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Introduction

Dendritic non-linearities increase neurons’ computation capacity, turning them into
complex computing units [4]. However, network studies are usually based on point
neuron models that do not incorporate dendrites and their non-linearities. In con-
trast, the study replicated here [2] uses a simple point-neuron model that contains an
effective description of dendrites by a non-linear summation of its excitatory synaptic
input. Due to the simplicity of the model, both large-scale parameter exploration of
a medium-sized network, as well as an analytical investigation of its properties are
feasible.

The original study was based on simulation and analysis code in C and Mathe-
matica, but this code is not publicly available. Here, we replicate the study using the
neural simulator Brian 2 [1, 6], a simulator based on the Python language that has
become a common choice in computational neuroscience [3]. This simulator offers a
good trade-off between flexibility and performance and is therefore a suitable choice
for this study of a non-standard neuron model.

Methods

Neural network model

The simulations in the original paper were done in phase representation, but our imple-
mentation uses the more standard representation in terms of the neurons’ membrane
potential. The membrane potential V; of neuron i, measured relative to the resting
potential, is described by:

M1 AP S A D Wei(t=7) | = > wmei(t=7), (1)

dt : ;
JEE; Jjel;

where V (¢) is the membrane voltage at time ¢, 7,,, the membrane time constant, Vj
the displacement of the membrane potential due to a constant external input, wex
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and wj, respectively the excitatory and inhibitory weights, 7 the transmission delay,
and F; and I; the indices of neurons that connect with respectively excitatory and
inhibitory weights to neuron 7. If the membrane potential crosses a threshold O, it
emits the spike and its membrane potential is reset to its resting potential, i.e. 0mV.
The function €; is 1 whenever neuron j spikes, and 0 otherwise. Equation 1 is an
alternative, mathematically equivalent formulation of equation (1) of [2].

The originality of this model lays in a filtering of the excitatory inputs by the
function o to model dendritic non-linearities. The study considers two functions o
(see Fig. 1 of the original paper and insets in Fig. 3). Linear coupling, defined by
o(x) = z, and non-linear coupling with:

T, ite <V,
o(x) = (Vat Et(@—Va), iV, <z <V, (2)
Ve, otherwise.

For this non-linear function, the biological interpretation is that below a first thresh-
old V,, excitatory inputs are propagated passively by the dendrite and sum linearly.
Above this threshold, they trigger a dendritic spike, resulting in an amplified somatic
voltage. If they are even higher and cross the threshold V;, they stop increasing the
somatic voltage and saturate. Note that this non-linearity only affects spikes received
synchronously as has been observed experimentally [5]. With the introduction of this
non-linearity, the modelled point neuron becomes an effective model of a neuron with
one non-linear dendrite.

The network consists of N neurons, where a directed synaptic connection between
a pair of neurons is established with probability py. Each of these connections is
taken to be excitatory with probability pex, and inhibitory otherwise. Note that this
connection scheme implies that neurons cannot be separated into groups of excitatory
and inhibitory neurons, a neuron typically projects with both excitatory and inhibitory
connections to other neurons.

The parameter values used in the original study as well as in our replication are
summarised in Table 1.

Parameter Symbol Value

Number of neurons N 1000

Connection probability Do 0.3

Probability connection being excitatory DPex 0.5

Excitatory connection weight Wex 0.2mV (varied in Fig. 2)

Inhibitory connection weight Wip 0.2mV (varied in Fig. 2)

Membrane time constant Tm, 8 ms

Firing threshold C] 16 mV

External input Vo 17.6mV  (effect on V)

Synaptic delay T 5 ms (but see Imple-
mentation section)

Threshold for supra-linear summation Va 2mV

Threshold for saturation Vi 4mV

Saturation value V. 6mV

Table 1: Parameter values used in the simulations

Implementation and numerical methods

The authors of the original study provided us with the principal C and Mathematica
code used in their study. However, this code does not compile and run any more with
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recent Mathematica versions. Our implementation is not based on this code, but only
on the descriptions in the original paper (with minor clarifications provided by the
authors where necessary).

The authors of the original study used an event-based simulation scheme, exploiting
the linearity of the sub-threshold dynamics. Due to this linearity, the membrane
potential can be advanced for arbitrarily large time spans between spikes, and spike
times do not have to be bound to any temporal grid. In contrast, the Brian simulator
is built on a clock-driven paradigm where time is advanced in discrete steps. This
is because the simulator supports a wide range of neural models of and event-driven
methods can only be applied to a small number of simple neuron models, and also
becomes computationally demanding in large networks with many spikes.

All simulations presented here have been performed with a step size of 0.1 ms and
the forward Euler integration algorithm (changing to an exact integration based on
the analytical solution of the linear equations did not change the results).

Note that the event-based method used in the original study has important conse-
quences for the specific implementation of non-linear synaptic summation: only spikes
that arrive exactly synchronously can sum up non-linearly. This, together with the
synaptic delay that is constant over all connections, implies that the non-linearity will
only apply to spikes that originate from neurons that spiked perfectly synchronously
one synaptic delay earlier; randomly occurring spikes have only an infinitesimally small
chance to arrive at the receiving neuron synchronously. When using a clock-driven
algorithm, as we do in this replication, this is no longer the case. All neurons that
spike within the same time step will deliver their spikes to their target neurons at the
same time step, potentially triggering non-linear summation. While the clock-driven
method is a less accurate method in general, we would argue that in the context of
non-linear summation it is actually closer to the biological phenomenon it models.
While dendrites detect synchronous events with sub-millisecond precision [5], this pre-
cision is of course finite. With that said, the qualitative results of the original study
can be replicated with a clock-driven method, as we will show in the Results section.

For linearly coupled networks, the neuron model is a standard leaky-integrate-and-
fire neuron with “delta synapses”, i.e. incoming synaptic events instantaneously affect
the membrane potential as soon as they are received. In Brian, this model is described
as follows (omitting the code to connect the synapses and set their weights):

eq = "dV/dt = -gamma*V + VO : volt"
G = br2.NeuronGroup(N, model=eq, threshold="V>Theta",
reset="V=0*mV", method='euler')
exc_syn = br2.Synapses(G, G, 'w : volt (constant, shared)',
on_pre='V += w', delay=5 * ms - dt)
inh_syn = br2.Synapses(G, G, 'w : volt (constant, shared)',
on_pre='V -= w', delay=5 * ms - dt)

Note that the delay has been set as one time step (dt) less than 5ms. This is because
in Brian, when a neuron receives synaptic input, this input can only trigger a threshold
crossing of the receiving neuron in the following time step. To get chains of propagated
synchronous spikes every 5ms as in the original study, we therefore have to reduce the
delay by one time step.

We used the predefined clip function to implement non-linear coupling in the
network. The function clips a value to a given range, following the syntax

clip(value, lower_bound, upper_bound)

We employed this function on the received excitatory inputs stored in a placed
holder variable ve. The variable corresponds to x in eq. 2. We then reset the variable
ve back to 0 to prepare for the next time step. In Brian syntax (the definition of the
inhibitory synapses is identical to the linearly coupled network):

eq = nnngy/dt = -ga_mma*V + VO : volt
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ve : volt
nnn

G = br2.NeuronGroup(N, model=eq, threshold="V>Theta",
reset="V=0*mV", method='euler')
exc_syn = br2.Synapses(G, G, 'w : volt (constant, shared)',
on_pre='ve += w', delay=5 * ms - dt)

G.run_regularly(''"'

V += clip(ve, 0*mV, 2*mV) + clip(2*(ve-2*mV), OxmV, 4*mV)

ve = 0*mV

''', when='after_synapses')

The run_regularly operation applies the non-linearity to the summed input at
every time step.

In addition to random initial conditions, i.e. random initial values of the mem-
brane potential, the simulation includes 1-50 random spikes “initially in transit”. The
original article does not go into further details about their implementation, so we de-
cided to use the following: at the beginning of the simulation, a uniformly distributed
number between 1 and 50 is drawn to determine the total number of initial spikes.
These spikes are “in transit”, meaning that they are modelled as arising from events
before the start of the simulation. Since the synaptic delay in the network is 5ms,
we draw the arrival times for these spikes between Oms and 5ms. Consistent with
the probability for excitatory connections in the network (pex = 0.5), we take half
of these spikes as arising from excitatory and half from inhibitory sources, modelling
their effect as described above.

To facilitate simulation, we use the joblib library to automatically store results
and to distribute computation over processor cores. Several simulation and analysis
functions are annotated with a @mem.cache decorator, meaning that their input argu-
ments and outputs will be automatically stored to disk and calling the function will
return the stored values if available. This feature does not only ease development (e.g.
plotting functions can be changed without re-running the underlying simulations), but
also allows to interrupt long-running parameter explorations without losing the results
obtained so far. The same result could be achieved by manually storing results to disk,
but joblib’s caching mechanism helps to avoid common errors (e.g. to re-use an old
result obtained with an outdated version of the code) while keeping the code readable.
To reduce the total simulation time, the grid exploration in Fig. 2, and the analysis of
group size evolution in Fig. 3 have been distributed over processor cores using joblib’s
Parallel construct. For the simulations presented in Fig. 2, multiple repetitions for
the same combination of synaptic weights are distributed over processor cores, for the
simulations presented in Fig. 3, simulations are evaluated in parallel over group sizes.
In both cases, a number of C — 1 parallel processes is used, where C' is the number of
processor cores in the user’s system.

We wanted reproducible simulations despite the use of random connectivity and
initial conditions. Setting a single global seed was not sufficient because we used
parallel simulations executed in non-deterministic order. Instead, we used a set of
pre-determined seeds, one for each figure, and used those “meta-seeds” to generate a
set of random seeds for each individual simulation.

For the grid search presented in Fig. 2, we varied inhibitory and excitatory synap-
tic weights between 0.16 mV and 0.4mV. Given that each neuron receives on average
150 excitatory and 150 inhibitory inputs, this corresponds to a “total weight” between
24mV and 60mV, as used on the axes of Fig. 2. We used a resolution of 100 steps
for each variable, comparable to the 96 steps used in the original publication. Each
network was simulated 10 times with different initial conditions (synaptic connec-
tions and initial membrane potential values), whereas the original publication used 20
simulations per weight combination.

To numerically derive the evolution of synchronous pulse sizes presented in Fig. 3
(for the semi-analytical approach, see the next section), we performed simulations of
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56 ms each. During each simulation, we stimulated the network at 50 ms with a syn-
chronous pulse of activity, consisting of between 1 and 181 neurons (varied in steps
of 5 — the original study used group sizes in the same range varied in steps of 6). We
then observed the number of active neurons at 55 ms, i.e. at one 7 after the stimula-
tion. For each stimulation group size, we ran the simulations 50 times with different
initial conditions, consistent with the original study. To achieve a better quantitative
match with the original study, we applied a correction for the stimulation group size
g6 and the observed group size ¢} in the next iteration (for the uncorrected results,
see Fig. 7). We refer to the corrected values as g and g1, respectively. These correc-
tions are necessary because of the background activity and our clock-based simulation
method and are motivated as follows. The activity of the full network in the absence
of stimulation is about 55kHz (see Fig. 1). Given that our simulation uses a time
step of 0.1 ms, this means that at every time step about 5.5 neurons on average are
synchronously active. When we stimulate a network with a pulse of g synchronous
neurons, the actual number of synchronously active neurons is therefore higher than
this stimulation. Similarly, we have to correct the size of the observed group in the
next iteration. In contrast to the simulation strategy of the original publication that
could make use of an “infinite precision” to detect synchronous spikes triggered by the
stimulation, our simulation will also detect all the synchronous spikes resulting from
the background activity. In the corrected values shown in Fig. 3 we therefore used the
actually observed synchronous spikes §{, > ¢, at the time of the stimulation, and the
number of added spikes due to the stimulation §] = ¢lsim — 9ino stims WHEre ¢lstim
is the number of synchronous spikes we observe in a network with stimulation, and
9ino stim the number of observed spikes in a network without stimulation. Both net-
works are simulated with the same random seed and therefore have the same network
connectivity and the same initial conditions; the only difference lies in the presence or
absence of external synchronous stimulation. Note that the correction for g slightly
“overcorrects”, as it discards all spikes that are resulting from background activity,
even those that also would have been triggered by the stimulation.

Semi-analytical and analytical methods

We did not attempt to replicate the analytical solution for the evolution of synchronous
pulses based on diffusion approximation (blue dots in Fig. 4 of [2]), since the original
publication did not give a detailed description of this approach. However, we replicate
the semi-analytical work that was described in more detail.

To calculate the semi-analytical solutions for Fig. 3, based on a numerical estimate
of the distribution P(V'), we proceeded as follows. First, we ran 2 x 50 (once for
the linear, once for the non-linear network) simulations of 250 ms. FEach of these
simulations was randomly connected and had random initial conditions, but received
no additional synchronous stimulation. The original study additionally simulated each
of the 100 networks 10 times, with the same synaptic connectivity but differing in the
initial conditions. We then binned all membrane potential values over all time steps
and neurons into 100 bins in the voltage interval [—©/8, O] to obtain an estimate of
P(V), the distribution of the membrane potential. Note that the original study did
not further specify how P(V') was estimated from the simulation results.

We then calculate the expected synchronous group size after one iteration as in the
original publication. To make this calculation clearer, we now describe its derivation
in detail. From the distribution P(V) we can estimate the probability F' that an
additional input e drives the neuron over its threshold (or equivalently, that the neuron
is less than e away from its threshold):

Fl=PV>6-0= [ PW)v 3)
©—¢

Let €(nex, nin) be the total input to a neuron that receives ney excitatory and ni,
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inhibitory spikes, i.e. €(nex,nin) = 0(NexWex) + Ninwin. Let us assume that in the
previous iteration g; neurons spiked and that these neurons are refractory now, i.e.
that N — g; neurons are available to spike in this iteration. To calculate the probability
for a single (non-refractory) neuron j to spike in response to these g; neurons, we
will first calculate the probability that out of the g; neurons that spiked, exactly mex
neurons are connected with excitatory connections and n;, neurons are connected with
inhibitory connections to neuron j. There are ( gi ) possibilities to chose ey + nin

Neox+MNin
nex+mn)
n,

out of g; neurons, and ( possibilities to divide these neurons into groups of size

Nex and ny,. This yields the total number of combinations c(gi, Nex, Nin ):

C(g n T ) — gl nex + nin — gl' (4)
b e T Nex + Nin Nex nex!nin!(gi — Nex — nin)!

The probability that these selected neyx neurons are actually connected via excitatory
connections to neuron j, that the n;, neurons are actually connected via inhibitory
connections to neuron j, and that the remaining g; —n.x—n;, neurons are not connected
to neuron j is:

p(gi, Tex, nin) = (p()pex)ncx (pOpin)nin (]- - pO)giincx*nin (5)

Finally, we need to sum these probabilities up over all possible values for neyx and nyy,,
multiplying it with the probability that the generated input elicits a spike. This yields
the total probability P*(g;) that a neuron j spikes in response to the activity of g;
neurons in the previous iteration:

gi  Gi—MNex

Pgi) = > Y F(e(Nex;nin)) (i Mesc: in)P(is Mescs Min) (6)

Nex=1 njn=0

In Fig. 3, we plot the expected value of spiking neurons during the next iteration,
given a certain initial synchronous pulse g/:

E(git1lgi = g;) = (N — g;)P*(g}) (7)

Results

We first replicate a simulation showing the propagation of synchronous spiking activity
in networks using linear (Fig. 1A) and non-linear (Fig. 1B) coupling. This figure
corresponds to Fig. 2 of the original article. Given that the simulations are based on
random synaptic connections and random initial conditions, we do not expect exact
replication of spike times, but the qualitative features of the simulation are faithfully
replicated: synchronous activity quickly dies out and disappears in the background
activity for linearly coupled networks (Fig. 1A) but is persistently propagated in non-
linearly coupled networks (Fig. 1B).
To confirm the equivalence of our network’s behaviour with the original study over
a wide range of synaptic connection strength we ran a grid search exploration for lin-
early (Fig. 2A) and non-linearly (Fig. 2B) coupled networks. Network behaviour is
colour-coded as being part of one out of four classes: stable activity, but no persis-
tent propagation (green); stable activity with persistent propagation (blue); unstable
activity after synchronous stimulation (yellow); unstable activity before synchronous
stimulation (red). For quantitative definitions, see Table 2. We run each combination
of connection strengths 10 times, and combine the results to yield a colour in RGB
notation (values between 0 and 1 for the red, green, and blue component), according
to:
R=U;+U;; G=E+Uy;; B=S5, (8)
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Figure 1: Propagation of synchronous spiking in linearly (A) and non-linearly (B) coupled
networks. We initiate a chain of synchronous pulses by applying external supra-threshold inputs
to the first 100 neurons at time ¢ = 150 ms (red coloured spikes, grey vertical dotted lines indicate
times where spikes occur as part of the chain). Top row: total size g’ of synchronised groups
within the chain. Middle row: network rate over all neurons (rate in kHz, bin size 1 ms). Bottom
row: spiking activity of the first 200 neurons in a network of a 1000 neurons versus time.
Replication of Fig. 2 in [2] (https://doi.org/10.1371/journal.pcbi.1002384.g002).

Class Definition
Ui (red) Unstable before stimulation It < tstim : ap(t) > 100
Us (yellow) Unstable after stimulation It > tetim : ap(t) > 100
E (green)  Stable activity, no propagation Vit s ap(t) <100 A gp < 10

S (blue)  Stable activity, persistent propagation V¢ : ay(t) < 100 A g, > 10

Table 2: Classification of network behaviour for Fig. 2. Here, ay refers to the background activity,
the number of neurons active during a 1 ms time bin, ignoring the time steps at tl,f = tstim + k- T,
i.e. time steps that follow the synchronous stimulation by multiples of the synaptic delay. The
variable g, refers to the number of successful propagations of the synchronous activity, i.e. the
number of time steps t]; where the number of active neurons exceeds the maximal background
activity ay.

where Uy, and U, stand for the fraction of trials displaying unstable network activity
before respectively after onset of propagation, and S and E for the fraction of trials
displaying stable background activity with respectively without persistent propagation.
We obtained this scheme directly from the authors of the original study, it was only
coarsely described in the original publication. Combining individual results in this way
does not necessarily lead to easily interpretable colours, but using a different scheme,
e.g. colouring according to the class that occurred the most often, leads to visually
similar results (Fig. 4).

Our replication does not reproduce all quantitative details of the original plots.
For non-linearly coupled networks, the parameter range where simulations are only
unstable after they receive the synchronous stimulation (yellow) is smaller than in
the original article. The original article shows for each inhibitory connection weight a
range of excitatory connection weights of about 5mV with such a behaviour. In con-
trast, our simulations show a much smaller such zone when the inhibitory connection
strength is small (Fig. 2B). It seems that these differences mostly stem from the fact
that the transition to the regime where simulations are unstable without stimulation
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Figure 2: Qualitative network behaviour as a function of excitatory and inhibitory connection
strength for linearly (A) and non-linearly (B, C) coupled networks. For each combination,
we initiated synchronous activity with 100 (A, B) or 75 (C) neurons and assessed the stability of
the temporal evolution. Blue colouring indicates stable propagation of synchrony, red indicates
unstable background activity before onset of propagation, yellow indicates unstable background
activity after onset of propagation, and green colouring indicates the absence of propagation (see
Methods for details).

Replication of Fig. 3 in [2] (https://doi.org/10.1371 /journal.pcbi.1002384.g003)

(red) happens for lower excitatory and higher inhibitory connection strength in our
simulations than in the original article, i.e. that the red zone is shifted towards the
bottom left. This is particularly evident for strong excitatory and inhibitory connec-
tions in non-linearly coupled networks (bottom right in Fig. 2B and C) which are
unstable in our simulations, but stable or only unstable after stimulation in the orig-
inal publication. Simulating the parameter combination corresponding to the point
in the bottom right corner of the plot at different time resolutions (Fig. 6), we find
that this difference does indeed seem to be triggered by limited time resolution in
the model. The forced synchronisation of all spikes to a grid of 0.1 ms, together with
the homogeneity of the synaptic delays, leads to strong oscillations in our simulation
(Fig. 6A), which is consequently classified as unstable. When we use a simulation
time step of 0.01ms, these oscillations disappear and the network activity therefore
gets classified as “stable without persistent propagation”. Finally, non-linearly coupled
networks show a discontinuity for weak inhibitory connection strengths in the original
publication. For increasing excitatory connection strengths, network behaviour goes
from stable (blue) to unstable after stimulation (yellow) to unstable before stimula-
tion (red), but then get classified again as stable (blue) in a small range of parameters
before finally transitioning to unstable activity (yellow and red). We do not observe
this in our simulations, but simulations with a finer time resolution (Fig. 5C) indicate
that this difference could be caused by the limited time resolution of our simulations
as well.

Despite these differences, the qualitative network behaviour looks very similar on
a coarse scale. Importantly, it strongly supports the original paper’s main conclusion
that non-linearly coupled networks have a large parameter range of stable propagation
(i-e., blue-coloured points), while linearly coupled networks do not. The differences in
our replication are most likely due to our use of a clock-based simulation method with
a limited time resolution (see Fig. 5 and Fig. 6). In principle, another reason could be
implementation details of the initial “spikes in transit” that were not fully specified in
the original article, but this seems unlikely since completely removing them did not
change the results in a noticeable way (not shown).

Finally, we looked at the evolution of synchronous group sizes for one combination
of synaptic weights (wex = win = 0.2mV) in detail (Fig. 3). The results confirms our
previous conclusion that we can faithfully replicate the network behaviour which shows
identical qualitative behaviour; the group size consistently declines with each iteration
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Figure 3: Evolution of synchronous pulses in linearly (A) and non-linearly (B) coupled
networks. To numerically estimate the probability distribution, we show occurrences of pulse-
sizes g} in response to a pulse of size g, by grey lines; green squares represent the corresponding
mean response group sizes.

Replication of Fig. 4 in [2] (https://doi.org/10.1371/journal.pcbi.1002384.g004)

in linearly coupled networks (Fig. 3A), whereas it increases for intermediate group sizes
and declines otherwise in non-linearly coupled networks (Fig. 3B). Quantitatively, the
semi-analytical results also match well. Based on the plotted values in the original
publication (Fig. 4 in [2]), the curve based on the semi-analytical solution crosses the
identity line at about 85 (G1) and 135 (G3) for non-linearly coupled networks, peaking
in between for g{, = 125 and ¢7 =~ 139. In our simulations, it crosses the line at about
86 and 134, and peaks at g) =~ 126 and g} =~ 137. As in the original article, our
numerical results show slightly lower values for the group size in the next iteration,
with the biggest difference for values around the peak of the function for non-linearly
coupled networks (Fig. 3B). However, we see a quantitative difference for low initial
group sizes. In these simulations, the original publication shows a close match between
the numerical results and the semi-analytical solution. In our simulation, the semi-
analytical solution overestimates the numerical one. Be reminded that to obtain this
good quantitative match, we had to apply a correction to the numerical results, as
explained in the implementation section (for the uncorrected values, see Fig. 7).

Despite the small quantitative differences, our work strengthens the original result
by demonstrating a qualitative difference between linearly coupled and non-linearly
coupled networks.

Discussion

We managed to qualitatively reproduce the main results of Raoul-Martin Memmes-
heimer and Marc Timme [2] despite some quantitative differences. The grid search
over parameters showed a higher prevalence of networks with unstable activity before
the onset of stimulation compared to the original study. In the analysis of the evolu-
tion of synchronous pulses of different sizes, our results need a correction for the use
of a clock-based simulation method to show a good quantitative match with the orig-
inal results. However, a marked difference remains for small initial group sizes. The
differences we see are most likely due to our use of clock-based instead of event-driven
simulations, as it forces all activity to a temporal grid of finite precision. However,
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the main qualitative finding—non-linearly coupled networks have a large parameter
range supporting persistent propagation of synchronous activity whereas linearly cou-
pled networks do not—remains if we use finer (0.05ms) or coarser (0.2ms, 0.5ms)
temporal resolutions (data not shown).

The reusable code we provide with this work paves the way to future studies of
networks of non-linearly coupled integrate-and-fire neurons. It gives researchers the
means to verify that the original study’s conclusion hold under variations of its model
assumptions, such as the details of the connectivity scheme or the synaptic model.
This article has already provided a first such verification, demonstrating that the
original studies main findings do not critically depend on the event-based method and
the entailing “perfect time resolution”. Finally, we hope that the provided code can
also serve as a basis for future studies of functional paradigms going beyond the mere
propagation of synchronous activity.
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Supplementary Figures
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Figure 4: Most-often observed qualitative network behaviour as a function of excitatory and
inhibitory connection strength All conventions as in Fig. 2, but points are coloured according the
observed qualitative behaviour that occurred the most often among the 10 independent simulations
for given connection strengths.
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Figure 5: Zoom on qualitative network behaviour with different simulation time steps.
Colour code as in Fig. 2. Results are shown for a smaller range of connection strengths than in
Fig. 2, and only for non-linearly coupled networks with an synchronous stimulation of 100 neurons.
The total inhibitory connection strength was varied between 24mV and 34.55mV, the total
excitatory connection strength was varied between 34.91mV and 45.45mV, i.e. the parameter
range corresponds to a square region at the top of Fig. 2B. Simulations where performed with
simulation time steps of 0.1 ms (A, also the value used for all other simulations shown), 0.05ms
(B), and 0.01ms (C).
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Figure 6: Propagation of synchronous spiking in strongly connected networks when simu-
lated with a time step of 0.1 ms (A), or 0.01 ms (B). All conventions as in Fig. 1, but for strong
recurrent connections (wex = win = 0.4mV). Both simulated networks use non-linearly coupling,
the network shown in panel (B) is simulated with a 10-times finer temporal resolution compared
to the other results shown.
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Figure 7: Evolution of synchronous pulses without correction in linearly (A) and non-linearly

(B) coupled networks.

All conventions as in Fig. 3. The numerical results shown here (grey

lines and green squares) are not corrected for the bias introduced by the clock-driven integration
method (see text for details).
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