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Abstract— We present an original methodology to design hybrid
neuron circuits (CMOS + non volatile resistive memory) with
stochastic firing behaviour. In order to implement stochastic firing,
we exploit unavoidable intrinsic variability occurring in emerging
non-volatile resistive memory technologies. In particular, we use the
variability on the ‘time-to-set’ (t set) and ‘off-state resistance’ (ROff )
of Ag/GeS2 based Conductive Bridge (CBRAM) memory devices.
We propose a circuit and a novel self-programming techniquefor
using CBRAM devices inside standard Integrate and Fire neurons.
Our proposed solution is extremely compact with an additional
area overhead of 1R-3T. The additional energy consumption to
implement stochasticity in Integrate and Fire neurons is dominated
by the CBRAM set-process. These results highlight the benefits of
novel non memory technologies, whose impact may go far beyond
traditional memory markets.

I. I NTRODUCTION

Neuroinspired (or ‘neuromorphic’) hardware research has
gained a lot of importance in recent years due to its
promising low-power, fault-tolerant, and ultra-adaptative com-
puting paradigms [1], [2], [3], [4], [5]. Neuromorphic computing
is usually accomplished with deterministic devices and circuits.
However, literature in the fields of neural networks [6], [7]
and of biology [8] suggests that in many situations, actually
providing a certain degree of stochastic, noisy or probabilistic
behavior in their building blocks may enhance the capability
and stability of neuroinspired systems. Some kind of neural
networks even fundamentally rely on stochastic neurons, like
Boltzmann machines [9], [10]. Finally, stochastic neuronsmay
perform signal processing in extremely noisy environments
using a phenomenon known as ‘stochastic resonance’ [11], [12].

In neuromorphic hardware, providing stochastic behavior
to neurons using pseudo-random number generators will lead
to significant overheads. This explains interest in developing
silicon neurons with an intrinsic stochastic behavior, butwhich
may be controlled. In previous works, different techniquesto
implement controlled stochasticity in hardware neural networks
have proposed. It is possible to exploit the thermal noise inthe
CMOS but this may lead to silicon overheads and unwanted
correlations [6]. Other techniques exploit CMOS circuits with
using noise but have significant area overhead [13], or the
noise of photons with photodetectors [14] or even special
kinds of ‘noisy transistors’ [15]. Finally it was proposed to
use fundamentally probabilistic nanodevices like single electron
transistors [16], but which might suffer from poor CMOS
compatibility and room temperature operation. In this paper, we
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Fig. 1. Quasi-static I-V curve for the CBRAM device showing the switching
from high (reset) to low resistive states (set). TEM image ofthe CBRAM resistor
element [23]. The GeS2 layer has a thickness of30 nm.

describe an original circuit and methodology to design a neuron
with stochastic firing behavior exploiting certain physical effects
of emerging non-volatile resistive memory technology devices
such as Conductive Bridge memory (CBRAM). There are
significant advantages of our approach because of the easiness
of fabrication in the Back-End-Of-Line (BEOL), CMOS com-
patibility [17], predicted scalability to sub-20nm [18] and low
programming voltages of CBRAM memory devices [19].

The remainder of this paper is organized as follows: in
Section II, we describe the structure and the working principle
of our CBRAM devices, and the stochastic effects which we
exploit for designing the non-deterministic firing neuron.Sec-
tion III, describes the basic concept and an example of simple
circuit for obtaining a stochastic neuron. Section IV discusses
transient simulations that we performed on a basic circuit,which
validates our concept.

II. CBRAM TECHNOLOGY

A. Structure and working principle

Fig. 1 shows a TEM image of the CBRAM device struc-
ture used in this work. A Tungsten (W) plug, typically used
as interconnect between two metal levels, is used as bottom
electrode for the CBRAM. The solid electrolyte consists of a
30 nm thick GeS2 layer deposited by radio frequency physical
vapour deposition (RF-PVD). A3 nm Ag layer is dissolved into
the GeS2 using the photo-diffusion process [20]. Then a 2nd

layer of Ag is deposited to act as top electrode.
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Fig. 2. (a) ROff distribution obtained in GeS2 based 1R CBRAM devices.(b)
Experimental (line) and simulated (dotted) tset distribution obtained cycling the
CBRAM cell with a pulse amplitude Va=3V. (b in the inset) Example of a
typical oscilloscope trace tracking the voltage on the CBRAM (Vc) and the
applied pulse (Va). Between every set operation a reset operation was performed
(not shown).

CBRAM working principle relies on the reversible formation
of a conductive filament (CF) through a solid electrolyte that
results in transition to low and high resistance, respectively,
which are referred to as set and reset processes (Fig. 1) [21].
During the set process a positive voltage is applied to the
anode which oxidizes, generating Ag+ ions. The latters, under
the influence of the electric field, migrate by hopping to the
W cathode where they are reduced and nucleate, building-up
an Ag-rich CF. Upon reversal of voltage polarity, besides an
electronic current flowing in the CF, an electrochemical current
gives rise to Ag+ ions, inducing a collapse of the filament radius
resetting the system to the high resistance state [22].

B. Stochastic effects

By cycling many times our devices a statistical distribution
of the high resistive state (ROff) was obtained. Dispersion in
ROff may be interpreted in terms of stochastic breaking of
the filament during the reset process, due to the unavoidable
defects close to the filament which act as preferential sites
for dissolution. In previous work [23] we showed, with the
help of modeling, that a distribution in ROff leads to a spread
in others physical quantities like the left-over filament height
(h) and the tset. In this work we push further the analysis by
matching the modeled tset distribution with experimental data.
In particular, we characterized the kinetic of the set operation
by pulse measurements. Fig. 2 inset shows an example of the
oscilloscope trace for the evolution of voltage drop acrossthe
cell (Vc) during a set pulse. Initially, the cell is in the high
resistive state (ROff ≃ 106Ω) and most of the applied voltage
drops on the cell. Then at time tset an abrupt decrease of Vc

is observed, revealing a sudden drop of the cell resistance
corresponding to the switching from high to low resistive state.
Starting from some of the measured values of ROff (Fig. 2(a))
we collected the spread in tset when the applied pulses were
Va=3V and tpulse=5µs (Fig. 2(b)). The dotted line in Fig. 2(b),
shows the simulated values of tset. To obtain the simulated curve
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Fig. 3. (a) Schematic image shown the basic concept of a Integrate and Fire
neuron [26]. (b) Schematic showing the basic concept of our proposed Stochastic
Integrate-Fire neuron (S-IF).

of tset, first the distribution ofh was calculated using [24], [25]:

ROff =
ρonh+ ρoff(L− h)

πr2
(1)

whereρon is the resistivity of the Ag-rich nanofilament,ρoff is
the resistivity of the GeS2, L is the chalcogenide thickness and
r is the conductive filament radius, then tset using:

tset=
L− h

vh exp

(

−EA

kBT

)

sinh

(

αq Vc−∆

kBT

) (2)

whereq is the elementary charge,vh is a fitting parameter for
the vertical evolution velocity,EA is the activation energy,kB

is the Boltzmann constant,T is the temperature (300K), α and
∆ are fitting parameters to take into account vertical electric
field dependency and the overpotential that controls the kinetic
of the cathodic reaction respectively (Table I). In the following
section we show how the spread in tset can be used to make the
firing of an Integrate and Fire neuron non-deterministic.

III. STOCHASTIC NEURON DESIGN

A. Integrate and Fire Neuron

The complexity of a neuron circuit depends on the overall
functionality of the neural network and of the chosen biological

TABLE I

PARAMETERS USED IN THE SIMULATIONS.

Parameter Value Parameter Value

vh 2m/s EA 0.35 eV

ρon 2.3× 10−6 Ωm ρoff 10−3 Ωm

α 0.08 ∆ 0.15V

r 2.2 nm L 30 nm
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Fig. 4. (a)-(d) Schematic of output neuron firing patterns for different example
test cases.

models. For our purpose of concept validation, we chose one
of the simplest, the Integrate and Fire neuron model. Fig. 3(a)
shows the concept of a simple Integrate and Fire neuron
model. It constantly sums (integrates) the incoming synaptic-
inputs or currents (excitatory and inhibitory) inside the neuron
integration block using a capacitor. More advanced designs
also work with this principle [26]. This integration leads to an
increase in the membrane potential of the neuron Vmem. When
the membrane potential reaches a certain threshold value Vth,
the neuron generates an output spike (electrical signal). After
the neuron has fired the membrane potential goes back to a
resting value (initial state), through discharging of the capacitor
Cmem. Usually, the output firing activity of a Integrate and Fire
neuron is deterministic because the neuron fires every time the
membrane potential reaches a defined threshold value.

B. Stochastic-Integrate and Fire principle and circuit

To introduce non-deterministic or stochastic behavior in Inte-
grate and Fire neuron, we propose to connect a CBRAM device
to the capacitor Cmem, such that Cmem could only discharge
through the CBRAM device by switching it to the low-resistive
state (Fig. 3(b)). The anode of the CBRAM and the Vmem net
of the capacitor should be connected. The duration for which
current can flow through the low-resistive CBRAM device can
be controlled using a transistor. In such a configuration, the
spread on the tset of the CBRAM would translate to a spread
on the discharge-time (tdsc) of the capacitor. For consecutive
neuron spikes, this would lead different initial state of Cmem,
thus making the firing of the neuron stochastic. Fig. 4 illustrates
conceptually the impact of four different values of tset (keeping
constant pre-synaptic weights), on the inter-spike interval. In
case (a), tset is very long thus the capacitor has a very weak
discharge. As a consequence just few additional incoming pre-
neuron spikes are required to charge back the Vmem to the level
of Vth, thus leading to an output pattern with the shortest inter-
spike interval. In case (b), tset was the shortest, and hence the
capacitor discharged the most.

Thus for this case, more incoming pre-neuron spikes are
needed to recharge Vmem. Case (c) represents a deterministic
Integrate and Fire situation with full Vmem discharge. Finally,
case (d) depicts a situation with different tset durations for
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Fig. 5. Proposed circuit-equivalent of the S-IF neuron.

consecutive output spikes. It is a possible representationof
neuron inter-spike intervals for a random sequence of tset values
that can be obtained by cycling the CBRAM device multiple
times.

The circuit equivalent of the Stochastic-Integrate and Fire
neuron concept shown in Fig. 3(b) is presented in Fig. 5. It
consists of a current-source to simulate input currents coming
from synapses and pre-neurons, a capacitor Cmem to integrate
the current and build up the neuron membrane-voltage Vmem,
a nMOS transistor M1 to perform set operation, two nMOS
transistors M2 and M3 to perform the reset operation, a com-
parator block, a spike-generation block, a delay-element∆t and
a CBRAM device. The delay element is used to perform the
reset operation of the CBRAM device at the end of each neuron
spike.

In Fig. 5, initially the CBRAM is in high-resistive state. As
incoming pre-synaptic current is accumulated in Cmem, Vmem

would constantly build up at the anode of the CBRAM. During
this time M1, M2 and M3 are off. When the neuron spikes,
the spike-generation block will generate an output-spike and
two additional pulsed-signals (S1, S2) going to M1 and∆t
respectively. S1 acts as a gating signal to turn on M1. Vmem

build-up and switching on of M1 will enable set-operation of
the CBRAM since a positive voltage drop is established between
the anode and the cathode. However during the set-operation,
M2 and M3 are not turned on, as∆t delays the signal S2.
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Fig. 6. Circuit used to demonstrate the concept of a S-IF effect when the
CBRAM is in the set state.
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Fig. 7. Full evolution of Vmem simulating the circuit shown in Fig. 6. (a) Pre-
neuron incoming pulses are used to build up Vmem. (b) Initially Vmem builds
up as consequence of incoming currents (charging phase). Set operation lead
to different discharge of Cmem (tdsc). During the recharging phase a different
number of incoming pulses will raise Vmem till V th. (c) Expected different inter-
spike intervals depending on the tset.

At the end of the set-operation, the signal S2 will turn on
M2 and M3 thus building up the voltage at the cathode to
switch the CBRAM to the off-state (reset). Thus, before the next
consecutive neuron spikes the CBRAM device is automatically
reset and reprogrammed to a different initial ROff state. Note
that the flow of current through the CBRAM, during the set-
operation, leads to a discharge of the capacitor Cmem thus
decreasing the membrane voltage Vmem. The amount of decrease
in Vmem can be estimated by calculating the total duration (tdsc)
for which current flows through the switched CBRAM. tdsc is
the difference of the pulse-width of the signal S1 and the tset

(inset of Fig. 2). Depending on the value of tset every time the
neuron spikes, different amount of Cmem discharge will occur.
Thus, in between any two firing cycles, the neuron may require
different amount of incoming current to charge Vmem to the level
of Vth.
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IV. RESULTS AND DISCUSSION

A. Set- and reset- operation

We performed SPICE transient simulation, with Eldo simu-
lator, to validate the proposed concept using a simplified circuit
shown in Fig. 6. Transistors and capacitors sizing were not
optimized with respect to a real implementation, but to give
a simple proof-of-concept. Fig. 7(a) shows a simulated train
of incoming pulses (excitatory currents) and the corresponding
evolution of the Vmem (Fig. 7(b)) between two consecutive
neuron spike-cycles. When Vmem reaches a threshold voltage Vth

(Vth ≃ 3.5V in our simulation), the CBRAM device undergoes
set-operation, and Cmem begins to discharge. Fig. 7(b) shows the
discharging and re-charging of Cmem for four different simulated
values of tset (in the range300 ns - 600ns). Fig. 7(c), shows
the expected output of the neuron. Note that different number
of incoming pulses are required to reach the neuron firing
threshold again, since the initial Vmem value is dominated by the
stochasticity in tset . Five additional incoming pulses are needed
to reach the threshold for the shortest value of tset (300ns).
Fig. 8 shows the zoomed version of Cmem discharging for the
the different simulations shown in Fig. 7. Note that the longest
tset (600ns) corresponds to the least amount of Cmem discharge,
and vice-versa. To simulate the reset operation, a pulse of45 ns
with an amplitude of3V was applied at M2 and M3, while
keeping M1 off. Such high voltage on M3 is required to build
up a voltage on Vcathode. Fig. 9 shows the time evolution of
Vcathodeand Vmem when the initial value of Vmem was generated
by a tset of 300 ns for two different width of M3. The actual
voltage drop on the CBRAM can be increased increasing the
size of the nMOS as shown in Fig. 9. Moreover, during the
reset, an additional discharge of Vmem is possible depending on
the size of M3, since M2, that is directly connected to Vmem, is
turned on by S2 (Fig. 10(a)).

B. Parameter constraints

Due to the intrinsic physics of CBRAM device, some con-
straints in implementing the proposed circuit should be con-
sidered. In particular, Vth has to be greater than the minimum
value of the voltage-drop required to set the CBRAM device for
a given pulse-width. The amplitude of S1 should be sufficient
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to turn on the gate of M1, while the pulse-width of S1 depends
on the Vth and the spread on tset. If S1 pulse-width is very
long it would always lead to a complete discharge of Cmem and
the tset stochasticity cannot be exploited. However S1 cannot
be arbitrarily small, it has to be greater than the minimum tset

value at a given voltage applied on the anode of the CBRAM
device. In a previous work, we have shown the dependence of
applied pulse-width and the amplitude of Va for the CBRAM
set-operation [19]. Thus, by tuning the characteristics ofS1,
the stochastic response of the neuron can be controlled. The
amplitude of S1 would determine the amount of current flowing
through M1 (compliance current) and thus the final value of
the CBRAM resistance in the set state. The set state resistance
would determine the programming conditions for the consecu-
tive reset-operation [27]. Thus, the characteristics of S2can be
tuned based on the final CBRAM resistance obtained after the
set-operation.

C. Energy consumption

For the proposed S-IF, additional energy consumption per
spiking cycling of the neuron will be devoted to perform set
and reset operation. The extra-energy consumption is dependent
on the ratio ROff /ROn; in particular on ROn since hundreds
of µA can flow before M1 would be turned off, if the low
resistance state is≃ 104 Ω, thus raising the power consumption.
We estimated the energy consumption during the set operation
using: Eset=Vset Iset tset. In our simulations we used Vset=3.5V
(i.e. Vth), Iset=350µA, tset in a range between300ns and600ns
that gives a Eset energy mean value of55 n J. The energy
devoted to reset the CBRAM is negligible. For a real system,
Eset can be strongly reduced increasing the resistance of the
low resistive value thus reducing Iset, since for the proposed
application the ratio ROff /ROn is not a major constraint.

V. CONCLUSIONS

In this paper, we showed how CBRAM used in an unexpected
fashion may allow designing stochastic neurons with low area
overheads. We described how CBRAM physics naturally leads
to a stochastic behavior in the programming time (tset), which
may be exploited in a circuit. SPICE simulations validate the

concept on a simple Integrate and Fire neuron. The concept
could be extended to more complex neuron designs like [26]
and [28], paving the way for the fabrication of complex neuro-
morphic networks. Other emerging memory technologies might
be used for the same purpose provided a certain range of
stochasticity in tset as reported in [29] and [30]. These results
highlight the benefits of novel non memory technologies, whose
impact may go beyond traditional memory markets.
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