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« We propose a method that detects automatically bad channels from intracranial EEG (iEEG) datasets.
« It computes iEEG features specific to bad channels and uses an ensemble bagging classifier.
« The bad channel classification accuracy was demonstrated to be excellent on a large data sample.
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F:atﬁr;r;;frzction Objective: Intracranial electroencephalographic (iEEG) recordings contain “bad channels”, which show

Ensemble bagging non-neuronal signals. Here, we developed a new method that automatically detects iEEG bad channels
Machine learning using machine learning of seven signal features.
Methods: The features quantified signals’ variance, spatial-temporal correlation and nonlinear proper-
ties. Because the number of bad channels is usually much lower than the number of good channels,
we implemented an ensemble bagging classifier known to be optimal in terms of stability and predictive
accuracy for datasets with imbalanced class distributions. This method was applied on stereo-
electroencephalographic (SEEG) signals recording during low frequency stimulations performed in 206
patients from 5 clinical centers.
Results: We found that the classification accuracy was extremely good: It increased with the number of
subjects used to train the classifier and reached a plateau at 99.77% for 110 subjects. The classification
performance was thus not impacted by the multicentric nature of data.
Conclusions: The proposed method to automatically detect bad channels demonstrated convincing
results and can be envisaged to be used on larger datasets for automatic quality control of iEEG data.
Significance: This is the first method proposed to classify bad channels in iEEG and should allow to
improve the data selection when reviewing iEEG signals.
© 2017 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. This is an
open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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(electrocorticography, ECoG) (Fernandez and Loddenkemper,
2013), are used to localize the epileptogenic zone in some patients
with drug-resistant focal epilepsy where other non-invasive mea-
sures are limited. These techniques permit to collect prominent
data for assessing brain dynamics in pathological and physiological
conditions. Particularly, they allow studying human brain
connectivity by measuring intracranial responses to direct electri-
cal stimulations (DES) (David et al., 2010; Selimbeyoglu and
Parvizi, 2010; Keller et al., 2014). In clinical routine, DES of focal
cortical regions is performed using a bipolar derivation of two con-
tiguous contacts and electrophysiological responses are recorded
on the remaining contacts, using either ECoG or SEEG. The signals
recorded on the two electrodes of stimulation become automati-
cally noisy because the inputs of the amplifier are no longer
measuring brain signals.

iEEG recordings thus come with non-neuronal signals from dis-
connected electrodes during the stimulation procedures, but also
with sensors malfunctioning or other parasitic electrical activity
recorded by iEEG amplifier and current drift. The channels showing
these aberrant signals are classically identified as “bad channels”,
after visual inspection by experts. Since bad channels can spoil
the quantitative analysis and interpretation of iEEG signals, it is
important, specifically for large datasets, to develop methodologi-
cal approaches that automatically identify them. There are differ-
ent approaches available in literature that address this
challenging task for scalp electroencephalographic (EEG) signals
(Shoker et al., 2005; Nolan et al.,, 2010; Mognon et al., 2011;
Lawhern et al., 2013; Alotaiby et al., 2015; Mur et al., 2016). Most
often, bad channel detection methods build upon the high spatial
correlation of EEG signals and thus predict the value of each chan-
nel at each time point from the activity of all other channels at the
corresponding time points. A given channel can be considered as
bad if it does not correlate with other channels in its neighborhood
for a certain threshold. Unfortunately, this assumption is not valid
in the case for iEEG signals, where the spatial correlation is much
smaller (Nolan et al., 2010).

Despite the great progress made in the literature to automati-
cally detect various types of artifacts from EEG signals, there is still
a lack of techniques that specifically handle the problem of bad
channels in iEEG data, as to our knowledge no automated method
has been published. In practice, the user has to navigate across all
stimulation channels to visually identify the bad ones, which has a
number of constraints. First of all, this procedure requires a certain
level of expertise in iEEG reviewing. Second, this is a tiresome work
and it needs a lot of processing time especially for large datasets.
Third, it has a poor degree of reproducibility due to intra- and
inter-expert variability.

To solve those issues, we propose here a methodological
approach that automatically identifies the bad channels from iEEG
recordings using ensemble bagging machine learning. This
approach includes feature extraction from iEEG signals, training
the classifier algorithms and bad channel prediction step. We take
the example of SEEG data recorded during DES and used to com-
pute cortico-cortical evoked potentials (David et al., 2013) as we
are developing a large multicentric database of such data (f-tract.
eu). The method developed here consisted of quantifying several
features related to the presence of artifacts from a large number
of SEEG files containing DES data. Visual inspection of these data
by a SEEG expert allowed to classify the channels as bad or good.
From this visual classification, an ensemble bagging classifier was
trained and specificity and sensitivity of the machine learning
method was quantified using data resampling.

2. Methods
2.1. Clinical procedure and data acquisition

Epileptic subjects (n = 206) used to produce this methodological
report have been recorded by five epilepsy surgery units (Grenoble
University Hospital - GRE: n =67; Nancy University Hospital -
NAN: n =32; Lyon University Hospital - LYO: n=11; Paris Roth-
schild Foundation - ROT: n = 97; Bucharest University Hospital -
BUC: n=3). These drug-resistant epileptic patients underwent
SEEG recordings and stimulations as part of the presurgical evalu-
ation, in addition to the other standard exams. SEEG acquisitions
and DES at 1 Hz were carried out respecting the conformity of con-
ventional procedure applied at each clinical center to properly
extract the brain regions to be removed. All the patients gave their
written informed consent for their data to be used by the research
protocol F-TRACT (INSERM IRB 14-140).

For each patient, 8-17 semi-rigid intracerebral electrodes con-
taining from 5 to 18 contacts of 2 mm length (Dixi Medical, Besa-
ncon, France) were implanted, unilaterally or bilaterally, in various
cortical areas. SEEG recordings of up to 256 contacts simultane-
ously were done with a video-EEG monitoring system with a sam-
pling rate of either 256, 512, 1024 or 4096 Hz depending on the
cases. One Hz stimulations (pulse width: 1-3 ms) were delivered
between contiguous contacts with a rectangular pulse generator
of current, using stepwise increasing intensities up to 4 mA or until
clinical subjective or objective responses or after-discharges were
obtained. Each stimulation run lasted 40 s or less. SEEG data were
acquired using a referential montage with the reference electrode
chosen in the white matter. A different file was created for each
stimulation run, using up to 40 s of baseline before the start of
stimulations (and less if the previous stimulation run ended less
than 40 s before) and finishing 3 s after the last stimulation pulse.
A total number of 10.576 files corresponded to the 206 patients (on
average, 51 + 49 files/patient). A monopolar montage as recorded
was used to detect bad channels visually and automatically.

2.2. Visual description of bad channels

Because bad channels are supposed to be due to instrumental
defaults, all data need to be processed as recorded, i.e. using the
recording montage configuration, for achieving a correct bad chan-
nel labeling. Once it is done, any kind of montage can be used for
the processing of the data because no additional bad channels will
be “created” by a linear combination of good channels.

Bad channels were thus determined by experts using visual
inspections of all stimulation files as recorded. Given a stimulation
artifact present in a channel recording, different bad channel types
could be identified. Fig. 1 shows an example where one can
observe: (i) electrode contacts detached from the EEG amplifier
(channels a7 and a8); (ii) electrode contacts corrupted with line
noise (channels a2, a3, a6 and a9); (iii) channels with intermittent
electrical connection (channel f11).

2.3. Feature extraction

The computer-assisted approach required a certain number of
features to classify bad channels. Here, we selected seven features
already used in the literature to remove artifacts from EEG data
(Shoker et al., 2005; Nolan et al., 2010; Mognon et al., 2011;
Lawhern et al., 2013) that can also be applied to iEEG recordings
for detecting bad channels.
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Fig. 1. Typical SEEG recording during DES with different observed types of bad channels (in red): (i) channels disconnected from the EEG amplifier (channels a7 and a8); (ii)
channels with line noise (channels a2, a3, a6 and a9); (iii) channels with sharp transients due to bad electrical contact (channel f11). (For interpretation of the references to

colour in this figure legend, the reader is referred to the web version of this article.)

i

il.

Correlation coefficient: Because of the limited spatial resolu-
tion of iEEG, a subset of local electrodes measures spatially
correlated brain activity. Therefore, a channel with a low
correlation of its activity with the one of its neighbors has
an increased likelihood to be bad. The first feature is thus
the average of correlation coefficients of every channel with
respect to neighboring channels, considered to be on the
same electrode shaft, at a maximal distance of 5 contacts.
The mean correlation coefficient yi,,. for a given channel X;
was computed as follows:

) 1
Heor =4 > _Cor(X;,X;) (1)
=1

where Cor(X;,X;) is the Pearson correlation coefficient
between channel X; and X;, and n the number of channels
in the neighborhood of X; (Nolan et al., 2010; Mognon
et al.,, 2011).

Variance: A channel with a higher variance with respect to its
neighboring channels has also a higher probability to belong
to the bad channel class, under the assumption that artefacts
add variance to the recorded signals. This feature was also
taken into consideration for classification purpose. For this,
we computed a normalized channel variance ¢/? as follows:

2
72 _Gi

0" ==
i 2

(2)

where ¢? is the variance for channel X; and 62 represents the
median of the variances of neighboring channels (Shoker
et al., 2005).

iii. Deviation: The electrical drift during SEEG recordings can

reflect bad channels in terms of electrical impedance. The
mean amplitude for a given channel that diverges from the
mean amplitude of its neighboring channels can reveal such
behavior. It was computed with the following formula:

Ay = =y 3)

where A} and g, are respectively the deviation and mean
amplitude of channel i. u, is the mean of neighboring chan-
nels’ amplitudes (Nolan et al., 2010).

iv. Amplitude: The movement of electrodes modulates the

impedance between the contact and the electrodes, which
in turn alters the offset of electrode voltage. This offset alter-
ation corrupts the channel signal, which is determined by its
high amplitude. This signal artifact can be identified by com-
puting the amplitude range normalized by the median of

local channels’ amplitudes A (Shoker et al., 2005):

A max(X; ) — min(X;)

i 3 (4)

. Gradient: The gradient parameter was used to detect high-

frequency activity in a channel. For this, we computed the
mean gradient of channels using the following formula:
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1 lulG
=18 (5)
where y is a normalized mean gradient of channel i and fi¢
is the median gradient across neighboring channels (Nolan
et al., 2010; Mognon et al., 2011).

vi. Hurst exponent: The Hurst exponent H is used as an index of
long-term memory of time series (Nolan et al., 2010). Typi-
cally, EEG recordings have values of H ~ 0.7, and channels
with Hurst exponents that diverge from this standard value
are potentially artifacted. In the same line, the Hurst expo-
nent can be applied to detect SEEG bad channels. Given a
channel X of length n and mean amplitude p,, this parame-
ter is computed using the algorithm 1.

vii. Kurtosis: An electrical activity may appear in one of the
channels and be absent in the remaining ones. Such events
can be detected by computing the kurtosis in all channels.
Given that the kurtosis indicates the presence of outliers in
datasets, the highest value reveals which channel shows a
particular event (Mognon et al., 2011).

Note that all feature extraction scripts have been implemented
using a commercial software package (MATLAB 9.0, The Math-
Works Inc., Natick, MA, R2016a).

Algorithm 1. Calculation of Hurst exponent

1: Calculate the mean amplitude y, of channel: p, =131 | X;

2: Create a mean centered channel: Y; = X; — p, for
t=1,2,....n

3: Compute the cumulative channel deviation Z;: Z; = ZleY,»
fort=1,2,....n

4: Compute the channel amplitude range R;:
Ry = maXie(1 4 (Zi) — MiNe1 o (Z;)

5: Compute the standard deviation o,:

Tn = A0 (X — pta)?

6: The Hurst exponent H is given by the following equation:
1/2
H =log <§—>

2.4. Choice of classification model

A priori, the datasets have imbalanced class distributions
because the number of bad channels is much lower than the num-
ber of channels that belong to the class of good channels. Further-
more, the class of bad channels is the class of interest as far as the
learning task is concerned. In this case, standard classifier learning
algorithms, such as support vector machine, decision trees, logistic
regression classifiers, discriminant analysis, and so on, are more
sensitive to the finite size of classes in training samples. The degree
of weights, for instance in the majority class (here, the class of good
channels) is amplified to take advantage of the greater occurrence
of instances correctly classified while the instances from the
minority class (bad channels) are penalized by low weights as they
are usually considered as artefacts. In such a way, bad channels are
more often misclassified than good channels (Galar et al., 2012).

Here, we used an ensemble classifier approach to cope with the
problem of the class imbalance (Dietterich, 2000). The basic idea of
the ensemble methodology is to build different classifiers from the
initial data and then to combine their forecasts once new uniden-
tified instances are available. This approach is inspired from the
human natural behavior in such way that before any important
decision is taken, different consultations had to be gathered. The
objective of the ensemble methods is to compile a significant

diversity among the individual models they combine and to come
up with a new robust classifier that provides more stable and accu-
rate results that outperform each and every single model. The driv-
ing principle of combining the predictions of several learning
algorithms is to improve generalizability and robustness over a
single independent model: for a given test sample, a classifier algo-
rithm that provides a higher classification accuracy will be taken
into account with higher weights in that test sample region.
Ensemble methods combine many diverse classifiers into a global
predictive algorithm in order to reduce variance, bias and thus to
improve overall predictions results (Dietterich, 2000; Galar et al.,
2012).

2.5. Model training and class prediction

We have chosen an ensemble bagging model because of its
specific ability to improve classification in terms of stability and
predictive accuracy. It also reduces the variance of the classifica-
tion and helps to avoid overfitting (Galar et al., 2012). The ensem-
ble model used here was implemented in a commercial software
package (MATLAB 9.0, The MathWorks Inc., Natick, MA, R2016a).
We trained the bagging model using channel features from SEEG
datasets, where bad channels were previously labeled by experts.
As input, this algorithm took an array of data: channels in raws
x 8 columns (the first 7 feature columns and the last column for
class labels). After training of the classification algorithm, the pre-
diction is done by applying the trained classifier on new SEEG data-
sets. The input of the trained model is of the same form as the
training dataset (table or matrix) and the trained model returns
predictions.

2.6. Classification accuracy

The classification performance was assessed using the accuracy
rate Acc:

TP + TN
ACC = 15 CEN T FP 1IN (©6)

where TP (true positive) is the number of channels labeled as bad
and identified as bad channels and TN (true negative), the number
of channels annotated and predicted as good channels. FP (false
positive) is the number of channels annotated as good identified
by the algorithm as bad channels and FN (false negative), the num-
ber of channels labeled as bad channels and classified as good.

We evaluated the number of subjects required to obtain a stable
classification accuracy. To that end, we trained and tested the clas-
sification model with sets of subjects of different sizes (from 10 to
200 subjects for the training set, with a regular step of 10 subjects)
randomly chosen among the 206 subjects. For each size of the
training datasets, the accuracy rate of classification was computed
19 times.

3. Results
3.1. Extracted features

Fig. 2 shows channel features extracted from 466 SEEG stimula-
tions of 10 subjects where the two classes (good channels in blue
and bad channels in red) can be visually discriminated. Using these
features, ensemble bagging was able to detect different types of
SEEG bad channels as depicted in Fig. 3.
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Fig. 2. Channels features from 466 SEEG stimulations of 10 subjects. The two channel classes (good channels in blue; bad channels in red) are shown for each pair of features.
Features (see Section 2) are: Correlation (Corr); Variance (Varn); Deviation (Devn); Amplitude (Ampl); Gradient (Grad); Kurtosis (Kurt); Hurst exponent (Hurs). Except for
Hurs, the amplitude of features was normalized for visualization purpose. (For interpretation of the references to colour in this figure legend, the reader is referred to the web

version of this article.)

3.2. Classification accuracy

Fig. 4 shows the classification accuracy as a function of the
number of subjects used in the training set. With 10 subjects only,
the classification accuracy was on average as high as 98.63%. It
then increased linearly and reached a plateau at 99.77% for 110
subjects. When more subjects were added to the training set, the
accuracy remains unchanged. Therefore, the classification model
could be considered as stable and readily usable for any new data-
set from there on, with excellent precision. With such high values
of classification accuracy, one could anticipate that the classifica-
tion was robust according to the origin of the data. We explicitly
tested this prediction by classifying data coming from centers that
were not including in the training dataset. For a training dataset
composed of 110 patients, the classification accuracy of the data
from each center was very high (BUC: 99.7%; GRE: 99.6%; LYO:
99.6%; NAN: 99.5%; ROT: 99.8%).

3.3. Most discriminant features selection

We evaluated the classification ability of each candidate feature
to find the most discriminants among others. To achieve this goal,

we have used filter methods (Kohavi, 1997) which rely on general
characteristics of the data to evaluate and assess the merits of fea-
tures without taking into account the selected classification model.
Under the assumption of no interaction between features, we
applied the t-test on each feature and compare p-value for each
feature as a measure of how accurate it is at classifying bad and
good channel groups (Corr: p<0.0001; Varn: <0.0001; Devn:
0.0103; Ampl: <0.0001; Grad: 0.2306; Kurt: <0.0001; Hurs:
0.0078). The computed p-values of all features indicate that all fea-
tures were discriminant except Grad.

4. Discussion

In this paper, an automatic method for the detection of bad
channels in iEEG datasets was proposed. It was applied to multi-
centre large datasets that contained bad channels as found in stan-
dard continuous recordings, but also disconnected channels during
direct electrical stimulations. The main property of the method is
the use of different features and ensemble bagging classifier not
only to identify the bad channels but also to cope with datasets
with imbalanced class distributions. The results demonstrate a
very good accuracy rate (99.77%) and stable classification perfor-
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Fig. 4. Bad channel detection accuracy and error with ensemble bagging model, as a
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mances with a training set of about 100 patients and a test set of
similar size.

To the best of our knowledge, this report is the first to investi-
gate the possibility to automatically detect bad channels from iEEG
data. The methods chosen used up-to-date classification methods
from features of interest that were inspired from the methods
already developed for scalp EEG (Shoker et al., 2005; Nolan et al.,
2010; Mognon et al., 2011; Lawhern et al., 2013). In the implemen-
tation of the model for iEEG data as compared to scalp EEG, less
emphasis was put on the spatial smoothness of the data as iEEG
shows weaker spatial covariance. Different features, i.e. Hurst and
Devn, were introduced to be sensitive to highly nonlinear signals.
However, it should be noted that the presence of the artifact of
stimulations in both good and bad channels did not limit the accu-
racy of the classifier.

Our goal was to develop a method able to deal with data from
multiple centers, acquired under different conditions and parame-
ters. We addressed this objective by computing features that are
relatively independent of the sampling rate, that is that do not rely
in temporal derivatives and frequency contents. By testing the

accuracy rate for the patients coming from the different centers,
we did not find any significant difference between the centers. This
suggests that the classifier can be applied with good confidence to
new iEEG datasets coming from different origins.

The proposed method has no profound limitation, except that a
training data set has to be prepared by visual inspection of experts.
This may be difficult and cumbersome to achieve, but once it is
done, the classification model is very easy to use and allows fast
classification of channels. One of the advantage of the approach
is that the model can be easily incremented with new data in the
training set for a larger repertoire of artifacts. This technical note
reports early advances of the F-TRACT project (f-tract.eu) for which
we collect a large database of cortical stimulations and where an
automatic classification of bad channels was required. We thus
quantified the accuracy of the methods with the data of the 206
first patients ready to be processed. For the forthcoming patients,
the outcome of the model will be systematically controlled visually
as part of our quality control procedures. In case of false positive or
false negative classification, we will update the classification
model. The model is available in open access and will be regularly
updated on the F-TRACT webpage (f-tract.eu).

Although the classifier was trained on stimulation data at 1 Hz,
the method is also valid to classify bad channels during non-
stimulation periods with the same training dataset because many
channels did not contain stimulation artifacts and thus could be
considered as if recorded during non-stimulation interictal periods.
The used training set is however not sufficient to readily take into
account stimulation periods performed at other frequencies, such
as 50 Hz, the most common frequency in current clinical proce-
dures. In that case, the training dataset will need to be extended
to other stimulation protocols to improve the chances of correct
classifications for a various set of stimulation configurations.
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