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ARTICLE

Pre-critical fluctuations and what they disclose
about heterogeneous crystal nucleation
Martin Fitzner 1, Gabriele C. Sosso2, Fabio Pietrucci3, Silvio Pipolo4 & Angelos Michaelides1

Heterogeneous crystal nucleation is ubiquitous in nature and at the heart of many industrial

applications. At the molecular scale, however, major gaps in understanding this phenomenon

persist. Here we investigate through molecular dynamics simulations how the formation of

precritical crystalline clusters is connected to the kinetics of nucleation. Considering het-

erogeneous water freezing as a prototypical scenario of practical relevance, we find that

precritical fluctuations connote which crystalline polymorph will form. The emergence of

metastable phases can thus be promoted by templating crystal faces characteristic of specific

polymorphs. As a consequence, heterogeneous classical nucleation theory cannot describe

our simulation results, because the different substrates lead to the formation of different ice

polytypes. We discuss how the issue of polymorphism needs to be incorporated into analysis

and comparison of heterogeneous and homogeneous nucleation. Our results will help to

interpret and analyze the growing number of experiments and simulations dealing with

crystal polymorph selection.
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Freezing of a liquid is typically initiated through contact with
a foreign material as the homogeneous (hom.) barrier for
crystal nucleation can be exceedingly large1. Therefore,

heterogeneous (het.) nucleation is at the heart of a variety of
processes like intracellular freezing2 or the formation of amyloid
fibrils in the brain that are related to diseases like Alzheimer’s3.
The theoretical understanding of het. nucleation is thus impor-
tant to many branches of science and technology, ranging from
pharmaceuticals4,5 to cloud physics6,7 to crystal engineering
aimed at realizing novel materials discovered with theore-
tical approaches such as the materials genome initiative8.
Although the first successful explanations of het. nucleation date
back almost a century9,10, there are many aspects of this phe-
nomenon that still remain elusive11,12. To complement the
growing experimental effort13–16, computer simulations have
proven helpful in uncovering fundamental aspects of the
nucleation process17–23, and are becoming increasingly useful in
screening different substrate types and shapes to rank and
understand their ability to enhance nucleation24–28.

Despite its flaws12,29, classical nucleation theory30,31 (CNT)
provides a qualitative understanding of nucleation, and due to its
simplicity is still the most widely used theoretical framework to
interpret experiments and simulations. The free energy cost for a
crystalline cluster of size n in heterogeneous classical nucleation
theory (hetCNT) is given by:1

FðnÞ ¼ fV � ΔF 3
n

fV � nc

� �2=3

�2
n

fV � nc

� �" #
; ð1Þ

where ΔF is the hom. nucleation barrier, nc is the hom. critical
nucleus size, and fV(θ) = Vhet/Vhom = (1 − cos θ)2(2 + cos θ)/4 ∈ [0,
1] is the volumetric shape factor. The latter describes the
enhancement that is achieved by nucleating on top of a flat
substrate with a certain contact angle θ. The nucleus shape in the
het. case is a spherical cap of volume Vhet rather than a full sphere
of volume Vhom as in the hom. case. For illustrative purposes,
some examples of different free energy profiles and sketches of
the corresponding contact angles are shown in Fig. 1. If line-
tension effects are negligible, fV is independent of the nucleus size
n1 and we can express fV in terms of the het. and hom. free
energies:

ðfVÞ1=3 ¼ FhetðnÞ
FhomðnÞ 1� 2

3
n
nc
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3

n
nc
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Interestingly, Eq. (2) requires only knowledge of the hom. nc,
as the free energies F(n) can be obtained for arbitrary cluster sizes
n. Knowing the value of fV for a given substrate is fundamental as
it encodes all information about the nucleation enhancement,
which is reflected in the fact that all the curves in Fig. 1 retain the
same functional shape and the steepness ratio

χðfVÞ ¼ ΔFðfVÞ
ncðfVÞ ¼ fV � ΔFhom

fV � nc;hom ¼ ΔFhom
nc;hom

¼ χ; ð3Þ

is independent of the enhancement. This has been key in several
nucleation studies32–34, on evaluating the performance of
CNT35,36, or as a bridge between atmospheric cloud models and
the microscopic description of ice nucleation37,38. It is however
tremendously challenging to measure fV, since knowledge of
difficult-to-obtain quantities like ΔF is needed. In principle, one
has easier access to precritical quantities, such as the probability
P(n) of finding a cluster of size n< nc in the liquid state. Since
Phet(n)/Phom(n) ∝ Fhet(n)/Fhom(n), Eq. (2) could be evaluated
from the statistics of precritical clusters (termed precritical fluc-
tuations) without having to observe the rare nucleation event
itself. Although many aspects of nucleation have been studied in
great detail, the role of precritical fluctuations in het. nucleation is
less well understood. A deeper understanding could potentially be
exploited to gain insight into fundamental aspects of het. crystal
nucleation.

In this work, we aim to understand precritical fluctuations and
their connection to nucleation kinetics by comparing cluster
fluctuations on two model substrates that enhance the nucleation
of ice to the same extent. To this end we perform an extensive set
of molecular dynamics simulations. From these it emerges that
the traditional hetCNT picture can break down, because a
substrate can facilitate the formation of different polymorphs. As
a consequence, when using hetCNT, one must choose a different
bulk-reference to describe the nucleation process correctly.
Although here we illustrate the potential role of precritical
fluctuations in the context of CNT, in principle they could be
used with any theory that provides a free energy profile for
nucleation. We hope that the new insight obtained furthers the
theoretical understanding of het. nucleation, polymorph selection,
and the role of precritical fluctuations.

Results
Identical rates despite different precritical fluctuations. The
results for the ice nucleation rates of supercooled water in contact
with two model substrates (termed s1 and s2) are summarized in
Table 1. Since nucleation rates can differ by many orders of
magnitude, we can label the resulting rates from our systems as
essentially identical. The presence of the substrates compared to
the hom. case increases the nucleation rate by many orders of
magnitude, since no freezing is observed for hom. simulations at
218 K or even 210 K. Based on the rates of Li et al. for hom.
nucleation39, we estimated the enhancement to be between 5 and
8 orders of magnitude. In the Supplementary Note 1 we provide a
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Fig. 1 The traditional view of free energy profiles in hetCNT. Free energy
profiles are shown for a crystalline cluster containing n molecules for
different contact angles. The inset shows the definition of the contact angle
and representative droplets corresponding to different values of fV(θ)

Table 1 Computed nucleation rates J for the two systems s1
and s2 at two temperatures: For the sake of comparison we
have normalized the rates by the water-substrate contact
area

System s1 s2

J218K (ns−1 Å−2) × 10−6 (7.18± 1.30) (4.23± 0.71)
J221K (ns−1 Å−2) × 10−7 (2.82± 1.02) (2.88± 0.77)

The error in the rate has been estimated by Jackknife resampling
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brief assessment of why the substrates enhance the nucleation
process. Now, however, we focus on the precritical fluctuations in
s1, s2, and the hom. case . In Fig. 2a we plot the size distribution
of the biggest ice-like cluster that can be found in each snapshot
from the trajectories. The probability densities for the hom. sys-
tem and s2 line up almost exactly, while the probability of
spontaneously forming large clusters is clearly enhanced in s1.
Furthermore, we plot the spatial probability distribution of these
precritical clusters in Fig. 2b. For s1, there is clearly a large peak
near the surface. In contrast, the same density for s2 is nearly flat,
which means—contrary to the expectations of hetCNT—fluc-
tuations are not enhanced near the substrate. We checked that no
persistent structures are detected as precritical clusters, for
example, confirming that the peak for s1 stems from small ice-like
patches that are continuously fluctuating rather than from a
permanent ice-like overlayer. The difference between the two
systems is also reflected in the asphericity of the nuclei formed,
where s1 tends to form flatter clusters than s2 (Supplementary
Note 2). We verified that these findings hold for the same order
parameter with the first hydration shell included in the cluster-
definition, as well as for a different choice of underlying spherical
harmonics (Supplementary Note 3). The difference in precritical
fluctuations is surprising as the nucleation rate in both systems
is effectively the same. In the framework of hetCNT this would
imply that both substrates should have the same free energy
profile and steepness ratio χ (Eq. (3)), which is incompatible with
the differences in precritical cluster sizes we observe. This shows
that precritical fluctuations and hetCNT, as commonly applied,
do not adequately describe the behavior observed on the two
surfaces studied.

Different polymorphs yield different free energy profiles. To
understand why the fluctuations are so different on the two
substrates, we now look at the free energy profiles for nucleation.
These are shown in Fig. 2c, where it can be seen that the curve for
s2 follows the hom. one more closely than s1 does. The fact that
the curves for s2 and hom. are similar is consistent with the fact
that we find essentially the same cluster size distribution in the
two. The free energy profile for s1 is flatter, and therefore, the
formation of larger clusters is less costly compared to s2 and hom.
It is also clear that in disagreement with hetCNT for the ratios we
find χs1 ≠ χs2 (see Eq. (3)). The results for 221 K can be found in
the Supplementary Note 4 and show essentially the same features.
Furthermore, a reconstruction of F as a function of the CNT
coordinate n reveals similar differences, particularly in the
steepness of the free energy paths. If hetCNT was adequate for
our observation the functional shape of s1 and s2 should be

identical (as illustrated in Fig. 1). But for instance, ΔF and nc are
not being scaled by a single factor, which suggests that at least one
additional degree of freedom might enter in het. nucleation. In
what follows, we show that the polymorph, which can be influ-
enced by the substrate, can account for this.

We try to understand why we see different functional forms for
the free energy curves. In line with other studies36,40,41, we find
that for s1 stacking-disordered ice Isd has formed, where the basal
face of ice is in contact with the substrate. This is also the type of
ice that forms in hom. simulations19,39,42,43. The shape of the free
energy profile for s1 and the enhanced precritical fluctuations
compared to the hom. case can thus be explained by traditional
hetCNT. In contrast, s2 forms a crystal face (primary prism) in
contact with the surface that is only found in hexagonal ice Ih, but
not in Ic. Thus, Ic layers cannot grow on top of that and
subsequently the stacking disorder, which usually leads to the
formation of Isd, is strongly disfavored at the surface (illustrated
in Fig. 3d). The traditional hetCNT does not work for that
because the nucleus on s2 is purely hexagonal, and therefore, not
related to the hom. one that traditional hetCNT chooses as
reference (stacking-disordered). Hence, it is no surprise that the
shape of the free energy profile for s2 is different from s1, despite
their identical nucleation rates. The precritical fluctuations in s2
appear unaltered compared to the hom. case, not because the
substrate has no impact, but rather because they are fluctuations
of a different polytype and this comparison is ill-defined. This can
be seen in the inset of Fig. 2a, where we show that an average
precritical cluster within 5 Å of the surface in s1 is stacking
disordered with a cubicity (fraction of Ic) of ~60%, while s2 forms
90% pure Ih clusters. The apparent ~10% of Ic-like molecules in
s2 are due to uncertainties in classifying interfacial molecules at
the edge of the cluster. We have visually verified that, in contrast
to s1, in s2 we never observed clusters near the substrate that are
in their core stacking disordered (see also Fig. 3c). Although the
statistics we have for critical clusters are worse, we note that on
each surface their composition was nearly identical to the one of
the respective precritical clusters. This further suggests that there
is a causal connection between critical and precritical clusters.

The polymorphic differences remain at higher temperature. To
understand if our findings hold at higher temperatures, we per-
formed metadynamics simulations in our two systems at an ele-
vated temperature of 235 K. This is around the highest
temperature we can aim to study with our system size (as we
expect the hom. critical cluster size to be ≈ 600 molecules41). In
Fig. 3a we show the free energy profiles obtained, where we note
that the variable s describes the path from a liquid (s ≈ 1.1) to a
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Ncls. The inset shows the average composition of precritical clusters within 5 Å of the surface. b Probability distribution (blue) for the z component of the
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frozen (s ≈ 1.9) simulation cell. We have employed an artificial
soft-wall at s = 1.5 to aid convergence for the region describing
cluster sizes relevant to nucleation rather than growth. From
these simulations we obtain (details in the Supplementary
Methods 1) a free energy barrier on s1 of 204± 5 kBT and s2 of
227± 5 kBT, and critical cluster size on s1 of 211± 11 and s2 of
104± 3. Finding that ΔFs1<ΔFs2 and nc,s1> nc,s2 is entirely
consistent with the trends obtained at lower temperatures. In
addition, it can be seen from Fig. 3b that the polytype of ice
formed in s1 and s2 is not the same, the former being ≈55%
stacking-disordered and the latter being almost purely hexagonal.
The deviations for smaller clusters are once again artifacts of the
local order parameter employed at the cluster interface, where the
classification is ambiguous. To illustrate the difference in the
cluster cores, Fig. 3c shows the representative snapshots for cri-
tical clusters in s1 and s2, and highlights hexagonal and double
diamond cages, the building blocks of Ih and Ic43 that are a
stronger topological feature than the local order parameter. In
panel (d) of Fig. 3 we illustrate that the substrate in s2 avoids the
stacking-disorder by stacking ice double-layers perpendicular to
the surface, which is a result of the crystal face (prism) in contact
with the surface. We note in passing that this could be a general
recipe for water and other tetrahedral liquids (e.g., group-IV
elements or silica) and could also be exploited to design surfaces
that nucleate pure cubic ice. Overall, the findings for the higher
temperature agree with the simulations at lower temperature,
suggesting that our reasoning also holds for situations where
precritical and critical clusters are separated by more than one
order of magnitude in size.

Discussion
We try to place the results of this study in a broader context and
discuss some of the implications of our findings. The first
consequence drawn from the possible occurrence of different
polymorphs is that the fundamental result of hetCNT that reads
nc,het = fV ⋅ nc,hom and ΔFhet = fV ⋅ΔFhom is not true for cases
where the substrate promotes the formation of a polymorph
different than the one that is formed homogeneously. This is
because the enhancement factor fV is only properly defined if the
het. quantity it describes refers to the hom. reference of that
polymorph. In general, when thinking about het. nucleation there
are three possible ways to account for the enhancement factor:
(i) an expression in terms of a shape factor is fV ¼ Vhet=Vhom;

(ii) an expression in terms of a nucleus factor is fN ¼ nc;het=nc;hom;
and (iii) an expression in terms of a potency factor is
fP ¼ ΔFhet=ΔFhom. These three definitions are equivalent under
the assumption that they describe events where the same
polymorph has been formed. However, if different polymorphs
are compared the concept of the enhancement factor becomes
ill-defined. We derive in the Supplementary Note 5 correction
factors in the framework of hetCNT that account for this change.
The fact that increasing the temperature accentuated the
difference in the free energy profiles observed on the two
substrates is an indication that effects like line-tension44 and
cluster asphericity12 are not the main reason for our observation
(as those likely decrease with increasing temperature/increasing
cluster sizes), but rather it is caused by the different polymorphs.
Hence, we believe that the polymorph is a separate issue
that should be taken into account in a comprehensive (het.)
nucleation theory, in addition to known shortcomings of CNT or
its het. extension. We speculate that for the same reason the
polymorph could even be the most relevant deviation from
hetCNT at high temperatures.

Another implication of this work is that precritical fluctuations
are comparable for different substrates only if compared to the
correct hom. fluctuations of their corresponding polymorph. In
our study, the comparison of the precritical fluctuations of s1 and
s2 with the hom. case would have resulted in the conclusion that
s1 enhances the nucleation and s2 does not (Fig. 2a), while they
actually lead to nearly identical enhancement. We have illustrated
this in Fig. 4a, b, with hom. and het. nucleation profiles for two
different polymorphs. The gray-shaded area and its reach on the
x-axis illustrates what cluster sizes can be reached through
thermal fluctuations. This ultimately determines the extent of
precritical fluctuations and is very different for the two
polymorphs as a result of their different hom. free energy profiles.
Upon comparing to the hom. nucleation of a single
(homogeneously dominant) polymorph (which without loss of
generality we assume to be hom,1 in Fig. 4c) the apparent
discrepancy becomes clear.

In summary, we have presented a comparative study of
molecular dynamics simulations of het. ice nucleation on two
distinct model substrates. It was shown that, in disagreement with
hetCNT as traditionally applied, their precritical fluctuations can
differ substantially, and yet identical nucleation rates are
obtained, which we attribute to the formation of different
polytypes. From this we draw the following conclusions:
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1. Substrates can promote the formation of metastable phases
by templating crystal faces that are unique to the respective
polymorph. This is an extension of the rationale applied in
experimental studies where iso-structural templates are
used45,46, since the substrate does not require the same
structure, but rather any structure that nucleates the right
crystal face. In particular, for materials with different
stackings (e.g., ice, group-IV elements or silicates), the
templating of faces so that the stacking direction is
perpendicular to the surface normal seems most promising
and could potentially avoid stacking-disorder.

2. Traditionally applied hetCNT can break down when a
polymorph nucleates, which is not the dominant homo-
geneous polymorph. This should be corrected by choosing
the right bulk-reference, an aspect that is largely disregarded
in the nucleation literature.

3. We hypothesize that the extent of precritical fluctuations
carries information about the enhancement of nucleation and
can serve as an early indicator of which polymorph will
form. This provides a possible route to efficiently rank
the nucleation ability of substrates and will be the
subject of future investigation. Since precritical fluctuations
are less sensitive to finite size effects than approaches in
which the full nucleation path is examined, they could
prove particularly useful for studying nucleation at very-low
levels of supercooling, provided one pays attention to
the comparability of systems (same contact area, temperature
etc.).

While these implications have arisen from simulations of het.
ice nucleation, it is clear that they are general to the phenomenon
of het. nucleation and particularly relevant to the description of
materials that display polymorphism, such as e.g. alumina47,
silicon46, xenon48, n-alkane49, or the epilepsy drug carbamaze-
pine45. A quantitative treatment of nucleation in these systems
such as comparing the enhancement of nucleation to the hom.
case requires information about the polymorph that is formed. If
the polymorph is disregarded this could lead to false inferences
about nucleation rates, mechanisms, or the accuracy of CNT and
might also cause widely used CNT-based models that use a single
enhancement factor fV as a parameter to appear inadequate.
Further studies aimed at understanding and potentially exploiting
precritical fluctuations are needed.

Methods
Unbiased molecular dynamics. We performed molecular dynamics simulations of
het. ice nucleation with 18,000 water molecules, represented by the coarse-grained
mW model50, a model that is widely used to study phenomena involving
water17,19,36,40,41,51–54. The water molecules are placed in a film geometry on top of
two pristine, rigid fcc surfaces (termed s1 and s2). See the Supplementary Meth-
ods 2 for the explicit structure of each surface and additional computational details.
These surfaces have proven useful in disentangling the contributions of lattice
match and hydrophobicity to het. ice nucleation24. The two examples presented
here have been selected because of their striking difference in precritical fluctua-
tions. While not aiming at representing any specific material, they are most similar
to metal–water interfaces55,56. The substrate–water interaction is given by a
Lennard–Jones potential tuned to achieve the same absolute nucleation rate (see
Table 2 for interaction parameters). Following established protocols24,57, we first
equilibrate each structure for 10 ns at 300 K. Then production runs are quenched to
the target temperature and coupled to a 10-fold Nosé–Hoover chain58 to sample
the NVT ensemble, integrating the equations of motion with a timestep of 10 fs.
The relaxation time after the quench is on the order of 10 ps, and can thus be
considered non-disturbing to the nucleation. The nucleation events themselves are
detected by a sudden drop in the potential energy, upon which we terminate the
computation and collect the current time as induction time. A total of 100 simu-
lations for each of the two substrates at 218 K and 50 simulations at 221 K have
been performed with large-scale atomic/molecular massively parallel simulator59.
From the collection of induction times we fit the survival probability as

Psur ¼ exp �ðJ � tÞγ½ � ð4Þ

to obtain the nucleation rate J, where γ is a correction factor that accounts for
possible non-exponential kinetics.

Free energy reconstruction from unbiased MD. For the reconstruction of free
energy we made use of the kinetic reconstruction method60. To this end we
computed the steady-state distribution P(x = n) of the order parameter x and the
mean first passage time τ(x = n) that it on average takes for the system to reach the
state x = n. The free energy can be reconstructed from this via:

βFðxÞ ¼ C þ ln BðxÞ½ � �
Z x

a

dx′
Bðx′Þ ; ð5Þ

where C is an arbitrary constant, B(x) is a help quantity defined by

BðxÞ ¼ 1
PðxÞ

Z x

a
Pðx′Þdx′� τðxÞ

τðbÞ
� �

; ð6Þ

and a and b are boundary conditions. The choice of the latter as well as the
numerical integration method did not meaningfully alter any of the results.

Identification if ice. Ice-like molecules were detected using an order parameter
according to Li et al.39 as implemented in PLUgin for MEtaDynamics 261,62. First

Table 2 Summary of simulation parameters such as the
lattice constant afcc of the substrate and the water-substrate
interaction parameters ϵws, σws

System Surface afcc (Å) ϵws kcal mol�1� �
σws (Å)

s1 fcc(100) 3.649 0.43 2.488
s2 fcc(211) 4.158 0.48 2.582

n
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het,1
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F
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Fig. 4 Schematic illustration of the connection between free energy profiles,
precritical fluctuations, and polymorph. a, b Resulting het. free energy
profiles for two different polymorphs, which belong to the same functional
family as their hom. reference. The extent of thermal fluctuations is
indicated by the gray-shaded area. c Observation in a simulation or
experiment where the hom. nucleation of the dominant polymorph 1 is
compared to het. nucleation events that form the same (het,1) and a
different (het,2) polymorph. While for the het,1 profile the critical nucleus
and the barrier are scaled by a same factor (as predicted by hetCNT), these
are scaled differently for the het,2 profile when compared to hom,1. Note
that the graphs are qualitatively equivalent to our simulation results, but do
not result from a fit or parametrized model
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we compute for each molecule i the quantity qlm(i) as follows:

qlmðiÞ ¼ 1
NbðiÞ

XNbðiÞ

k¼1

Ylm θik;ϕikð Þ; ð7Þ

where, the sum goes over the Nb(i) neighbors of molecule i, Ylm are spherical
harmonics, and θik and ϕik are the relative orientational angles between the
molecules i and k. For a given l we compute the quantity for all possible values of m
and store them in a vector~qlðiÞ containing 2l + 1 components. Finally, we calculate
values of ql according to:

qlðiÞ ¼ 1
NbðiÞ

XNbðiÞ

k¼1

~qlðiÞ �~qlðkÞ
~qlðiÞj j � ~qlðkÞj j : ð8Þ

For the particular choice of l = 3 the values of q3 can distinguish both between
the solid and liquid molecules as well as between cubic and hexagonal ice. For
values of q3< −0.69 we classify the molecule as ice-like. Additionally, if q3< −0.85
the molecule belongs to cubic ice and otherwise to hexagonal ice (the distribution
of q3 for different water phases can be found elsewhere39).

Metadynamics simulations. We performed well-tempered metadynamics simu-
lations63,64 with 20 walkers65 at 235 K, and employed smaller simulation boxes with
8000 molecules in a 60 × 60 × 78 Å cell with 3D periodic boundary conditions.
Nucleation was facilitated by biasing the path variables66 s and z constructed by
measuring the generalized distances of the systems permutation invariant vector67,68

(PIV) to two reference states (liquid and frozen simulation cells obtained from
brute-force MD at 205 K). In essence, the PIV is the vector of irreducible adjacency
matrix entries ordered by magnitude, where entries decay smoothly from one to
zero for intermolecular distances beyond 3.4 Å. The metadynamics parameters were
Gaussian height δ = 0.2 kcal/mol, Gaussian width (σs, σz) = (0.022, 0.38), deposition
stride 2 ps, and a bias factor of 50. We employ a repulsive wall at s = 1.5 to restrain
our simulation to cluster sizes relevant to nucleation. The resulting free energy
profiles were checked for convergence by reweighting69 to the one-dimensional free
energy profile F(s) (Supplementary Methods 1). The critical cluster sizes were
obtained via a committor analysis70 seeded from the metadynamics trajectories.

Data availability. The data that support the findings of this study are available
from the corresponding author upon reasonable request.
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