High piezoelectric conversion properties of axial InGaN/GaN nanowires - CNRS - Centre national de la recherche scientifique Accéder directement au contenu
Article Dans Une Revue Nanomaterials Année : 2018

High piezoelectric conversion properties of axial InGaN/GaN nanowires

Résumé

We demonstrate for the first time the efficient mechanical-electrical conversion properties of InGaN/GaN nanowires (NWs). Using an atomic force microscope equipped with a modified Resiscope module, we analyse the piezoelectric energy generation of GaN NWs and demonstrate an important enhancement when integrating in their volume a thick In-rich InGaN insertion. The piezoelectric response of InGaN/GaN NWs can be tuned as a function of the InGaN insertion thickness and position in the NW volume. The energy harvesting is favoured by the presence of a PtSi/GaN Schottky diode which allows to efficiently collect the piezo-charges generated by InGaN/GaN NWs. Average output voltages up to 330 ± 70 mV and a maximum value of 470 mV per NW has been measured for nanostructures integrating 70 nm-thick InGaN insertion capped with a thin GaN top layer. This latter value establishes an increase of about 35% of the piezo-conversion capacity in comparison with binary p-doped GaN NWs. Based on the measured output signals, we estimate that one layer of dense InGaN/GaN-based NW can generate a maximum output power density of about 3.3 W/cm2. These results settle the new state-of-the-art for piezo-generation from GaN-based NWs and offer a promising perspective for extending the performances of the piezoelectric sources.
Fichier principal
Vignette du fichier
High_piezoelectric_conversion_properties.pdf (4.75 Mo) Télécharger le fichier
Origine : Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

hal-01798270 , version 1 (17-07-2020)

Licence

Paternité

Identifiants

Citer

Nicoletta Jegenyes, Martina Morassi, Pascal Chrétien, Laurent Travers, L Lu, et al.. High piezoelectric conversion properties of axial InGaN/GaN nanowires. Nanomaterials, 2018, 8 (6), pp.367. ⟨10.3390/nano8060367⟩. ⟨hal-01798270⟩
125 Consultations
126 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More