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Abstract

Bacterial centromeres–also called parS, are cis-acting DNA sequences which, together with

the proteins ParA and ParB, are involved in the segregation of chromosomes and plasmids.

The specific binding of ParB to parS nucleates the assembly of a large ParB/DNA complex

from which ParA—the motor protein, segregates the sister replicons. Closely related fami-

lies of partition systems, called Bsr, were identified on the chromosomes and large plasmids

of the multi-chromosomal bacterium Burkholderia cenocepacia and other species from the

order Burkholeriales. The centromeres of the Bsr partition families are 16 bp palindromes,

displaying similar base compositions, notably a central CG dinucleotide. Despite centro-

meres bind the cognate ParB with a narrow specificity, weak ParB-parS non cognate inter-

actions were nevertheless detected between few Bsr partition systems of replicons not

belonging to the same genome. These observations suggested that Bsr partition systems

could have a common ancestry but that evolution mostly erased the possibilities of cross-

reactions between them, in particular to prevent replicon incompatibility. To detect novel

similarities between Bsr partition systems, we have analyzed the binding of six Bsr parS

sequences and a wide collection of modified derivatives, to their cognate ParB. The study

was carried out by Surface Plasmon Resonance imaging (SPRi) mulitplex analysis enabling

a systematic survey of each nucleotide position within the centromere. We found that in

each parS some positions could be changed while maintaining binding to ParB. Each cen-

tromere displays its own pattern of changes, but some positions are shared more or less
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widely. In addition from these changes we could speculate evolutionary links between these

centromeres.

Introduction

Partition (Par) systems were discovered on low-copy number plasmids to whom they ensure

active segregation and thus stability over generations. They consist of three elements: a

NTPase, called ParA, a DNA-binding protein called ParB, and a cis-acting sequence—the tar-

get of ParB, also referred to as centromere or parS site. ParS is generally a small repeated

sequence, clustered in plasmids [1] while dispersed in chromosomes in the origin domain [2].

Par B binds to parS forming a nucleo-protein complex with which ParA interacts to lead the

segregation of daughter replicons [3]. Three main types of Par systems are defined according

to the nature of the NTPase: Walker A—P loop ATPases (type I), actin-like ATPases (type II)

and tubulin-like GTPases (type III) [4–6]. While in types II and III the NTPase polymerization

is involved in driving plasmids apart, the segregation mechanism remains unclear in type I,

the most common Par system of plasmids and the only one found on chromosomes.

In type I, the basic parS repeat generally consists of two inverted repeats (IR), either forming

a palindrome, or with a spacing of a few base pairs between the two IRs. ParB proteins are

functional dimers [7], so that each monomer of the dimer could interact with one IR of parS,

as proposed for the ParB protein of the F plasmid [8,9]. The specific binding of ParB to parS
nucleates the formation of an extended nucleo-protein zone called “partition complex”

wherein ParB binds DNA without sequence specificity [10,11].

Chromosomal Par systems do not provide all the driving force for segregating the bulk of

sister chromosomes, but they control the segregation of new-born origins of replication [12–

14] and, when transplanted on plasmids deleted of their own Par systems, they stabilize these

plasmids [15–18]. Chromosomal Par systems are therefore true partitioning machines, even

though this function does not appear clearly in several species because it is limited to certain

physiological states [17,19], or linked to major functions of the cell-cycle like cytokinesis [20],

initiation of replication [12,21,22] and DNA condensation [23–25].

The phylogenetic groups of Par systems correlate with the lineages of replicons carrying

them [16,18]. For example the Par systems identified so far on chromosomes, whatever

the species, are highly homologous each other and share the same 16 bp parS sequence—

TGTTTCACGTGAAACA, initially found in Bacillus subtilis [15]. This small palindrome is there-

fore a faithful marker of the “chromosome family”. More-over, in the few bacterial genomes

possessing more than one chromosome, the longest chromosome also displays this parS site,

suggesting it originates from the same group as single chromosomes. In contrast, secondary

chromosomes of multi-chromosomal genomes have Par systems more related to those of plas-

mids and, like the Par systems of plasmids, they identify specific lineages of replicons [17, 26].

Burkholderia cenocepacia is a multi-chromosomal proteobacterium from soils and roots,

identified as an aggravating agent in cystic fibrosis [27]. J2315, one of the most virulent strain

of B. cenocepacia [28], has three chromosomes of 3.9, 3.2 and 0.9 Mb (c1, c2 and c3 respec-

tively), and one plasmid of 93 kb (pBC). A partition (Par) system was found on each replicon

of J2315 [18]. Par systems of c2, c3 and pBC, together with those of certain large plasmids of

other Burkholderiales, are phylogenetically related and identify sub-families of Par systems

called Bsr (Burkholderiales secondary replicon) [26]. Bsr Par systems display as parS site a pal-

indrome of sixteen base-pairs, with a T-rich 5’-end, and a six base-pairs core composed of 2C,
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2G, 1A, 1T which includes a central CG dinucleotide. Surprisingly, these parS sites resemble

the chromosomal parS described above which is also present on c1 of B. cenocepacia.

To avoid incompatibility among the four replicons, each parS of B. cenocepacia should not

bind ParB of another replicon. Accordingly, the parSmotifs are replicon-specific and, despite

their similarities, they do not bind non-cognate ParBs in vivo or in vitro [18,26]. We proposed

that the Par systems of B. cenocepacia have a common ancestry and evolved for their compati-

bility in B. cenocepacia, erasing any trace of cross reaction. This proposal was supported also

by the converse fact that binding was detected between ParB c3 and parS of plasmids from

other species, i.e. between Par systems of replicons evolving without selection pressure for

compatibility. Thus, the binding of parS to ParB, crucial for the segregation process, looks also

essential for discriminating between replicons in the multi-chromosomal genomes of the Bur-

kholderiales. The same conclusion was drawn recently for the multipartite Rhizobium legumi-
nosarum genome [29].

We previously analyzed the effect of some nucleotide changes in parSc1 and parSc3 on the

binding to ParB, either in vitro by Electrophoretic Mobility Shift assay (EMSA) and in vivo by

plasmid incompatibility [26]. Few nucleotides could be changed in parSc1 and parSc3 while

the binding to ParB was maintained. To get more insights on the specificities for binding ParB

of the Burkholderiales centromeres we have expanded here the study to other nucleotide

changes and to other Burkholderiales Par systems. To do this, we have used the Surface Plas-

mon Resonance imaging (SPRi) multiplex technology, which allows hundreds of DNA probes

to be tested at the same time. Systematic nucleotide changes were analyzed in the parS se-

quences of six Par systems: c1 (chromosome 1 of Burkholderia cenocepacia J2315), c3 (chromo-

some 3 of B. cenocepacia J2315), pBC (the plasmid of B.cenocepacia J2315), 12D (the plasmid 1

of Ralstonia pickettii 12D), 12J (a plasmid integrated in the chromosome of R. pickettii 12J and

the plasmid 2 of R. pickettii 12D) and G4 (plasmid 2 of Burkholderia vietnamiensis G4). All are

from Burkholderiales replicons and, as already mentioned, the parS sequences of these systems

resemble each other. 12J, G4 and 12D belong to the same family, Bsr3, which is that of c3 ([26]

and Fig 1) and their ParBs have 54, 45 and 40 percent identity respectively with ParBc3. On

the other hand, pBC and c1 belong to other Par families (Fig 1) and their ParBs have respec-

tively 31 and 26 percent identity with ParB c3. It seemed therefore interesting to analyze this

panel, in order to find if patterns of permissive positions for binding ParB in each parS corre-

late the relationship and could infer some evolving link between these Par systems.

Material and methods

Sources of the Burkholderiales parB genes

ParB genes from Burkholderia cenocepacia J2315 (DSMZ), Burkholderia vietnamiensis G4

(J. Tiedje, Michigan State University), Ralstonia pickettii 12D and Ralstonia pickettii 12J

(T. Marsh, Michigan State University) were amplified by PCR (Phusion High-Fidelity DNA

Polymerase, Thermofisher Scientific) on genomic DNA extracted from these species.

ParB cloning and extract preparation

ParB extracts were prepared as described previously [26]. Briefly, wild-type parB genes cloned

from start to stop codon with a consensus Shine-Dalgarno sequence were inserted under the

control of the arabinose inducible pBAD promoter into the pDAG127 vector [30] with a dele-

tion of the sopA gene by NheI/HindIII or EcoRI/HindIII digestion. Recombinant plasmids

were electroporated into the Escherichia coli strain DLT812 [31]. Cells grown in LB medium at

37˚C to an optical density at 600 nm (OD600) of 0.25 were induced with 0.1% arabinose (final

concentration), incubated for 4 h at 37˚C, and chilled on ice for 10 min. Subsequent steps were
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carried out at 4˚C. Cells were centrifuged, washed with TNE (50 mM Tris-HCl [pH 7.5], 50

mM NaCl, 1 mM EDTA) and resuspended in TNE at an OD600 of 300. Lysozyme was added at

400 μg/ml; cells were then incubated for 5 min, frozen with liquid nitrogen, and thawed on ice.

Lysis buffer (TNE, 660 mM NaCl, 4.5 mM dithiothreitol) was added to bring the OD600 to 200.

The mixture was incubated for 10 min on ice, and the cells were lysed by sonication. The lysate

was centrifuged for 15 min at 10,600 × g and the supernatant centrifuged at 20,800 × g. The

final supernatant was frozen with liquid nitrogen and stored at—20˚C. Total protein concen-

trations were measured using a Bradford protein assay (Bio-Rad). Samples containing 3.5 μg

of protein were electrophoresed in 4 to 12% poly-acrylamide bis-tris denaturing gels (NuPage;

Invitrogen) at a constant voltage of 200 V for 55 min and then stained with a Coomassie blue

derivative (InstantBlue Expedeon). Lanes containing no protein or protein from cells without

ParB were also included on gels, and stained gel images captured with a gel-imager (Syngene

G box) as.tif files were scanned and processed using Multi Gauge (Fuji) to quantitate roughly

ParB as detailed previously [26]. The concentrations of ParB were estimated to range between

0.4 μg/ml (ParBpBC) and 2.8 μg/ml (ParBc1).

Fig 1. ParB phylogeny and parS sequences of the Par systems used in this study. ParB Phylogeny was obtained using the multiple sequence

alignment webPRANK of the European Bioinformatic Institute (http://www.ebi.ac.uk/goldman-srv/webprank/). The Par systems are from the following

replicons: c1, chromosome 1 of Burkholderia cenocepacia J2315; G4, plasmid 2 of Burkholderia vietnamiensis G4; 12D, plasmid 1 of Ralstonia pickettii 12D;

c3, chromosome 3 of B. cenocepacia J2315; 12J, plasmid integrated in the chromosome of Ralstonia pickettii 12J; pBC, plasmid pBC of B. cenocepacia

J2315. Families correspond to those previously established based on a wider collection of Par systems. All parS sequences form a perfect palindrome

(indicated by the inverted arrows with specific colours for specific sequences), except parS12J which displays non complementary bases (boldface).

https://doi.org/10.1371/journal.pone.0177056.g001
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ParS probes and spotting conditions

All parS probes were designed as previously described [9], using 57-mer oligonucleotides

modified at their 5’-ends with a thiol function (Sigma Aldrich, France). They consist of two

inverted repeats of 26 bases–including the 16 bases parS or derivative sequences—separated by

a five base spacer (see Fig 2A). Each oligonucleotide, resuspended at 3 μM in 3X SSC buffer

containing 450 mM NaCl and 45 mM sodium citrate pH 7 (Sigma Aldrich, France) were spot-

ted (25μM) on SPRi-Biochips covered with a 50 nm gold film using a ChipWriterPro contact

spotter (Biorad) with solid pin SSP015 from Arrayit Corporation. For each probe, four spots

were deposited in tandem at two different locations on the prism (Fig 2B).

SPRi assays

SPRi experiments were performed using a SPRi-Plex system (GenOptics HORIBA-scientific,

France) as described [32] using a running buffer (20 mM HEPES pH 7.4, 100 mM KCl, 0.1%

bovine serum albumin—BSA, 50μg.ml−1 sonicated salmon sperm DNA) at a flow rate of 50μl.

Fig 2. Experimental design. (A) Structures of the 5’-thiol-labelled 57-mer single strand oligonucleotides carrying carrying parS, exemplified for parSc1. The

parS sequence forms by the annealing of two inverted repeats of 26 bases (arrowed boxes). The upper structure shows the wild-type (wt) 16 bp palindrome

of parSc1 by two arrowed black lines and with bp positions numbered. Three sequences modified from parSc1 are indicated below: randomly modified (rdm),

one arm modified (half), and the double symmetric change T1C-A16G, (changed sequence is written in red) (B) Typical SPRi image captured at the end of

injection (240 sec) of 10μg/ml of crude extract enriched in ParB c1. Each DNA probes was distributed in duplicate in two different localizations, as shown by

white rectangles with parS wild type sequence (c1 wt) and white dotted rectangles with randomized sequence (c1 rdm). (C) Examples of kinetics curves for

the six ParB-parS systems. For each ParB, the reflectivity variations according to time were observed with the wild-type parS (green curves) and the random

parS (red curves). Various concentrations of crude extracts were injected: 10 (dotted lines), 20 (dashed lines) 40 μg/ml (full lines) for c1; 20 (dotted lines), 40

(dashed lines) and 80 μg/ml (full lines) for pBC, c3, 12D, 12J and G4.

https://doi.org/10.1371/journal.pone.0177056.g002
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min−1. 200μl of ParB over-expressing crude cell extracts were injected during 240 s on the

prism surface saturated with Denhardt solution (Sigma). The variation of reflectivity (VR) vs.

time for each spot was analysed with Genoptics software SPRiAnalysis1.2.1. Mean values and

standard deviations were directly calculated with this software from four independent spots.

Between each injection, the regeneration of the prism surface was performed with NaOH 100

mM. The level of significance relative to the negative control (a sequence modified randomly

relative to parS and indicated “rdm”) was determined by the student T test in excel software.

Levels of significance are indicated in the “Sign.” columns of Figs A-G in S1 File as follows: �

(P value < 0.05), �� (P value < 0.01), ��� (P value <0.001). In addition a crude extract non

over-producing ParB (referred to as ParB- extract) was also injected. For most probes the val-

ues obtained with this extract allow to discard the possibility that E. coli proteins contribute to

the reflectivity. For the few probes that seemed to interact with proteins of the ParB- extract,

we considered by default the VR obtained with ParB as non-significant—e.g. probes S160 and

S161 (Fig F in S1 File), and probe S142 (Fig G in S1 File).

Results

Setting up the SPRi conditions to determine ParB/parS interactions

The goal of this study was to analyse the interaction of six ParB proteins originating from six

Burkholderiales replicons (chromosome, secondary chromosome or plasmid) with their cog-

nate parS and many derivatives, in order to get insights on the specificities and similarities of

these Par systems. Surface Plasmon Resonance imaging (SPRi) is adapted for such a wide anal-

ysis. Oligonucleotides allowing the formation of parS or derived sequences (exemplified in Fig

2A) are spotted on the same prism. ParB is injected and the variation of reflectivity was mea-

sured at each oligonuclotide spot (Fig 2B). Crude Escherichia coli extracts over-expressing one

ParB were used in this study, as they are at least as sensitive as purified ParB proteins in detect-

ing DNA probes in SPRi assays [9]. Three protein concentrations were used: 10, 20 and 40 μg/

ml for ParBc1; 20, 40 and 80 μg/ml for the 5 other ParBs. Upon injection of ParB, the variation

of reflectivity (VR) for each ParB increases with time up to a maximum value, indicating that

equilibrium between association and dissociation is reached. For each ParB, the VR obtained

with the cognate parS is above that obtained with the randomly changed parS (Fig 2C, com-

pare green and red curves for the same protein concentrations) indicating that the specific

binding for cognate parS is detected. Increasing the protein concentrations leads to globally

increased curves of VR, suggesting the used concentrations are not saturating, and thus valid

to determine ParB-parS interactions. In some cases the VR decreases before the end of injec-

tion (240 s), which nevertheless suggests a mass transport due to excess proteins. This is partic-

ularly noticeable for ParBc1 at the highest concentration (Fig 2C). For ParB12D there is a time

delay for detecting the increase of VR, which also occurs at the highest protein concentration.

To correlate thereafter the VR and the interaction of ParBs with modified parSs, we thus kept

the VR obtained with the smallest (10 μg/ml for ParBc1) or the intermediate (40 μg/ml for

other ParBs) protein concentrations. For each ParB / parS interaction tested, we defined a

binding score (BS) by taking the VR value at the end of injection. Many probes with four or

more changes on the full parS length have been tested, giving mostly VR close to non specific,

so that we will not discuss these results in details. They indicate roughly that parS sequences

cannot be changed drastically to maintain a well detected ParB/parS interaction by SPRi. The

results that we present and discuss are those relative to the probes designed to (i) characterize

the binding of ParB to one arm of parS and (ii) determine the importance of each position in

parS for binding ParB.

Centromere binding specificities of six Burkholderiales replicons
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The sequences of all tested probes, the BS obtained with extracts over-producing ParB

(ParB+) and extracts non-producing ParB (ParB-), the standard deviations and the signifi-

cance of the values are shown in S1 File.

Mutating one arm of the palindromic parSs

With the exception of parS-12J, the studied parSs are perfect palindromes of 16 bp (Fig 1).

They consist of two contiguous inverted repeats (IR) of 8 bp, referred to as parS arms. ParBs of

the present study have a helix-turn-helix (HTH) domain previously identified [17, 26], so that

each monomer of the ParB dimer could interact with one arm of parS, as it is the case for the

ParB protein of the F plasmid [8, 9]. Some probes designed with one nucleotide change in just

one arm of parS-c1, -c3, and -pBC, gave high BS, similar to those of the wt controls (T1G,

T1A, T3C, T3A, T5A in parSc1;G1T, G1C, C6T in parSc3; C1G, C6A, C6T, T7G in parSpBC–

Figs A-C in S1 File). However these probes do not allow determine if the remaining normal

arm is responsible for the high BS or if the nucleotide change impairs poorly the interaction.

To convincingly determine if one arm maintains binding to ParB we designed oligonucleotide

probes, called “half-parS”, with one arm randomly changed (Figs A-G in S1 File, and Fig 2A

for c1).

For c1, c3, and pBC (Fig 3A, 3B and 3C) the BSs of half-parS (orange lines) are intermediate

i.e. below the specific BS (wt, green lines) and significantly above the non-specific BS (rdm, red

lines). Thus, in these cases one arm of parS retains specific binding for ParB, as described the

centromere of the F plasmid—which is composed of two inverted repeats separated by two

bases [9]. Disparities nevertheless appear between the BS induced by these three half-parSs:

that of pBC allows a very high BS, just below the wt parS pBC, while half-parSc1 and half-

parSc3 generate weaker BS relative to their wt parS.

For 12D and G4, the BSs of half-parSs are just above and at the non-specific value respec-

tively (Fig 3D and 3E). We cannot formally exclude that SPRi could not discriminate between

reduced and non-specific interactions due to a lack of sensitivity. But this seems unlikely

because with the same ParB extracts (12D and G4) tested on other derivatives of parSG4, SPRi

was able to reproducibly measure weak BSs, just above the non-specific value (Fig 3D and 3E).

If there is a lack of sensitivity of the SPRi, it does not question the fact that the interaction of

Fig 3. Binding scores for palindromic parS and derivatives. (A) ParB c1 B. cenocepacia; (B) ParB c3 B. cenocepacia; (C) ParB plasmid pBC B.

cenocepacia; (D) ParB plasmid 1 Ralstonia picketti 12D; (E) ParB plasmid 2 Burkholderia vietnamiensis G4. Binding scores correspond to 100-fold the VR

value at the end of the SPRi injection. The average scores for the wild-type (wt) and random (rdm) sequence are represented as lines, green and red

respectively. Average scores for the half-parS sequences are shown as orange lines. For double symmetric substitutions, the score is directly pointed on the

graph as the base substituting the wild-type one indicated below on the x-axis. Changes are indicated for one arm only but correspond to symmetrical

changes (e.g the change T1C in parSc1 means T1C and A16G). For each change statistical analysis of the BS were performed; the substitutions displaying

a significantly different BS relative to that of non specific DNA are wrote in red.

https://doi.org/10.1371/journal.pone.0177056.g003
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ParB12D and ParBG4 with half-parSG4 is weak, close to the interaction observed with non-

specific DNA.

Double symmetrical mutations in palindromic parSs

To determine the relative importance of each nucleotide at a given position of the five palin-

dromic centromeres we designed probes mutated at each pair of symmetrical positions (i.e
1–16, 2–15, 3–14, 4–13, 5–12, 6–11, 7–10 and 8–9) by two or three complementary substitu-

tions. These probes were assayed by SPRi (Fig 3A–3E).

For the five palindromic parS the distal position (1–16) allows the largest amount of substi-

tutions while maintaining a BS well above that of the non-specific DNA, even reaching or

exceeding the BS of the wt parS in the case of c3. Some changes, internal to the parSs, also

maintain a BS well above the non-specific. This is notably the case at positions (2–15) and (6–

11) in parSc3, (5–12) in parSc1, (7–10) in parSpBC and (5–12) in parSG4. For these internal

positions the highest BSs correspond in general to transitions, e.g. T5C in parSc1, C5T in

parSG4, C6T in parSc3 and T7C in parSpBC. The highest BS for internal transversions is T2A

in parSc3.

Interestingly, in parSc1 the BS is completely dropped to basic by all changes (Fig 3A), with

the exceptions of positions (1–16) and (5–12) already mentionned. Such a narrow specificity

of each position is less obvious in the other parSs, notably parSc3 (Fig 3B).

Changes in the non palindromic parS12J

The sequence parS12J is repeated five times upstream the corresponding parAB operon on a

plasmid integrated into the chromosome of Ralstonia pickettii 12J [26]. The arms of parS12J

are not strictly complementary, one being identical to parSc3 and the second differing at two

positions (Fig 1); they will be referred to as “parSc3” and “non-parSc3” arms, respectively. The

interaction of ParB12J with parS12J and its derivative probes were assayed by SPRi (Fig 4). The

reference BSs were 54 for the cognate parS 12J (wt, green line in Fig 4A and 4B) and 11 for the

Fig 4. Binding scores of ParB12 J for parSc3 non-parSc3 sequences and derivatives. Blue lines

correspond to the BS of the palindromic sequence parSc3 (A) and non parSc3 (B). Legend is the same as in

Fig 3.

https://doi.org/10.1371/journal.pone.0177056.g004
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non-specific DNA (rdm, red lines in Fig 4A and 4B). The BS of ParB12J for “parSc3” and

“non-parSc3” full palindromes are high (69 and 41 respectively; Fig 4A and 4B blue lines).

Thus ParB12J has the capability to bind palindromic parSs, and the parSc3 palindrome appears

a better substrate than the “non parSc3” palindrome but also better than its cognate parS12J.

We therefore tested the interaction of ParB12J with two “half-parSs” sequences keeping either

the “parSc3” or the “non-parSc3” arm. They displayed a BS of 25 and 14 respectively (orange

lines; Fig 4A and 4B), confirming that parSc3 is a better substrate than non-parSc3, but mainly

suggesting that both arms of parS are important for the binding ParB12J, as observed notably

for ParB12D and ParBG4.

We then analyzed the effect on the BS of double symmetric changes introduced in full pal-

indromes, either “parSc3” or “non-parSc3” (Fig 4A and 4B). In both palindromes changes at

the distal position (1–16) strongly impair ParB binding. This result indicates that for ParB12J

the distal position of the palindrome is important for the specificity of interaction, in contrast

to all the other parSs. Few internal positions accept changes while maintaining a significant BS

with ParB12J: position (5–12) in the “parSc3” palindrome; positions (2–15) and (4–13) in the

“non-parSc3” palindrome. Interestingly, in the “non-parSc3” palindrome the best accepted

changes are transversions: T2A and T4G (Fig 4B).

Discussion

In this study we have investigated by an SPRi approach, what nucleotides are involved in the

specific ParB/parS interaction for six Par systems: those of chromosome 1 (c1), chromosome 3

(c3), and the plasmid (pBC) of B. cenocepacia J2315, and those of three plasmids related to c3:

plasmid 2 of Burkholderia vietnamiensis G4 (G4), plasmid 1 of Ralstonia pickettii 12D (12D)

and the plasmid integrated in the chromosome of Ralstonia pickettii 12J (12J). The six parSs

are similar, consisting of a 16 bp sequence—perfectly palindromic in most cases, and display-

ing a central CG dinucleotide. It is therefore interesting to analyze if similar parSs display simi-

lar nucleotide specificity.

Validation of the SPRi technology by comparing to previous techniques

The SPRi multiplex technology allows the analysis of multiple ParB/parS interactions simulta-

neously. This is an advantage over the techniques that we previously used in the same goal,

i.e. electrophoretic mobility shift assay (EMSA) and an in vivo test of incompatibility [26].

Briefly, for the in vivo test, B. cenocepacia was transformed with plasmids carrying extra-parS
sequences; a growth delay of transformants indicated the extra-parS bind ParB while a normal

growth indicated the extra-parS is impaired for binding ParB. Interestingly, the interaction

with ParB of some parSc1, parSc3 and parS12J derivatives tested here by SPRi, was also tested

by incompatibility and (or) EMSA, allowing to discuss the reliability of SPRi.

It appears that the three techniques (in vivo growth delay, EMSA, and SPRi) give their high-

est responses for the wild-type parSs. In addition, all the mutations that maintained a delayed

growth in vivo, display a high SPRi BS. It is the case for single-arm mutations T1G, T1A of

parSc1, and G1T, G1C, C6T of parSc3 (Figures A-B in S1 File, and [26]). It is also the case for

the double symmetrical mutations T1G-A16C and T5C-A12G of parSc1 (Fig 3A, Figure A in

S1 File, and [26]). Conversely all changes leading to a low BS did not delay growth in vivo: dou-

ble symmetrical A7T-T10A in parSc1; T5G-A12C and A7T-T10A in parSc3 (Fig 3A and 3B;

Figures A- B in S1 File, and [26]). Also, we found that the changes that maintain a relatively

high BS in this study, led to a band shift in EMSA: e.g single-arm T1G and T1A in parSc1; dou-

ble symmetrical T1G-A16C, T5C-A12G in parSc1, and double symmetrical C6T-G11A in

parSc3.
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We nevertheless observe that few parS derivatives that maintain a relatively high BS did not

delay growth by incompatibility, e.g single arm mutations T3C, T3A, T4A and T5A, in parSc1

(Figure A in S1 File and [26]). However, these derivatives are subtly modified parSs (one nucle-

otide change on one arm), so that the detection of their interaction with ParB could be particu-

larly dependent on the technique used. For example in vivo, any binding defect of the extra-

parS should be aggravated by its competition with the genomic parS, rendering the in vivo
approach more stringent but less suitable than SPRi to reveal weak interactions between ParBs

and modified parS.

Alltogether, these data suggest that, for most parS, especially those wild-type and their

multi-mutated derivatives, SPRi compares with the other techniques. Besides, it was estab-

lished for the ParB protein of the F plasmid that a two-fold reduction of the reflectivity–mea-

sured by SPRi for a half centromere site—corresponded to a 100 fold loss of affinity [9].

Certainly this observation indicates that the reflectivity is not proportional to the affinity; on

the other hand it suggests that most ParB/parS interactions, even those lessened compared to

the wt, are readily detected by SPRi. Thus SPRi is a valuable tool for the rough and wide detec-

tion of ParB/parS interactions.

Influence of the symmetrical structure of parS for binding ParB

ParBc1, ParBc3 and ParBpBC display for their half-parS a BS significantly above the negative

control value: 49%, 77% and 88% respectively of the BS for wild-type parS. This behavior is

shared by the ParB protein of the F plasmid [9]; and ParB2 of Vibrio cholerae was found to

bind a non centromeric site provided this site contains a half-parS sequence [33]. This suggests

that for many ParBs the initial interaction may occur at one arm of parS only. For ParBpBC

the reduction of BS is low (12%) which might further suggests that once a monomer has inter-

acted with the normal arm, the second monomer binds DNA whatever the sequence. At the

opposite, the BS for half-parS was severely impaired for ParB12D and dropped to basic for

ParBG4. In the latter case the binding of each HTH to both parS arms seems necessary for the

stable interaction of ParB.

ParB12J, whose natural parS is not symmetrical—one arm like parSc3 and one arm “non

parSc3” differing at two positions, also displays the capability to bind just one arm. The parSc3
arm is clearly the favorite (Fig 4A and 4B orange lines). More interestingly, we found that

ParB12J interacts with both palindromes corresponding to the perfect inverted repeat of each

arm of parS12J, i.e. parSc3 and “non parSc3” palindromes (Fig 4A and 4B blue lines). The BS

of ParB12J was even higher with parSc3 than with its own parS12J centromere. However, the

non symmetrical structure of parS12J is repeated identically on DNA and maintained in two

replicons (in Ralstonia pickettii 12J on a plasmid integrated into the chromosome, and in R.

pickettii 12D on a free plasmid). The conservation of this asymmetry suggests that a specific

adaption of ParB to this centromere occured, but certainly not for optimizing its binding. The

formation of a partition complex depends on the affinity of ParB for its minimal parS target

but also on the number of repeats of this target, the further spreading of ParB etc. . . Improving

the function of a Par system might sometimes be achieved through reducing the ParB/parS
affinity.

Determination of the positions tolerant to changes

Position (1–16) of parSc1, c3, pBC, 12D and G4 undergoes nucleotide changes while maintain-

ing the interaction with the cognate ParB. This has already been reported [9,26,34] and sug-

gests that the distal position has less importance for the specific binding of ParB. An exception

appears: ParB12J, whose binding to the palindromes parSc3 and “non-parSc3” is abolished
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when they are doubly modified at this position. If, as discussed above, ParB specifically adapted

to a non-symmetrical parS, this adaptation might, on the other hand, limit the spectrum of the

parSmodifications maintaining an interaction with ParB. In the context of “not natural” cen-

tromeres (i.e. palindromic in this case), the distal position (1–16) could be more crucial for the

binding.

In most parSs we found some internal positions also permissive to changes, like position

(5–12) in parSc1, parSG4 and parSc3 (in the latter case for binding ParB12J), position (6–11)

in parSc3 for binding ParBc3, and position (7–10) in parSpBC (Figs 3 and 4). It is also the case

of the position (2–15) in parSc3 for binding ParBc3, and in the “non-parSc3” palindrome for

binding ParB12J. Interestingly in both cases the transversion T2A is the best tolerated change,

which is atypical—we found mostly transitions in the less destabilizing changes, and strength-

ens the kinship previously proposed between 12J and c3. The patterns of permissive nucleotide

changes thus appear partly shared by few parS and partly specific.

The specific case of parSc1

ParSc1 appears the less permissive centromere to nucleotide changes: apart those distal (1–16)

and the transition at (5–12), all symmetrical changes abolished the interaction (Fig 3A). This

narrow specificity for binding ParB could be linked to the multi-chromosomal environment of

Burkholderia: a nucleotide change allowing ParB of another chromosome to bind parS of the

major chromosome would be detrimental for the genome stability. As parSc1 has the canonical

sequence of all parSs of single-chromosome genomes, it is interesting to determine if parSc1 is

less permissive than parS of single chromosomes. The analysis of nucleotide changes accepted

in chromosomal parS have been carried out in Bacillus subtilis [15,35], Streptomyces coelicolor
[36], Pseudomonas aeruginosa [34] and the main chromosome of Vibrio cholerae—which has

two chromosomes [37]. Analysis were carried out by chromatin immunoprecipitation (ChIP),

EMSA or fluorescence microscopy, testing only native parS variants, so that they are not as

wide as our SPRi analysis. Nevertheless a single change at only one distal position and one sin-

gle transition at position 5 or 12 (not the double change) naturally occurs in all parS and main-

tains an interaction with ParB, but less efficiently in chromosome 1 of Vibrio cholerae. To a

lower extent, positions 7 or 10 appear permissive in B. subtilis, P. aeruginosa and S. coelicolor.
By contrast in V. cholerae, like in B. cenocepacia, none of these latter positions are permissive

to mutations. We cannot exclude from these results that the interaction between ParB and

parS of the main chromosome is indeed more constrained in multi-chromosomal genomes.

As indicated, the single transition at position 5 or 12 naturally occurs on chromosomal

parS, and the double transition at 5–12 maintains a high BS in our analysis. This well tolerated

change could be finally fixed in some bacteria, allowing the emergence of a variant form of

parS. In this direction, it is interesting to point out that, while in most species the canonical

parS is TGTTTCACGTGAAACA—with only few repeats degenerated at position 5 or 1,

all chromosomal parSs of Pseudomonas species share the motif TGTTCCACGTGGAACA

[17,34], which is precisely changed at the position (5–12)—underlined. In Pseudomonas spe-

cies the double symmetrical transition T5C-A12G certainly took over the original parS because

of an undetermined selective pressure with a probable co-adaptation of ParB.

Drawing evolving links between the other Par systems of B. cenocepacia

In parSc3, at least three positions (1–16, 2–15 and 6–11) are tolerant to changes (Fig 3B). We

previously proposed that c3 has kept the features of an ancestral Par system from which 12D,

12J and G4 have emerged. The permissiveness of parSc3 to nucleotide changes strengthens

this idea: like the position (5–12) of c1 discussed above, any nucleotide change accepted in the
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ancestral parSc3 might be fixed, evolving progressively a new parS sequence. The change

G1A-C16T well accepted by parSc3, might have contributed to the formation of parSG4; the

tolerance of parSc3 to the change C6A-G11T is less obvious—Fig 4B and Figure B in S1 File,

but cannot be excluded. Further adapting modifications of ParBs would have allowed the

emergence of new but related Par systems forming the Bsr3 family.

Beyond the evolutionary changes proposed within the Bsr3 family, other evolving links

between the Par systems of B. cenocepacia could be considered, for example between pBC and

c3. We recently found that the segregation of the origin of c3 is essentially mediated by its Par

system, is less controlled by the cell cycle than those of c1 and c2, and is mostly similar to the

segregation of pBC [38]. Thus c3 of B. cenocepacia could have a plasmid ancestor and this plas-

mid could be that of B. cenocepacia i.e. pBC. In this hypothesis, parSc3 might have formed

from parSpBC. Three double changes are required in parSpBC for such a transformation:

C1G-G16C, G5T-C12A and T7A-A10T. SPRi shows that the first change is very well accepted

by parSpBC, but the two other ones much less (Fig 3C and Figure C in S1 File). Nevertheless

among internal positions of parSpBC, (5–12) and (7–10) appear weakly tolerant to some

changes. Besides once a mutation is fixed in a parS sequence, it generates a new parSmotif,

which should influence both an adaptation of ParB and the further capacity of parS to change

again. That parSc3 form from parSpBC, even-though progressively, thus remains an attractive

possibility.

Supporting information

S1 File. Sequences of all parS probes and binding scores obtained with the different

ParB extracts. Each Figure in S1 File displays the data by ParB as follows: Figure A,ParBc1;

Figure B, ParBc3; Figure C,ParBpBC; Figure D, ParB12D; Figure E,ParBG4; Figures F and G,

ParB12J. Figures A-G in S1 File show for each probe: (i) the name (column “probe”); (ii) the

16bp sequence (column “sequence”), (iii) the mean BS and standard deviation with the extract

over-producing ParB (column “BS ParB+”); (iv) the level of significance of the BS ParB+ (col-

umn “Sign”); (v) the mean BS and standard deviation with the extract non over-producing

ParB (column “BS ParB-”,). BSs are presented as histograms to the right of each Figure.

(DOCX)

Acknowledgments

We thank the centre Pierre Potier UMS 3039 for the free use of SPRi-Plex equipment.

Author Contributions

Conceptualization: F. Pillet FMP F. Pasta JYB VAL.

Formal analysis: F. Pillet.

Funding acquisition: JYB VAL.

Investigation: F. Pillet FMP F. Pasta.

Methodology: F. Pillet.

Project administration: F. Pasta JYB VAL.

Resources: F. Pillet FMP.

Supervision: F. Pasta JYB VAL.

Centromere binding specificities of six Burkholderiales replicons

PLOS ONE | https://doi.org/10.1371/journal.pone.0177056 May 31, 2017 12 / 14

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0177056.s001
https://doi.org/10.1371/journal.pone.0177056


Validation: F. Pillet F. Pasta JYB VAL.

Visualization: F. Pillet F. Pasta.

Writing – original draft: F. Pillet F. Pasta.

Writing – review & editing: F. Pillet FMP F. Pasta JYB VAL.

References
1. Hayes F, BarillàD. The bacterial segrosome: a dynamic nucleoprotein machine for DNA trafficking and

segregation. Nat Rev Microbiol. 2006; 4: 133–143. https://doi.org/10.1038/nrmicro1342 PMID:

16415929

2. Bartosik AA, Jagura-Burdzy G. Bacterial chromosome segregation. Acta Biochim Pol. 2005; 52: 1–34.

https://doi.org/055201001 PMID: 15827603
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38. Du W- L, Dubarry N, Passot FM, Kamgoué A, Murray H, Lane D, et al. Orderly Replication and Segrega-

tion of the Four Replicons of Burkholderia cenocepacia J2315. PLoS Genet. 2016; 12: e1006172.

https://doi.org/10.1371/journal.pgen.1006172 PMID: 27428258

Centromere binding specificities of six Burkholderiales replicons

PLOS ONE | https://doi.org/10.1371/journal.pone.0177056 May 31, 2017 14 / 14

http://www.ncbi.nlm.nih.gov/pubmed/10671452
http://www.ncbi.nlm.nih.gov/pubmed/11722739
https://doi.org/10.1016/j.cell.2008.07.044
http://www.ncbi.nlm.nih.gov/pubmed/18854156
https://doi.org/10.1128/JB.01067-10
https://doi.org/10.1128/JB.01067-10
http://www.ncbi.nlm.nih.gov/pubmed/21257772
https://doi.org/10.1016/j.cell.2009.02.035
https://doi.org/10.1016/j.cell.2009.02.035
http://www.ncbi.nlm.nih.gov/pubmed/19450516
https://doi.org/10.1016/j.cell.2009.04.044
https://doi.org/10.1016/j.cell.2009.04.044
http://www.ncbi.nlm.nih.gov/pubmed/19450517
https://doi.org/10.1111/j.1365-2958.2011.07722.x
https://doi.org/10.1111/j.1365-2958.2011.07722.x
http://www.ncbi.nlm.nih.gov/pubmed/21651626
https://doi.org/10.1128/JB.00041-12
https://doi.org/10.1128/JB.00041-12
http://www.ncbi.nlm.nih.gov/pubmed/22522899
http://www.ncbi.nlm.nih.gov/pubmed/6420530
https://doi.org/10.1128/JB.01230-08
http://www.ncbi.nlm.nih.gov/pubmed/18931103
https://doi.org/10.1111/mmi.13472
http://www.ncbi.nlm.nih.gov/pubmed/27480612
http://www.ncbi.nlm.nih.gov/pubmed/11069673
https://doi.org/10.1371/journal.pgen.1004184
http://www.ncbi.nlm.nih.gov/pubmed/24586205
https://doi.org/10.1128/JB.186.20.6983-6998.2004
http://www.ncbi.nlm.nih.gov/pubmed/15466051
https://doi.org/10.1111/j.1365-2958.2007.05690.x
http://www.ncbi.nlm.nih.gov/pubmed/17462018
http://www.ncbi.nlm.nih.gov/pubmed/12207703
https://doi.org/10.1128/JB.00416-07
http://www.ncbi.nlm.nih.gov/pubmed/17496089
https://doi.org/10.1371/journal.pgen.1006172
http://www.ncbi.nlm.nih.gov/pubmed/27428258
https://doi.org/10.1371/journal.pone.0177056

