only adjustable parameters of both models (ESNs and

ESQNs), which are trained using the learning dataset L . A popular training algorithm used

in the literature is the ridge regression offline training [26]. The offline version consists of

running the reservoir ψ1(·) on the whole input patterns. Then, we compute the parameters

of ψ2(·) such that a distance between target~b and model’s output ~y is minimized. Let S and B

be two matrices of dimensions H ×T and O×T , respectively. Matrix S collects in their rows the

reservoir states. This means that in row t we have the reservoir state~s(t ) that was computed

when the input was ~a(t). The row t of matrix B has the target data~b(t ). The weight matrix

wout is then computed by

wout = BST (SST +γ2Id)−1, (10)

where Id is the identity matrix of rank H and γ is a regularization parameter.

3.2 Stability conditions

A main characteristic of a RC model is that the recurrent trajectories created are generated by

a randomly built matrix (the reservoir weights). Moreover, the initial state of the dynamics is

13



arbitrary. Then, the reservoir matrix should satisfy some conditions, for the model to make

accurate predictions. For instance, in the long term the output trajectories associated with

a given input one, should become asymptotically independent of the initial conditions. In

other words, the model needs to have some type of fading memory with respect to those

initial conditions. In addition, two different sequences should be projected as two different

sequences in the reservoir space, and similar reservoir states must been associated with

similar input sequences. These characteristics are established in a property named Echo

State Property (ESP) [26, 30], that was introduced for the ESN model. We avoid here technical

details (see also [49, 50]), but this type of result is not valid for any type of RC model: there are

conditions to be satisfied by the connections, by the set S of possible state values (it must

be compact), etc. The idea is to show here that the properties known for the canonical ESN

and some of its variations are rather limited and partial, in spite of the fact that the dynamics

is significantly simpler than in the model we are going to describe in next section, whose

theoretical analysis is open.

The common procedure for creating an ESN consists in random initializing the reservoir

matrix wr
initial, then to scale the matrix:

wr =αwr
initial, (11)

where α is a parameter named scaling factor. The value of α has an impact on the ESP. For

instance, denoting msv the maximal singular value of a matrix, if α< 1/msv(wr) (and under

some conditions as previously mentioned), then we have the ESP [26]. It has been empirically

observed that this sufficient condition is very conservative. On the other direction, to have

ESP it is necessary that sr(wr) ≤ 1, where sr(·) denotes the spectral radius. The gap between

these two conditions is unexplored [49]. Note that scaling the reservoir is a computational

expensive procedure. According to [9], to rescale the reservoir matrix by the spectral radius

has a O(H 4) computational cost. Furthermore, it is known that different reservoirs with same
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spectral radius can have different prediction accuracy [43]. The scaling factor of the reservoir

matrix is then an important parameter, but is not the only relevant one in the model.

4 Echo State Queueing Network

This section presents the main contribution of the paper, a new RC model named Echo State

Queueing Network (ESQN) that can be seen as a new application of G-networks to predict

the behavior of temporal systems, typically, time series. The approach consists in building a

model that combines the central ideas of both RC and RNNs, with in particular the use by the

latter of rational functions at all steps, allowing many straightforward mathematical work on

the models.

4.1 Formalization of the model

Our model is called Echo State Queueing Network, precisely because it combines the Echo

State Network approach with the richness of G-networks. An ESQN is a recurrent network with

a G-network-like dynamics in the reservoir, inspired by the relationships occurring in a RNN

in steady-state. As usual in the RC area, in an ESQN the readout outputs are computed using a

linear regression.

The architecture of an ESQN consists of an input layer, a hidden reservoir and a readout

layer. The input layer is composed of I input units. The input units are defined as in the

Random Neural Network model. The input neurons process the input patterns and send

spikes toward the reservoir. Let us index the input neurons from 1 to I , and the reservoir

neurons from I +1 to I + H . Given an input pattern ~x, we first set the rates of the external

positive spikes with that input λ+
u = xu , for each input neuron u. In a similar way than in the

traditional Random Neural Network, we set the external negative spikes as λ−
u = 0, for each

input neuron u.

The state of the reservoir neurons is defined as in ESNs, adding a discrete clock t and
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making the state at t depend on what happened at t −1. Remember that in Random Neural

Networks, the neuron’s loads are computed using Expressions (3), (4). The state of the ESQN

reservoir is given by the following dynamics:

su(t ) =

I∑
v=1

xv (t )

µv
w+

v,u +
I+H∑

v=I+1
sv (t −1)w+

v,u

µu +
I∑

v=1

xv (t )

µv
w−

v,u +
I+H∑

v=I+1
sv (t −1)w−

v,u

, u ∈ [I +1, I +H ], t ≥ 1, (12)

In the previous expression we are denoting the weights following the common usage in the

community of G-nets, e.g. the weight wi , j is associated with the edge from i to j . Remember

that, in the ESQN model the parameters w+
v,u , w−

v,u and the service rate µu of neurons in the

reservoir are fixed during the training. For this reason, we are not using a temporal reference

in their notation. The state of an input neuron in the ESQN is simply computed as su = xu/µu .

In the setting of Subsection 2.4 and Relations (6) and (7), the dynamics of ESQNs can

be written ~s(t) = F
(
w r ,~s(t − 1),~x(t)

)
, for t ≥ 1, where w r represents here all the input to

reservoir and reservoir to reservoir weights. The output of the model is ~y(t) = G
(
wO ;~s(t)

)
,

t ≥ 1, where wO represents the reservoir to readout weights.

The adjusted parameters of the ESQN model using the training set are only the weights

between the reservoir projections and the output layer. We generate the output of the model

using a linear regression as in the ESN case: the readout part is computed by a linear func-

tion ψ2
(
wout,~x,~s

)
, which receives the reservoir state~s(t) at t and produces the network out-

put ~y(t). Thus, the network output ~y(t) is computed performing Expression (9), which can

be solved using ridge linear regression [37]. Note that it is very simple to generalize this

implementation: instead of computing the outputs with a linear regression we can use any

other type of parametric function ψ2
(
wout, ·), for instance a feed-forward RNN, due to the

independence between reservoir dynamics and readout layer.
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4.2 Discussion about the model parameters

In this part we discuss the most important global parameters of the ESQN model, and we

compare their relevance according to the literature of RC methods.

• Reservoir weights. The reservoir is composed of two randomly created weight matrices.

As we will see, in general uniform distributions are used, keeping some control on the

sparsity of the matrix. Since in ESQNs we chose to stay close to the dynamics of a

Random Neural Network, weights are positive reals, a difference with standard neural

systems where weights can have any sign. Recall that G-nets can be seen a spiking

networks, where the weights represent mean throughputs of spikes. The null value

for a weight is interpreted as the fact that there is actually no such connection. In the

experimental part of the paper, we use an Uniform distribution in [0,1] for the reservoir

weights.

• Reservoir size. The number of neurons in the reservoir impacts accuracy as the number

of hidden neurons does in a classical ANN. Increasing it after having started by a small

value, at the beginning accuracy increases. This has been already observed in many

other RC models; for example, see [6, 48, 2, 29, 30]. However, there is a tradeoff between

reservoir size and generalization ability of the network. If the reservoir has too many

neurons, then the training error can become very low, but the over-fitting phenomenon

can happen.

• Spectral radius of the reservoir weight matrix. As we have already seen above, the

spectral radius is an important parameter of the reservoir. Its value has an impact on the

stability of the model. The impact of the spectral radius of the reservoir matrix has been

well studied in the case of ESNs. It has been noted that the spectral radius influences in

the memory capacity of the model [6]. When the spectral radius sr(wr) is close to 1, then

the model performs well when solving learning tasks that require long term memory

(time series exhibiting some form of long correlations, for instance). On the other hand,
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when sr(wr) is small, then the model is adequate for tasks that require some form of short

memory [26, 6]. However, there are still many open questions about the behavior of the

spectral radius in the case of more complex reservoirs. For example, when the reservoir

is composed by specific types of spiking neurons (LIF neurons, see [48, 36]), the way

the spectral radius is related to accuracy is unclear. According to our empirical results,

the spectral radius is also an important parameter for ESQN’s accuracy, although the

specific good values depend of the benchmark problem considered (see next section).

We also noted that the spectral radius sr(wr+) has more impact on the accuracy than the

spectral radius sr(wr−).

• Sparsity of the reservoir weight matrix. In the case of the ESN model, it is recom-

mended to use a sparse matrix for the reservoir weights (around 15% to 20% of possible

non-zero connections on the matrix [26]). The reason is more related to the computa-

tional speed than to the accuracy of the model (if the reservoir is spare, computing its

state is faster). It is not clear how the density of the reservoir impacts the accuracy of the

model. In this paper we didn’t analyze the sparsity of the reservoir.

• Topology and feedback connections. In spite of numerous works exploring the topo-

logical structure of the reservoir, a useful topology for significantly improving the per-

formance of the model is still unknown. The classic approach consists of generating

random reservoirs. There are some models with feedback connections, that is, with arcs

going from the outputs of the model back to the reservoir. This topology provokes new

forms of impact on the stability of the model. To the best of our knowledge, there are no

studies about the stability of these extensions in the RC literature.
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5 Empirical evaluations

5.1 Benchmark problems

In this section we analyze the accuracy of the proposed approach on several experiments. The

selected benchmark problems have been widely used in the area of dynamical systems, RC

and temporal learning. In all examples, we first normalize the data in the range [0,1]. The list

of considered benchmarks follows.

1. Noisy Multiple Superimposed Oscillator (MSO) time-series [44]. The noisy MSO is a

time-series dataset generated by

a(t ) = sin(0.2t )+ sin(0.311t )+ z, t = 1,2, . . .

where z is a Gaussian random variable with distribution N (0,0.01). We simulated 10000

samples for training the model. We present the performance of the trained model on

1000 unseen simulated samples.

2. Lorenz attractor. The series is based on the Lorenz differential equations:

∂x

∂t
=σ(y −x),

∂y

∂t
= r x − y −xz,

∂z

∂t
= x y −bz,

we used the parameters σ= 10, r = 28, b = 8/3 and a step size of 0.01. The training set

had 13107 samples and the testing set contained 3277 samples.

3. Rossler attractor. This is a classic time series with a sequence generated by following

dynamics:

∂x

∂t
=−z − y,

∂y

∂t
= x + r y,

∂z

∂t
= b + z(x − c),

where the parameters values are r = 0.15, b = 0.20, c = 10.0.
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4. Henon map. The sequence is generated by

∂x

∂t
= r +by −x2,

∂y

∂t
= x,

where r = 1.4, b = 0.3 and the initial values are x = y = 1. This dynamical system has

been modeled with ESNs in at least the following works: [2, 39].

5.2 Results

Table 1 presents the behavior of the ESQN and how it compares to the classical and widely

used ESN, on the 4 benchmark datasets. The table shows the validation error1 on the different

considered problems, with two different number of neurons in the reservoir (40 and 80 neu-

rons). In all cases, the weight matrices verify that sr(wr+) = sr(wr−) = 0.5. The regularization

parameter of the linear regression in the readout of the ESQN was 10−4. For the ESN, we used

10−3, because the ESN obtained better results with a higher regularization parameter than for

our proposal. In other words, we selected good values of this parameter for each model. We

can see that in almost all the cases the ESQN performs better than the ESN. However, note that

the ESN model has less free-parameters. In the case of ESQN, we need two weight matrices

for representing the reservoir. This means that the number of parameters in both models is

different. Anyway, we can affirm that when the reservoir contains similar number of neurons

the accuracy of the ESQN was better than or similar to the accuracy of the ESN. The reader can

compare the ESQN errors for 80 reservoir neurons to the errors in the corresponding models

when analyzed using an ESN with 40 neurons.

Figure 1 shows two plots concerning the Lorenz time series. There are 750 time steps of

the normalized Lorenz time series (plot on the left side), and there are 750 time steps of the

state of 4 neurons chosen in the reservoir (plot on the right side). Each curve on the right

plot represents the evolution of the state of a reservoir neuron. Those neurons have been

1We used a normalized version of the error, which is standard in these types of studies. It is called Normalized
Root Mean Squared Error (NRMSE). See for instance [26].
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randomly selected. Both graphics have the same time windows, the same 750 time steps on

the horizontal axis. We can see how the reservoir neurons capture or memorize (in their states)

a sort of pattern of the original time series. We can also see that the “reaction” of the reservoir

neurons to the input behavior occurs after a small delay, because of the reservoir topology.

Note that the state of the neurons have small values (for this range of time, the values are

lower than 0.02), meaning that in Expression (12), the denominator is much larger than the

numerator. Figure 2 presents the same information but working with the Henon map time

series. At the left side we have the original time series (for a better visualization we present

only 50 time-steps). Finally, the same phenomenon shown in Figure 3 for the Rossler attractor

is exhibited.

The next Figures 4, 5, 6 and 7 present the obtained validation error of the ESQN model as

a function of the spectral radius of the two matrices in the reservoir, sr(wr+) and sr(wr−), for

a specific reservoir size. The left side of the figures contains the results for a reservoir with

50 neurons, and in the right side we use a reservoir with 100 neurons. Figure 4 corresponds

to the MSO time series, Figure 5 corresponds to the Lorenz time series, Figure 6 displays

information about the Henon time series, and the last one refers to the Rossler dataset. A

common pattern on these graphics is that the value of sr(wr−) provokes a lower impact on

the accuracy of the model than the value of sr(wr+). In the case of the MSO time series, larger

values of sr(wr+) increase the error. Besides, the error variation along the sr(wr−) is almost

constant, with exceptions occurring when the pairs
(
sr(wr+),sr(wr−)

)
are such that the value

of sr(wr+) is large and the value of sr(wr−) is small.

Figure 4 also shows the impact of the reservoir size. An ESQN with 100 neurons in the

reservoir obtains lower errors than with 50 neurons. The spectral radius of the positive weights

also seems more relevant in Figure 5. The relevance of sr(wr+) is less clear in the case of

the MSO time series. In Figure 5 we can see that the pairs
(
ρ(wr+),ρ(wr−)

)
with values in

[0.7,1]× [0.1,03] present the worst performance. The best situation is obtained when sr(wr+)

belongs to [0.4,0.6]. In the case of the Lorenz map, an ESQN with 50 reservoir neurons performs
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pretty close to another one with 100 reservoir neurons. Figure 6 presents characteristics similar

to those of Figure 4. We also see that large values of sr(wr+) and small values of sr(wr−) augment

the error. Figure 7 also shows how sr(wr+) has more impact on the accuracy than sr(wr−). The

best performance has been obtained with larger values of sr(wr+) and sr(wr−).

The next group of figures, Figures 8, 9, 10 and 11, present the normalized error (the NRMSE)

as a function of the reservoir size and the spectral radius. The figures in the left side show

the observed relationship between the reservoir size and sr(wr−), and those in the right side

present the relationship between the reservoir size and sr(wr+). The vertical axis of all those

figures is the NRMSE. The figures show how important is the reservoir size for the accuracy.

They also show that in most of the cases, the value of sr(wr+) is more relevant than the value of

sr(wr−). We can also conclude that the optimal values of the parameters
(
H , sr(wr+),sr(wr−)

)
strongly depend of the benchmark problem.

6 Conclusions

This article introduces the Echo State Queueing Network (ESQN), a new Reservoir Computing

(RC) learning technique whose dynamics is inspired by the Random Neural Network (RNN),

that is, a particular G-network of queues interpreted as a Machine Learning tool. The proposed

approach is an attempt for combining the good properties of RC models, in particular, of its

main representative, the Echo State Network (ESN), and G-nets, two successful procedures of

the Machine Learning community.

The paper describes the context, presents the new model and performs an empirical

analysis of its properties. In particular, we analyze the model’s dynamics, its initialization, and

its accuracy for solving some well-known benchmark problems.

The experimental results are built around the evaluation of the new technique on four

standard dynamical systems used as benchmark in the Machine Learning literature. The

results show that the ESQN is an accurate tool, and its accuracy is competitive with the already

22



Table 1: NRMSE of the ESQN and ESN models. The reservoir matrices of both models have
spectral radius equal to 0.5 (sr(wr+) = sr(wr−) = 0.5 and the same 0.5 value for the reservoir
matrix of the ESN).

Model Problem 40 reservoir neurons 80 reservoir neurons

ESQN

MSO 1.320755×10−3 1.333004×10−3

Lorenz 1.089686×10−4 1.888829×10−5

Rossler 1.302032×10−3 9.350732×10−4

Henon 5.538284×10−5 3.257085×10−5

Model Problem 40 reservoir neurons 80 reservoir neurons

ESN

MSO 2.397251×10−3 1.727307×10−3

Lorenz 9.094324×10−3 1.067347×10−3

Rossler 7.230140×10−4 7.011503×10−4

Henon 3.174407×10−4 6.855022×10−4

well-stablished ESN model. Due to the fact that the reservoir structure is fixed during the

training algorithms, the initialization of the reservoir matrix has an important impact in

the model’s accuracy. We found two main global parameters of the reservoir that should

be well adjusted for obtaining an accurate tool. The first one is the reservoir size, behaving

approximately as the number of hidden neurons of a classical feed-forward Artificial Neural

Network. In all observed cases, there exists a threshold value for the reservoir size. Reservoirs

with a larger number of neurons than this threshold perform equal or worst that smaller

reservoirs. In addition, observe that very large reservoirs are computationally expensive.

The optimal region for the reservoir size depends of course of the problem, but in all our

experiments, the best reservoir had always less than 80 neurons. The second parameter is

the spectral radius of the reservoir matrices (positive and negative). In the case of the ESN

model, the spectral radius has a direct impact on the stability and on the memory capacity

of the method. In the case of our approach, the spectral radius of the reservoir with positive

weight matrix seems to be more relevant to accuracy than the spectral radius of the negative

weight matrix. According to our results, when the spectral radius of the reservoir with positive

weight is close to 1, the model’s accuracy degrades. Another interesting characteristic of the
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model is how the reservoir neurons somehow capture the way the input evolves. We show in a

group of graphics how the neuron states evolve following similar patterns than those observed

in the input sequence.

The ESQN model opens up further research directions in the well-developed G-nets and

RC areas. In a similar way that other RC techniques, several extensions to the model can be

considered. A theoretical analysis of the stability of the reservoir dynamics remains to be

done. Finally, it is with its use that a practical procedure is understood and its properties

identified. Much more experimental work is necessary, tests on real-world problems together

with other benchmarks, and more comparisons. In particular, there is a significant number of

very recent papers proposing improvements to the canonical ESN technique. The exploration

of the possibility of applying them to, or of developing similar ones for ESQNs is an obvious

research direction to be explored in the near future.
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Figure 1: Lorenz map time series. The graphics on the left shows the original time series. The
graphics on the right side shows the evolution in 750 time-steps of the reservoir states of 4
randomly selected neurons of the reservoir. The ESQN has been randomly created with a
reservoir having 50 neurons, spectral radius of the positive weight matrix equal to 0.2 and
spectral radius of the negative weight matrix equal to 0.5.
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Figure 2: Henon map time series. The graphics on the left shows the original time series. The
graphics on the right side shows the evolution in 50 time-steps of the reservoir states of 4
randomly selected neurons of the reservoir. The ESQN has been randomly created with a
reservoir having 50 neurons, spectral radius of the positive weight matrix equal to 0.2 and
spectral radius of the negative weight matrix equal to 0.5.
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Figure 3: Rossler map time series. The graphics on the left shows the original time series.
The graphics on the right side shows the evolution in 50 time-steps of the reservoir states of
4 randomly selected neurons of the reservoir. The ESQN has been randomly created with a
reservoir having 50 neurons, spectral radius of the positive weight matrix equal to 0.2 and
spectral radius of the negative weight matrix equal to 0.5.
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Figure 4: MSO time series. Evolution of the NRMSE computed with an ESQN having a reservoir
with 50 neurons (plot on the left side) and 100 neurons (plot in the right side).
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Figure 5: Lorenz time series. Evolution of the NRMSE computed with an ESQN having a
reservoir with 50 neurons (plot on the left side) and 100 neurons (plot in the right side).
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Figure 6: Henon map time series. Evolution of the NRMSE computed with an ESQN having a
reservoir with 50 neurons (plot on the left side) and 100 neurons (plot in the right side).
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Figure 7: Rossler map time series. Evolution of the NRMSE computed with an ESQN having a
reservoir with 50 neurons (plot on the left side) and 100 neurons (plot in the right side).
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Figure 8: MSO time series. Evolution of the NRMSE computed with ESQNs having different
reservoir sizes. Plot on the left side: normalized error as a function of the reservoir size and the
spectral radius of wr−, when the spectral radius of wr+ is fixed to 0.9. Plot on the right side:
evolution of NRMSE as a function of the reservoir size and the spectral radius of wr+, when
the spectral radius of wr− is equal to 0.9.
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Figure 9: Lorenz time series. Evolution of the NRMSE computed with ESQNs having different
reservoir sizes. Plot on the left side: normalized error as a function of the reservoir size and the
spectral radius of wr−, when the spectral radius of wr+ is fixed to 0.2. Plot on the right side:
evolution of NRMSE as a function of the reservoir size and the spectral radius of wr+, when
the spectral radius of wr− is equal to 0.2.
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Figure 10: Henon time series. Evolution of the NRMSE computed with ESQNs having different
reservoir sizes. Plot on the left side: normalized error as a function of the reservoir size and the
spectral radius of wr−, when the spectral radius of wr+ is fixed to 0.9. Plot on the right side:
evolution of NRMSE as a function of the reservoir size and the spectral radius of wr+, when
the spectral radius of wr− is equal to 0.9.
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Figure 11: Rossler time series. Evolution of the NRMSE computed with ESQNs having different
reservoir sizes. Plot on the left side: normalized error as a function of the reservoir size and the
spectral radius of wr−, when the spectral radius of wr+ is fixed to 0.9. Plot on the right side:
evolution of NRMSE as a function of the reservoir size and the spectral radius of wr+, when
the spectral radius of wr− is equal to 0.2.
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