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Abstract. Software development projects seeking a high level of ac-
curacy reach out to formal methods as early as the requirements en-
gineering phase. However the client perspective of the future system is
presented in an informal requirements document. The gap between the
formal and informal approaches (and the artifacts used and produced by
them) adds further complexity to an already rigorous task of software
development. Our goal is to bridge this gap through a fine-grained level
of traceability between the client-side informal requirements document
to the developer-side formal specifications using a semi-formal modeling
technique, model federation. Such a level of traceability can be exploited
by the requirements engineering process for performing different actions
that involve either or both these informal and formal artifacts. The effort
and time consumed in developing such a level of traceability pays back
in the later phases of a development project. For example, one can accu-
rately narrow down the requirements responsible for an inconsistency in
proof obligations during the analysis phase. We illustrate our approach
using a running example from a landing gear system case study.

1 Introduction

General software development methods do not lend themselves to the kind of rig-
orous analysis necessary for ensuring the degree of assurance required for safety
(or life) critical systems [I]. Formal methods attain that level of quality through
proper documentation and significant analysis. In projects using formal methods,
we usually come across domain artifacts (feasibility reports, existing models and
software, standards, etc.), user requirements document (also serves as a frame of
reference for the agreement between client and supplier) and the specifications
document (used for formally defining the requirements). The specification doc-
uments are prepared to concretize the software development team’s perspective
of the software under development [2]. Where requirements document is an in-
formal description of the system, a specification document uses rigorous formal
methods that serve for verification and prototyping of a designed system.

As a development project progresses, artifacts contributing to its goal are
produced. Traceability is the ability to link these artifacts together, so that one



can identify the relationship between them and trace back/forward to them.
Due to the gap between the informal and formal approaches, a requirement is
taken as a single unit of reference for traceability [3]. This amounts to a coarse-
grained traceability that overlooks individual concepts in each requirement [4].
We argue that a fine-grained level of traceability that can link individual con-
cepts in formal specifications to the individual concepts of informal requirements
shall help reduce this gap. Different approaches propose using a controlled nat-
ural language [5] to solve this issue. Even though the use of controlled natural
language helps reduce requirements ambiguity, it hardly offers any support for
improving the level of traceability between the requirements and specifications.

In a previous work, we proposed a concept-level traceability between the
informal requirements and the formal specifications [6]. As an extension to that
work, we use semi-formal models to formalize this traceability mechanism. We
chose model federation [7] to realize a framework for the development and co-
evolution of requirements and specifications. Model federation is an approach
that enables binding a set of models from heterogeneous paradigms together.
This binding is defined through a behavior that specifies the evolution of feder-
ated models in the development of a software system. Using this approach we
developed an open source tool that can link requirements documented in various
formats (word processors, spreadsheets, databases, xml files or Reqif supporting
tools) to the formal specifications. We illustrate the use of our framework using
examples from the landing gear system case study [8].

The rest of this paper is organized as follows. First, we describe the gap
between the informal and formal approaches in Section |2} The model federation
approach in presented in Section [3] In Section [4] we explain the structural core
and in Section [b] we describe the methodological aspects of our framework. We
share the lessons learned in various case studies, in Section [6}] Then in Section [7]
we discuss the state of the art. Finally, we conclude this paper in Section [§

2 The gap

Formal methods serve as the backbone of software engineering for critical and
complex systems [9]. They guarantee the correctness of the system under devel-
opment and help in early validation/verification of requirements. For example,
Event-B [10] is a formal method for modeling and reasoning about large reactive
and distributed systems. It is centered on the notion of transitions. Models are
developed using two basic constructs: contexts and machines. Building a specifi-
cation is a gradual process that uses context extension and machine refinement.
Rodin [11], an Eclipse based IDE for Event-B provides effective support for
refinement and mathematical proofs.

When working on a critical and complex system, one has to deal with both
informal and formal models during requirements engineering and/or early ar-
chitecture design. The most obvious informal model is the requirements docu-
ment that lists the requirements of the system to be built using natural lan-
guage. Even though some approaches propose a controlled structure for writing



the requirements [5], the requirements document remains informal. Tools like
spreadsheets and word processors are still extensively used for maintaining the
requirements [12]. Such tools along with other requirements management tools
(e.g. Rational DOORSEI) may provide the necessary flexibility for requirements
management, but they offer little support when it comes to traceability. Other
tools specifically designed for requirements traceability (e.g. ReqtinyD offer a
very coarse-grained traceability. They consider a requirement as a unit concept
and link it to other artifacts of software development. This makes it hard to keep
track of individual concepts that form the core of a system design.

Unless the traceability approaches can pin down the concepts that lead to
problems in specifications (e.g. conflicting requirements), the problem of gap be-
tween the informal and formal approaches in early software development can not
be resolved. Imposing formal languages for documenting requirements is not pos-
sible because requirements elicitation is often a shared responsibility of clients
and suppliers. In an earlier work, we also shared the case where the require-
ments document was almost completely prepared by the client organization [13].
Sometimes, the clients of critical and complex industry, especially from aviation
and defense sectors, prepare the requirements documents in advance and then
call for an open bidding for the projects. In requirement engineering, especially
for critical and complex systems, where formal specification helps ensuring the
correctness of the system, these informal requirements become the Achilles heel
of the complete process. Coarse-grained traceability to the requirements level is
not sufficient enough to cover this gap of informal to formal models. We argue
that a very fine-grained level of forward and backward traceability to/from the
specifications can reduce this gap. With such an approach at hand, one can even
look forward to semi-automatic co-evolution of requirements and specifications.

3 Model federation

Model Federation is a modeling approach where the focus is shifted from models
to group of models. Instead of manipulating a single large model, it promotes
using a set of interdependent models. This approach stems from the fact that a
model is not an isolated entity, rather it depends on other models. For example
one can federate a document file (.docx) with a list of states and a minimalistic
state automaton (xml file format of UPPAAL). A model federation is therefore
a chosen group of models reifying their dependencies to serve an intention. In the
context of the automaton federation example , it aims at ensuring the consistency
of the textual list of states and the automaton . An action on a member of a
federation might impact the whole federation. Hence, each action on a model
must be considered as an action on the federation. For instance, changing the
name of a state is an action both on the document file and the automaton.
While this conceptual approach can be applied in any discipline using models,
it is at its best when dealing with heterogeneous models pertaining to different

“https://www.ibm.com/us-en/marketplace/rational-doors
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Fig. 1. An example of a model federation

paradigms. Co-evolution is difficult in such a scenario [14], especially if one wants
to keep the various members of the federation in their respective paradigms [7]. It
is often easier to act directly on the federation rather than acting on it members
first and then recovering the consistency. The role of the federation therefore is
to reify the process of ensuring consistency between the models of the federation.
Notice that the level of consistency can vary, depending on the intention of its
designer. Some federations may constrain the possible actions on the models of
the federation to ensure a strict level of consistency. While others may choose
to gather the inconsistencies and require human intervention to resolve them.

The approach is relatively young but we have designed a framework with as-
sociated methods and tools. This framework relies on the following architecture.
A federation gathers a set of conceptual models, named virtual models and a
set of federated models. Each federated model pertains to a technological space
and uses the language of its specific paradigm while a virtual model is built
using the Federation Modeling Language (FML). Each federated model can be
viewed as an autonomous component while the virtual models serve as control
components. Figure (1| presents a simplified version of the automaton federa-
tion example that groups these different models. The upper half of the figure
illustrates the design of a federation with a model coming from the Word tech-
nological space (.docx file), another coming from the XML technological space
(UPPAAL file) and one virtual model reifying the dependencies between the
textual data and the corresponding automaton. A technology adapter (TA) is
a reusable library that defines connections between the FML execution engine
and a particular technological space.The model federation framework provides
ways to define TA. The automaton virtual model, shown in Figure [I] relies on
the two technology adapters (Docx TA and XML TA) for accessing the models
of respective technological spaces.

FML is a language designed to define virtual models. A virtual model is
composed of a set of concepts, while itself being a concept. Hence, virtual model
are structuring units while concepts are the core entities. A concept has a set
of roles and behaviors. A parallel to object-oriented approach can be useful to



understand FMIEL A concept corresponds to a class, its roles to the attributes
of the class and its behaviors to the methods of the class. In our example, a
concept State is presented with two roles, txtltem and uppaalState. These roles
have types defining the kind of value the role will point to at runtime. Our
example illustrates three forms of such types i.e. another concept for next , a
type defined in a TA for txtltem or a type defined in an external model for
uppaalState . Whenever a type external to the federation space (from a TA or
an external model) is used, one needs to use a model slot. A model slot is a
mediation entity, associated with a TA, in charge of giving access to external
elements of the corresponding technological space. A model slot defines a view
on an external model by interpreting it as a set external concepts. Notice that a
model slot can limit its interpretation to the needed part of the external model.

FML is designed to define not only the structure of the virtual models but
also their behavior. Beware, here the behavior means the collection of actions an
engineer will be able to perform on a model federation. It is different from the
behavior of the System Under Study. The rename operation already cited for
the automaton federation is an example of this behavior. One could also define
operations to add or remove states, transitions , etc. The renaming operation is
defined by a rename behavior in the concept State. It uses the setText action of
the Word TA and rename from the XML TA. When the FML execution engine
runs a federation, it creates virtual model instances containing concept instances.
Some concept instances are connected to external elements through model slot
instances. The lower part of the figure [I] illustrates this runtime phase.

The tool support for model federation framework, Openﬂexﬂ is developed
as an open source initiative with active community around it. This tool offers a
FML execution engine with an interactive virtual model design environment. It
has been used in several use-cases including model mapping, multi-paradigm pro-
cess modeling and enterprise architecting. It has also been used to build a tool,
the freemodeling editor that has been put to practice in industrial projects [15].
As of today, this tool offers some mature technology adapters (docz and excel
for documents, EMF and OWL for modeling languages, JDBC for databases,
REST and XMLRPC for external services and one for diagramming tools) and
some other rudimentary ones (pdf, http, XML and powerpoint).

4 Linking requirements to specifications

In order to overcome the informal to formal barrier, as described in Section
we developed an approach to link requirements and formal specifications using
a fine-grained level of traceability. We develop a model federation using three
virtual models in federation space i.e. requirements, specification and glossary
virtual models. For the requirements, this federation connects to any of the three
technological spaces shown in Figure |2l It may connect to other technological

5Beware, even though useful for comprehension, this correspondence is not reliable,
as some aspects of FML do not map to object oriented concepts
"http://openflexo.org and https://github.com/openflexo-team
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Fig. 2. Model federation for requirements to specification tracing

spaces for which the tool offers a technology adapter e.g. databases, EMF, service
oriented platforms, etc. For formal specifications, currently we are supporting
Event-B technological space through XML technology adapter.

4.1 Requirement Virtual Model

We benefit from the strength of model federation by developing a virtual model
for requirements. Instead of rewriting the requirements using a formal grammar
or transforming the requirements into another (formal or semi-formal) model,
the requirement virtual model interprets the textual requirements for our specific
use of traceability. It allows identifying and tracing back to individual concepts
within the textual description. For our specific use, we only need two concepts
from a requirement i.e. the requirement identifier and its textual description.
Functional and non-functional requirements are treated the same way, as long
as there is a corresponding concept in both the requirement and the specification.
Using existing Technology Adapters, requirement virtual model can connect to
heterogeneous platforms to get any requirements from a word processor, spread-
sheet or RIF/ReqlF compliant XML formats (e.g. DOORS, ProR, etc.).
Requirement concept of requirement virtual model, as illustrated in Figure
gets the identifier and the textual description of the requirement from the con-
nected Requirements Technological Space. It also contains two boolean type roles
isValidated and isConsidered that are used to relay back the information to
the concerned stakeholders about the status of a requirement; whether or not
it was included in the specification and does it pose any proof obligation issue.
The IdentifiedConcept refers to a word/sub-phrase in the textual description
of the requirements document which carries an equivalent formal concept in
the system specification. The exploration and selection of concepts ensuring the
conformity to the defined needs is a progressive activity carried out for the de-
velopment of specifications in complex software development. For example, the
European Cooperation for Space Standardization details a complete process in

[ Requirement VM ---,

‘ Requirement “>  ldentifiedConcept

ﬂ ; id: String conceptKeyword: String
description: String

[
: isValidated: Boolean
: isConsidered: Boolean

S i S

Fig. 3. Simplified requirement virtual model
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ECSS-E-ST-10-06C, starting from the identification of possible concepts to the
establishment of technical specifications [I6]. The behavior part of this model,
not shown in the figure, allows to describe the operations like relaying the infor-
mation to the stakeholders, observing any change in the requirements, triggering
certain behavior in the connected Glossary VM, etc.

4.2 Specification Virtual Model

Specification VM interprets a specification with the intention of linking it to the
requirements. The long-term objective of this virtual model is to interpret spec-
ifications from different (lightweight) formal methods, however we have focused
on the Event-B specifications for the moment. Still, the use of model federation
offers tool independence by allowing us to use the same virtual model for Atelier
B, Rodin or B-Toolkit. Figure [4] illustrates the key concepts of the specification
virtual model. The notions of local variable, action, variants and invariants, etc.
are abstracted behind EventProperty and MachineProperty for brevity.

The goal of interpreting an Event-B model is to gather the formal concepts
from a specification and to identify the kind of those concepts. A formal concept
can be of any kind e.g. a machine, variable, constant, etc. We believe that the
behavior of a trace link between an informal concept and a formal concept de-
pends on the kinds of those concepts. For example, when an informal concept in
a requirement is traced to a constant concept of a specification, one can define
the behavior of the trace link such that a change in an informal concept auto-
matically changes the formal concept, but a change in formal concept requires a
validation of a requirement engineer to be propagated to the informal concept.
For such federation level behavior, the user can add an operation in Specification
VM that triggers the behavior of the linked virtual models. Specification VM
already contains the behavior for observing the Event-B technological Space and
triggering various behaviors of the Glossary VM.

4.3 Glossary Virtual Model

Glossary VM is the key model that binds Requirement VM and Specification
VM. The InformalConcept from this model is linked to the Requirement VM,



Glossary VM -~

<<InformalCKind>> InformalConcept FormalConcept <<FormalCKind>>
Verb informalKeyword: String formalKeyword: String: System
Noun kind: InformalCKind kind: FormalCKind Machine
Number path: String Context

create() .
update() create() Variable
delete() update() Constant

] delete() Event
refine() MachineProperty

String

T
| I

rmal enc

Trace isPOTrue() EventProperty
- - - Guard
<<TraceKind>> id: String L1 Predicate
Fact kind: TraceKind ormal enc Set

Functionality create()
Obligation update()
Behavior delete()

T

Fig. 5. Glossary virtual model

from where it gets the informal keyword of the concept. This keyword can be
of any kind specified by the InformalCKind. For the moment, we have left it to
the user to choose the kind of the concept, but for an industrial application, one
can integrate Natural Language Processing techniques (e.g. [17]) that can parse,
extract and categorize the concepts from the requirement descriptions.

The FormalConcept of the glossary virtual model is linked to the Specification
VM, from where it gets the formalKeyword. It also specifies the kind of the con-
cept amongst the ones described by the FormalCKind. Where InformalConcept
only defines the basic manipulation behaviors like create, update and delete,
the FormalConcept also defines the refine and isPO0True behaviors. The refine
behavior carries the information about the refinement of an Event-B machine
to the corresponding requirement in the requirements document. The isPOTrue
behavior notifies the concerned stakeholders of the requirement, whether or not
the proof obligations of the corresponding Event-B machine are validated. Trace
binds the InformalConcept with the FormalConcept. Each trace has a unique
identifier. The create and update behaviors assign a kind to the trace amongst
the ones defined by TraceKind :

— A Fact connects an informal concept of Noun, Number or String kind to a
formal concept of Constant, Set, Variable, etc. These trace links are used
by requirements that specify facts about the future system.

— A Functionality connects an informal concept of Verb kind to a formal
concept of Event kind. A requirement linked to this kind of trace describes
an expected functionality of the system under development.

— An Obligation connects an informal concept of String kind to a formal
concept of Axiom, Invariant, Theorem and Guard kinds. These trace links
are used for preconditions or postconditions on the functioning of a system.

— A Behavior is a collection of Functionality links, such that their events
must be performed in a temporal order. The informal concept is a String (a
sub phrase) that contains the functionality concepts along with their order
and links them to each of their corresponding formal concepts. The informal
concept in the requirement specifies a behavior expected of the future system.

It is important to note here that our objective is not to exhaustively define
the behavior of all kinds of trace links, but to propose a mechanism where such



® © ® Entreprise Architecture Editor : Initialise fml.rt - Formose - /U:

Ml @ (7 () Formose

# Formose > §& Initialise Specification.fml.it 3¢ W InF-Formal Process >

rome () i
:

Contrlld dngramming - CTRL-drg o draw dges ] o roregrouna |- N

Fig. 6. Enterprise architecture editor

behavior can be specified. The three virtual models i.e. RVM, SVM and GVM,
are used by the tool providers. An end user defines its traceability links with a
set of available behavioral templates provided by the tool provider. The virtual
models are instantiated in the background. Unless the user needs a customized
behavior, she does not need to work with the virtual models. A strong motiva-
tion for choosing model federation was its ability to decouple the technological
dependence from the core behavior of the methodology. For example, the behav-
ior chosen for a trace link between a requirement and Event-B machine does not
depend on the tool used for documenting the requirements. The technological
aspects of a requirement coming from DOORS or from an Excel spreadsheet do
not alter this behavior. They are confined in the Technology Adapter.

5 Process driven approach

To witness the full potential of our framework, one needs to define the process
that integrates the building blocks from the models presented in the previous
section. Using the Openflexo tool, we have developed a process modeling editor
that serves for defining the process, as shown in Figure[6] Once defined, each ac-
tivity is linked with the behaviors of individual virtual models for the execution.
The user has the liberty to define a desired behavior for each activity.

As the tool follows a process driven approach, it does not impose a specific
behavior to the user. We demonstrate the use of our framework by discussing
few examples of the activities from the landing gear system case study [§].

1. Initializing a machine: At the start of the specification process, there ex-
ists no corresponding Event-B machine for the concepts identified in the
requirements document. The user identifies an informal concept, for which
(s)he plans to develop an Event-B machine. Same thing happens, when a
concept found in the requirements document does not correspond to any
existing machine and the development of a new machine is intended. In the
example of Figure [7] the user identifies “landing system” as informal con-
cept. As per the process of Figure 6] when no corresponding machine exists,
the framework offers to create a new one. Specification VM can be used for
creating a stub for the new machine. Once the machine is created, “Land-
ing_system” is identified as a machine concept of Specification VM and it is
linked to the informal concept “landing system”.
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Fig. 7. Virtual Model Instance - Initializatiorﬁ

. Updating a trace link: The default behavior of the framework when the name
of an Event-B machine (e.g. Landing_System) changes is to update the glos-
sary and maintain the trace link. Conversely, when the name of the informal
concept landing system changes, the framework generates a notification for
the system analyst to check for probable inconsistencies. Even though the
framework provides a default behavior for the activities associated with trac-
ing, thanks to the model federation approach, the user has the flexibility to
define a different behavior. Usually the behavior of such activities is encoded
within the tool implementations, and changing the behavior is impossible or
at least difficult in case of open source software. For model federation, this
behavior is not coded in the tool, rather defined in the model itself.

. Adding new trace links: The process of linking requirements to formal spec-
ifications is fairly flexible and varies from case to case. One can choose an
informal concept and link it to an existing formal concept. But it can also go
the other way round, when one selects an existing formal concept and links it
to a concept from a requirement. In Figure[7] we see that “gears” from FR-3
is linked to the “gears_pos” in Landing_System machine. Once this link is
formed, the user goes in the reverse direction for linking this formal concept
to other identified concepts from the requirements that refer to it. Similarly,
the user links the informal concepts “extending” and “extend gears” to a
corresponding formal concept “extend_gears” through a trace link of type
functionality, as shown in Figure |8 It is important to know that multiple
derivatives of a single informal concept (e.g. extending, extend gears, etc.) do
not need to have different corresponding formal concepts. One can notice in
the figure that the complete description of FR-18 forms an informal concept
linked to the guard of the Landing_System machine.

. Early requirements validation: The process of tracing the requirements to the
formal specifications forms the basis of validation. A requirement can have
trace links to multiple Event-B machines and similarly a machine can have
links to multiple requirements. The process of validation does not need to
wait till the requirements document is complete. Hence, as the requirement
document is under development, the formal specification process can start in
parallel. This way requirements are traced to the specifications as and when
they arrive. The isPOTrue property of the formal concept in the Glossary
VM keeps track of the proof obligations of the linked Event-B machine. If the

8 This figure does not show the instances of RVM and SVM for the reason of brevity.
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proof obligations of all the machines traced by a requirement’s concepts are
proved, the isValidated property of the requirement virtual model returns
true. If a requirement is linked to the glossary but the trace is not complete
to the formal specification, the isConsidered property of the requirement
virtual model return false. This way the information about the validity of
the requirements is relayed back to the stakeholders.

5. Refinement of requirements and specifications: Requirement elicitation is a
gradual process that involves the refinement of abstract level requirements
to the concrete level requirements. This process can be carried out at re-
quirements or specifications. When an informal requirement is refined, all
the informal concepts reappearing in the refined requirements with their cor-
responding formal concepts are notified to the stakeholder for possibly new
trace links. In case of a refinement of an Event-B machine, the information
is passed through the refine property of the glossary virtual model. The
goal is to trigger new trace links from the requirements to the new machine.

The tool implementation for this approach also supports requirements elici-
tation, links to domain models, ontologies and goal models, etc. but they are out
of scope for this article ﬂ The intention is to show parts of the default process
and the possibility to define user-specific processes. The tool being modular, we
have linked this requirement to specification traceability module with our previous
modules e.g. goal modeling and requirements elicitation modules [13].

6 Lessons learned

During the early development of the approach, we focused on two case studies
i.e. the landing gear system [§] and the hemodialysis machine [I§]. Finally we
implemented our approach on a real-life case study provided by our industrial
partner from aviation and aerospace industry, under a research project, FOR-
MOSE, funded by French National Research Agency (ANRB Based on our
experiences with these implementations, we share the following lessons learned:

1. Parallel incremental development of requirements and specifications: During
our case studies, we found out that it is not necessary to wait for the require-

9FORMOD tool is available at https://downloads.openflexo.org/Formose
19Bound by a non-disclosure agreement, we can’t share the details of this case study.
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Fig. 9. Specification version of requirements document

ments document to start the specifications. As soon as requirements start to
pour in, the development of specifications can start. The parallel and incre-
mental development of both these artifacts helps requirements elicitation.

. Fine-grained traceability: We applied a very fine-grained level of traceabil-
ity going down to the concept level, within each requirement. Such a level
of traceability helped the analysts to associate proper requirements to the
justifications of each concept at the specification level. It also helped in cate-
gorizing the requirements according to their corresponding implementations
in the formal specifications. Prioritization of requirements from the clients
perspective is a common practice, but when combined with the specification
view of priorities, it helps stakeholders to take informed decisions.

. The validation of the informal requirements: Late validation of requirements
after the requirements engineering phase increases the cost of corrective mea-
sures. The proposed framework helped in bringing the validation process
close to requirements elicitation so much that the validation of requirements
is done in parallel with the requirements document development. Once de-
veloped, it helps in proving the correctness of the formal specification in
relation to the concepts present in the informal requirements, all along the
development process. Maintaining the trace links in a glossary reduces the
effort of validating complex specification models through refinement.

. Automation of traces: One of the main reasons for using model federation for
the linking informal requirements to formal specifications was the possibility
of operationalizing the trace links. A trace link is not just a pointer from
an informal concept to a formal concept, it contains a behavior. This allows
to (semi-)automate some tasks of linking the two artifacts. Some behaviors
we came across during the case studies were automatic update of constants,
triggering notifications to the stakeholders, generating requests for proof
obligations, changing the state of requirements from valid to conflicting, etc.
Verification of requirements: Because the traceability of requirements to for-
mal specification was taken to a fine-grained level, the introduction of cor-
responding concepts helped in the verification of formal specifications. We
found out that such traceability helps in detecting omissions in the re-
quirements (initial states, implicit undescribed requirements, or absence of
scenarios) or contradictions between the specifications and requirements.

. Specification versions of clients documents: An interesting finding of the im-
plementation of our framework to the industrial project was that the speci-
fication stakeholders relate more with the formal text than the informal one.



The available trace links made it very easy to generate a version of require-
ments document where the informal concepts were replaced with the formal
ones, as shown in Figure[9] This eased their comprehension of requirements
and improved the communication within the team.

7 Related work

The gap between the informal requirements and the formal specifications was ac-
knowledged and has been a topic of research interest for the past three decades.
Deriving VDM specifications from Structural Analysis (mostly Data Flow Di-
agrams) [I9], Object Constraint Language (OCL) specifications from UML use
cases [3] and system specifications from Problem Frame descriptions [4] are few
of the examples to bridge this gap. However, most of such efforts are tools and
technology specific endeavors. They lack a generic methodology that can be ap-
plied in a variety of configurations. The main focus of our work is to reduce the
technology dependence from the methodology of linking informal requirements
to formal specifications. From the requirements perspective, we accept require-
ments coming from any tool or described in any formalism. For the specifications,
we only implemented Event-B model for now. This is an implementation short-
coming but it does not alter the proposed methodology.

KAOS is a refinement-based goal-oriented methodology for deriving specifi-
cations formalized using Linear Temporal Logic from informal requirements [20].
KAOS facilitates the derivation of system specifications through refinements, but
imposes its own requirements description (goal modeling) methodology and con-
strains the language used for formal specifications. Besides, KAOS suffers from
the lack of support for non-functional requirements. Li et al. [21] present another
refinement based approach for the transformation of informal requirements to
formal specifications, that can handle NFRs. They use a requirement ontology
for classification and propose a requirements modeling language. The advantage
of the proposed methodology is that the user is not restricted to any specific
requirements specification method or tool.

Our work is notably closest to the approach of Jastram et al. where their re-
quirement model differentiates between phenomena (state space and transitions
of the system) and artifacts (the restriction on states and transitions) [22]. They
classify the artifacts into Domain Knowledge (W), Requirements (R), Specifica-
tions (S),Program (P) and Programming Platform (M). Once formalized, these
elements of requirements are mapped to Event-B, using ProR [23]. The main
difference with our approach is that we propose explicit definition of traceability
behavior in the trace links. Apart from mapping the concepts of informal re-
quirements to formal specifications, we classify different kinds of trace links. The
behavior of each kind of trace link is then reused for providing semi-automatic
co-evolution of requirements and formal specifications.

Heisel et al. proposed a requirements elicitation process that is independent
of the specification language [24]. An extension to their work using Rodin and
ProR offers a fine-grained traceability between informal requirements and formal



specifications [6]. We have proposed yet another extension to this work using
model federation. The advantage of this extension is that the trace links are
now fine-grained to a concept level and that they contain the behavior of the
trace, rendering them executable. The main limitation of our approach is the
cost it incurs. Indeed, the process of maintaining the consistency between the
requirements and the formal specifications must be reified. A method engineer
has to define the corresponding behavior. Furthermore, the specification engineer
needs to invest time for linking individual concepts of informal requirements to
the formal specifications. However, this investment provides improved clarity and
the possibility of automating certain activities in case of requirements change.
Notice also that probably common behaviors would emerge and provide a set of
reusable federation behaviors, lowering the cost of their design.

8 Conclusion and future work

We proposed a framework for linking informal requirements to formal require-
ments specifications. The main contributions of our approach are: (i) fine-grained
traceability between individual concepts in a requirement and individual con-
cepts in a formal specification, (ii) a mechanism for the incorporation of behav-
ior within the trace links, and (iii) tooling and methodology for the incremental
development and co-evolution of requirements and formal specifications. We are
currently working on an operational semantics of FML using a process calculus
encoding similar to [25]. The aim of this semantics is twofold. First, we plan to
check the correctness of our FML interpreter. Second, we would be able to prove
properties about behaviors, for example, a modification of an artifact leads to a
corresponding modification of artifacts depending on it. Proving properties of
the process alongside the product would help certification of critical systems.
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