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While powerful techniques exist to accurately account for anharmonici
they are computationally very expensive and cannot be routinely €mpl
zero vibrational temperatures. Motivated by the study of Polycyclic
in space, we developed a new code, which takes into account All modes
including bands becoming active due to resonances as well as“gyer;
In this article, we describe the methodology that was impl
overcome, so as to keep the problem tractable. Benchmarking wit
on a small molecule. We carried out specific convergence
and coronene (Co4Hiz), aiming at optimising tunablé param
computational costs for this class of molecules. We
coronene, comparing the calculated spectra with avail

i@l molecular spectroscopy,

d for large species and/or at non-
omati¢ Hydrocarbon (PAH) emission
d can describe all IR transitions

s, combination and difference bands.
nd discuss how the main difficulties were
igh-level calculations was performed
ts on two prototypical PAHs, pyrene (C16Hig)
to achieve both acceptable accuracy and
rt, the results obtained at 0K for pyrene and
rimental data. The theoretical band positions

1en T
ilable ex

were found to be significantly improved compared to h ofte Density Functional Theory (DFT) calculations.
The band intensities are in reasonable agree%@i periments, the main limitation being the accuracy
e
1

of the underlying calculations of the quartic )

high-temperature spectra of PAHs and other

PACS numbers: 33.20.Ea,33.20.Tp,98! ,98.

N

Polycyclic Aromatic Hydrocarbons (P \af&a fam-
ily of organic compounds composed of aromatic rings

containing carbon atoms, and gvhose“peripheral bonds
are saturated by hydrogen atenis, PAHS (or closely re-
lated species) are thought carriers of the so-

called Aromatic Infrared S t ~3.3, 6.7, 7.7,
8.6, 11.3 um."? These féature

.

I. INTRODUCTION

e afmong the strongest
emission features obsefwve interstellar medium.?

Therefore, the infr R) ctroscopy of PAHs is of
paramount import cde‘ﬁ astrophysics. PAHs absorb

nd ultraviolet domain via elec-
it most of this energy in the

ional/de—excitation cascade. In such
it most of the flux in the AIBs

sults from the superposition of the emission of
fferent temperatures, each of which be-
osition of a large number of individual
vibsational transitions from a statistical distribution of
states. Due to anharmonicity, each of these

states expected to have a shifted position with re-

a)Electronic mail: gmulas@oa-cagliari.inaf.it

. This is a first step towards calculating moderately

rly rigid molecules using Monte Carlo sampling.

Jw

spect to the corresponding 1-0 fundamental transition.
Temperature-dependent effects of anharmonicity in mod-
elling astronomical PAH spectra received only relatively
sparse attention.®® These works followed measurements
on a few neutral gas-phase PAHs, which reported the
overall band shift and broadening of the most intense
fundamental bands with temperature up to ~900K.”
Similar data became also available from theory.®19 In
most AIB modelling studies though, theoretical calcula-
tions are performed at the harmonic approximation level.
The harmonic frequencies and first derivatives of the
dipole moment are easily obtained using commonly avail-
able quantum chemistry computer codes that implement
many different levels of theory for the electronic states of
molecules such as the Hartree-Fock, Density Functional
Theory (DFT) or Coupled-Cluster levels. Databases of
such harmonic computed spectra are available!!'!? and
include PAHs with up to a few hundreds C atoms. An-
harmonicity in the Hamiltonian is then typically taken
into account by some overall frequency scaling factor
chosen in order to obtain a better agreement with lab-
oratory data measured in rare-gas matrices at low tem-
perature. Note that laboratory data are themselves af-
fected by matrix effects which can be modeled as anhar-
monicity effects.!® Scaling procedures can be refined in
order to take into account the nature of the vibrational
modes.'®!® In any case, this completely neglects the an-
harmonic shifts of hot bands with respect to the fun-
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ntal, just correctlng (empirically) for the effect of

h,arrn( nicity on the absolute position of the 1-0 transi-

PUb“tSo 5 gl order to perform simulations that can be com-

pared with the AIB spectrum, temperature effects are

then only simply included by adding some ad-hoc band

redshift and broadening, see e. g. Ref. 16 and the discus-

sion of synthetic PAH spectra by Boersma et al.'® and
Pauzat.'”

In order to progress in the analysis of the astrophysi-
cal spectra, one has clearly to go beyond this simplified
treatment. Efforts should be dedicated to describe con-
nected states at non-zero temperatures. For this, the
approximation of the electric dipole moment by its Tay-
lor expansion truncated to the linear terms is not suffi-
cient. Indeed this approximation only describes vibra-
tional transitions connecting harmonic states which dif-
fer by only one quantum in only one (IR-active) vibra-
tional mode. Any other vibrational transitions, includ-
ing e.g. overtones, combination and difference bands,
are thus completely neglected at this level of treatment.
The reason for using such seemingly crude approxima-
tions is that performing actual anharmonic calculations
for anything but the smallest PAHs quickly becomes pro;
hibitively expensive from a computational point of view:
Complete variational calculations of rovibrational le
with ab-initio potential energy and electric dipo,
faces are only feasible for very small molecules wi
to four or five atoms.!'8720 However, the field 4s
constant progress and variational v1brat10na1 cal
can now be achieved for systems with up 11 atoms? i
brational Self Consistent Field (VSCF) me N& ‘
on the ansatz that the vibrational wave-funct
represented by a product of functions dep “d%Ing a sin-
gle coordinate,??23 can treat systems as larg
of hundreds of atoms, includin >4 However, they
neglect all correlation between “differentdegrees of free-
dom and are generally not nough for our pur-
poses. Techniques like the
figuration Interaction (VAMMF
contracting several modes‘into oneo describe correlated
wave-functions, and :&E\){hm molecules as big as

, provided that the modes involved
form disjoint subsets of limited

sizes. For m lecules, perturbation theory
up to second order 2) or beyond,*” is the method
of choice t¢ treat 1 odes correlation starting from
VSCF sol or both intra-mode anharmonicity and

ion starting from the harmonic ap-
er, this treatment breaks down in the
ear dégeneracy, be it accidental or due to sym-
ile"analytical VPT2 equations have existed

.cidental near-degeneracies of energy levels have
to be detected and treated in a specific manner. Since
in PAHs vibrational modes of the same type cluster at
given frequencies, near-degeneracies are unavoidable for
these molecules, in particular in the spectral region of C-

H stretches and C-H bends. Resonances must therefore
be taken out of the perturbation treatment, and explic-
itly accounted for, without omitting any interacting state
nor resonant term of the vibrational potential, using for
example the generalized second-order vibrational pertur-
bation theory (GVPT?2).28731

This GVPT2 approach requires to first define some ap-
propriate thresholds as a function of the desired target
accuracy to determine{ﬁrhich terms are to be considered

resonances” and wh an safely be treated using per-
turbation theory. eNﬁnes polyads of interact-
ing harmonic vi a’:‘}?al states connected by resonant
terms and solves thecdrresponding variational problems,
while perturbative corregtions for non-resonant terms can

be added ¢ be

ingly sma tmolds all terms are considered resonances
the limit of a full variational cal-

of harmonic vibrational states. In

1ent, some truncation scheme to keep the size of
ads and of the associated variational problems

brational spectrum of PAHs involving transitions from

e ground vibrational state and possibly some of the
lowest lying ones in energy.322* Solving for all vibra-
tional states up to higher energies quickly becomes pro-
hibitive, since the number of states involved explodes,
behaving as a multi-factorial with energy. However, if
one is interested in reproducing the overall envelope of
the spectral profile resulting from the superposition of
hot bands as a function of vibrational excitation (or tem-
perature), a possible approach is to give up a complete
solution in favor of a Monte Carlo sampling of vibra-
tional states.®10:3537 We developed and implemented a
code suitable for this approach,®® and in this paper we
test its behaviour benchmarking its calculations of the
0 K spectrum against both experimental measurements
for some small-medium PAHs and very high-level VM-
FCI calculations for a smaller species, namely ethylene
oxyde. In Section II we describe the Van Vleck perturba-
tion approach and we give computational details. Then
in Section III we proceed to compare the outcomes of our
calculations with reference calculations, which we use to
define a strategy for choosing tuning parameters that pro-
vide both acceptable accuracies and computational costs.
We also compare with experimental results, assessing the
accuracy that can be expected from these calculations for
fundamental bands, bands becoming weakly active due
to resonances, and also overtone/combination/difference
bands stemming from transitions mediated by the sec-
ond order terms in the expansion of the electric dipole
moment. In Section IV we discuss our results, assessing
the applicability of the method and its estimated compu-
tational costs for future calculations of spectra of PAHs
and similarly rigid molecules considering all significantly
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at' d levels at moderately high T using Monte Carlo
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Publishi ng

1. COMPUTATIONAL FORMALISM
A. Van Vleck perturbation theory

In this section, we give a brief review of the Van Vleck
approach to perturbation theory applied to molecular
vibrations.?? #2? The anharmonic vibrational Hamiltonian
H is written as

H=H® 4+ XHY + X2H®) (1)
where A is the perturbation parameter. The zero-

order Hamiltonian is given as the harmonic normal-mode
Hamiltonian

HO

_ Hharm — Z h;ul

i

(p? +q7), (2)

by the cubic and quartic expansion of the vibratio
potential

93V
HO — Qi
wz(@gﬁgﬁq) Gk

- 5 )
4‘2 anaQJ8Qk8QZ

ijkl

Van Vleck procedure relies o an iufinitesimal con-
tact transformation which ead an effective
Hamiltonian. The contact’ trans ion is defined
by T = exp (S) where th crator S Is anti-hermitian
St = —8. This operz:% can “he e)(panded up to the
second-order in the pe ub%p ameter
s @Jr/\? 24 (5)
d Hamiltonjan H = TTHT up to the
per‘E}lbation parameter is then writ-

The transfor
second-order_in
ten as .

_ FO) AT 4 \2F@
~ Hs+/\H FAH® 4 (6)

where 3

i1 =1, (7)
>

O — g _ [S(l),H(O)} ’ ®)
o — g@ _ [5<2>,H<0>} _ {5<1>7H<1>] 9)

+% [Sm, [5<1>7H<0>” .

Each term of the contact transformation S is chosen
such that it cancels out all non-diagonal terms of H®).
This is in general possible as long as no resonance occurs.
For example, in the case of the anharmonic vibrational
Hamiltonian of Egs. (1), (2), (3) and (4), one can find in
Ref. 43 the following expression for S

PV

S = s ( ) (2wiwpip‘pk
izjk:?)!Aijk :0q;0qk ) I

+ (W] + Wl — wpi (%ﬁ\*‘ 4Py +kain))7 (10)
y

where Ay, is

Wi + wj — wg)
—wj +wg) (wi +wj +wi)  (11)

then be used in Eq. (9) and S® can
nined.} In fact, at this point, it is not necessary
plicit expression for S). One just have
that the second order transformation exists
of divergent, which is the case if no resonances
en, the eigenvalues of the effective Hamiltonian

tQ assu

and the first- and second-order Hamiltonian are gl&x ren by the usual Dunham expansion

e B =0 D wi (i +1/2)

+ > xij (ni+1/2) (n +1/2)  (12)

i<

where the expression for the anharmonic coefficients xo,
and y;; can be found easily in the literature.?"-3943

In the case of exact or near resonances, the expres-
sion for the first order contact transformation Eq. (10)
cannot be used as it is. Indeed, Fermi resonances de-
fined by the occurrences of triplets i,5 and k£ such that
tw; + w; £ wp ~ 0 would result in a diverging first-
order contact transformation. This implies that the con-
tact transformation should be determined to infinite or-
der. In the case of quasi-degenerate perturbation the-
ory these resonant terms are simply excluded from the
definition of the contact transformation. As a result
the first-order transformed Hamiltonian H®) is not di-
agonal. Similarly the occurrence of Darling-Dennison**
(DD) resonances arises by diverging terms in the second-
order contact transformation S(® and occurring when
fw; £ wj +wp £ w; >~ 0. These terms should also be
excluded, therefore preventing for a full cancellation of
the non-diagonal terms in the second-order transformed
Hamiltonian H®. Note that DD resonances can occur
even if there are no corresponding quartic derivatives
since quartic coupling terms appear due to the appli-
cation of the first order contact transformation. After
using the contact transformation, we obtain an effective
and non-diagonal Hamiltonian H whose eigenvalues are
identical to the Hamiltonian H at the second order of the
perturbation. This effective Hamiltonian can be diago-
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‘ s lﬁpd using a finite variational basis.

. After being determined, the infinitesimal contact
Pumlé!i‘zls é nation can be applied to any operators such as

the dipole operator p resulting in a transformed operator

accounting for both mechanical and electric anharmonic-

ity up to the second order in the perturbation parameter.

Similarly as for the Hamiltonian, the dipole operator is

expanded as

p=pO 4+ ap® 4 N2 (13)

where (9 is the permanent dipole, and where (") and
1® are respectively the linear and quadratic terms of
the expansion of the dipole as a function of the normal
mode coordinates about the equilibrium position, they
are written as

H(l) = ;lh('l)ql‘ = Z (g";)o i,

%

1 1 0?
(2 — = @, . - [ .
p? = %:u” IEEDD (an’an)O Gq;. (15)

j

(14)

Applying the perturbative transformation, the expressio
for the transformed dipole operator up to the second-
order in the perturbation parameter is given by

i = 1@ 4 ap® 42 (u‘Q) _ [5(1)’”(1)}) 4

where one should remember that resonant tebare.
omitted from the definition of S™), as explaimed before.
The intensities of the transitions are then c i

'\m\e by
drp‘%)e ator

computing the matrix elements of thi

between two eigenstates of the effective iltonian H.
The intensity of a vibrational transition, neglecting rota-
tional degrees of freedom, is thefi written as
27 ~
Lap o[Vl 7 (17)

- 3heeg
where wgp = wp — wg { e transitions between eigen-
frequencies and wher; ) areghe eigenstates of H. Iy is
comparable to the eritnental band intensity integrated
fucture.

nd variational problem

e give the computational details of
lementation of the Van Vleck perturbation theory
in Séc. ITA. The computational protocol de-
in this section was implemented in our code: An-
iCaOs (the Cagliari-Orsay model for anharmonic
ar spectra in 2nd order perturbation theory).
The first step is to identify resonances. For this
purpose, starting from an initial harmonic state n =
(ny,...,ny), we first identify all harmonic states n’ # n
directly connected to m through the cubic couplings.

AN

For these states, the ratio of the coupling term V,(lil), =
(n|H™M|n’) and the harmonic energy difference between
these states is used to define a resonance. A Fermi reso-

nance occurs then if

v
nn 2 T3 (18)
B9 - £©

resonances is thus built. From this list the first-order

contact transformatio u?ﬂ%:n be defined by excluding

all terms corresp, nd? to asgesonance as in Eq. (18).

Applying the first-exdes contact transformation S*) onto

the Hamiltonia we'gbtain the second-order part of the
mi

transforme Hs nia
H® gt Vﬁ@} 41 [S(” [S‘l) H(O)” . (19)
— b 2 ) )
This operatoris then used to identify harmonic states
"= n digectly connected to the initial state n through
e quartic couplings which include the effect of the
first=order] transformation. Darling-Dennison (DD) res-

ancés.are then defined by

where r3 is a small t}&r‘fshold parameter. A list of Fermi

(20)

where V,gl),, is non-diagonal matrix element of opera-
tor (19). The list of DD resonances having been built, the
second-order contact transformation can be defined im-
plicitly. This transformation is used to define the trans-

formed Hamiltonian H (Eq. 6).

After this preliminary work, polyads are iteratively
constructed as resumed in Fig. 1. A list of starting states
is built by including the initial harmonic state n and the
final harmonic states 7 reached by a dipolar transition
through the transformed dipole operator p. Each start-
ing state will constitute the start of a polyad. Running
trough the resonances the list of states in each polyad is
increased iteratively. When two polyads share a common
state, they are merged. Symmetry can be taken advan-
tage of by considering only states of a given symmetry
type at a time. This way, one could think of separat-
ing explicitly the problem into a number of subproblems,
However, in practice, given the way in which polyads
are recursively built by following resonances, resonant
terms can only be non-zero between harmonic states of
the same symmetry. Hence symmetry separation is auto-
matically enforced and there would not be any significant
performance gain by implementing the explicit separa-
tion, which would make the code more complicated. It
is only necessary to include a cutoff parameter to remove
the numerical noise, introduced by cubic and quartic,
non-symmetry-adapted Hamiltonian terms, in case the
separate code used to obtain the potential does not ex-
plicitly use symmetry itself and thus produces very small
non-zero spurious terms.
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cai lead to polyads of very large, in principle even

using density functional theory (DFT) with the hybrid
functional B97-1,° and with the TZ2P%! and 6-31G*32:53

| This manuscript was accepted by J. Chem. Phys. Click here to see the version of record. |
l s Ib?s rocedure, depending on how resonances com-
1 )
h

PUb“ﬁ‘a [18 size. To keep the problem tractable, a trunca-
tion mechanism is therefore necessary. To obtain finite
size polyads we used a “cost model”. The very initial
harmonic states, i. e. the initial one and the ones con-
nected to it by permitted transitions, are assigned a “bud-
get” initialized to 1. Additional states newly added to a
polyad “inherit” the budget of the state they are con-
nected to, minus a “cost” which is inversely proportional
to the “strength” of the resonance (the ratio between the
non-diagonal element and the difference of the diagonal
elements of the connected harmonic states) divided by a
tuning parameter h. Therefore, a very strong resonance
will add many states to a polyad, whereas a weak one
will add few, possibly only one. Larger values of h will
produce larger polyads, reducing truncation errors at the
price of an increased computational cost.

To each distinct polyad corresponds a variational prob-
lem, for which an effective Hamiltonian is defined. What
we want to obtain is an accurate description of the an-
harmonic states containing a non-negligible component
of the initial harmonic starting states (the very first har-
monic state and the ones connected to it by allowed tra

on chosen tuning parameter values, the eigensolution
need may be a small fraction of the size of a given

If the polyad is relatively small, complete solution using
a standard direct method (e.g. Divide and Co

sitions). Depending on how strong resonances are, K(?\
sSw

15
or
Relatively Robust Representations*®) is more n.@an’t&\

If, instead, the polyad is large (e. g. tens housands
of harmonic states or more) and a small fracgionof the
eigensolutions is needed (e. g. less than %), then

an iterative method like Jacobi-Davidson,*!® explicitly

computed using Eq. (17 he finaly spectrum is then
built from individual transitionssweighted by the square
of the component of the'starting state it contains. In this
way, when the samg' polyad i tained more than once

from different starting states, each transition will even-
tually converge o its ct, value for complete coverage

C. Electron struct}e calculations

ﬁ
he ’an—Vl}'k method described in the previous sec-
s relies.on“the use of a quartic force field correspond-
0

t

in \??rmonic frequencies, cubic and quartic derivatives
of thotential energy surface as well as the first and sec-
ond derivatives of the dipole moment. These parameters
are easily obtained from quantum chemical calculations.
All electronic structure calculations were performed us-
ing the Gaussian09 suite of programs.*® Geometry op-
timizations and frequency calculations were performed

T
ion.

basis sets. We chose this exchange-correlation functional
over some more commonly used ones as e.g. B3-LYP?4:5
because the former was found to provide more accurate
band position and intensities in particular for aromatic
molecules.?2:33:56 As in Ref. 56 we used a (150,770) grid
for the Kohn-Sham (KS) integration and a (75,194) grid
for the Coupled Per?ed Kohn-Sham (CPKS) steps.

For each molecul ometry optimization was first
performed, then h mowencies and normal modes
were computed. @ubictand quartic normal mode deriva-
tives of the potentialfaround the equilibrium position

. lculation of all quartic deriva-
36 N2 Hessian calculations, where N is
oms. For large systems like pyrene
h a calculation could only be performed

or corouene s
th. semisempirical force-field and not with ab-initio or
@ methods. Note that only the semi-diagonal involv-
ing“at most two different indices are needed for pertur-
tionktheory, the other terms just contribute to DD
resonances. Therefore, we only computed the quartic

oV
ivatives with two identical indices () .
aQia(Iiana(Ik 0

Mmilarly, second derivatives of the dipole moment were

obtained by numerical differentiation of the analytical
dipole first derivatives. Invariance of derivatives on the
order of differentiation was used to check the numerical
stability.

lll. RESULTS

We now compare the results we obtained with An-
harmoniCaOs with some reference calculations and ex-
perimental results. Comparison with reference high-
level vibrational calculations performed with the VM-
FCI method using exactly the same quartic force field
will enable us to benchmark the effect of the different
user-defined thresholds. In this way we can separate the
effect of using the van Vleck method, and different lev-
els of resonance detection and truncation of the size of
variational calculations, from the effect of using a quartic
force field and, in turn, from the level of theory used to
obtain it. On the other hand, comparison with available
experimental data for PAHs enables us to gauge the accu-
racy of this method including also the effect of truncating
the nuclear potential to the quartic expansion and of the
level of theory used to compute it. In addition, we per-
form some convergence tests on pyrene and coronene, to
study the accuracy vs. computational cost as a function
of the tunable parameters of AnharmoniCaOs specifically
for the family of PAHs.
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starting state
(2)1,3...,0)

initial state initial state
(1,1,3,...,0) ) (1,1,3,...,0)
transitions
starting state starting state
(1,0,3,...,0) (2,2,3,...,0)
polyad 1

starting state starting state

resonant state (2,1.3,...,0) Tesonant stateil (2,1,3,...,0)
(2.0,3,...,0) resonant state PO 0 resonances resonant state
(3,0,3,...,0) (3,0,3,...,0)

resonant state initial state resonant state resonant statey mitialstate resonant state

0,2,3,...,0) (1,1,3,...,0) (3,3,2,...,0) ( (0, 268 e, 0) {1,800, 0) (B3BN2 0)
resonant state resonances resonant state
(3.1,3,...,0) : | 3.1,3,...,0)

starting state starting state starting'state starting state

(1,0,3,...,0) (2,2,3,...,0) (2,2,3,...,0)
resonant state resonant state
resonant state resonant state (1,3,3,...,0) (1,3,3,...,0)

(2.1,2,...,0) (0.1.3,...,0)
polyad 2

polyad 3

FIG. 1. Schem

ic%ﬂ{hm

polyad definition

\

A. Comparison with VMFCI calculations for Ethyl e\O?de
—

A new VMFCI calculation of all vibratignal energy
levels of ethylene oxyde up to abou 0 has
been performed (see supplementary Zﬁ%mg\
results compare favorably with previous
ones,?1*759 using the same g rce field for the
nuclear potential. We used th force field with
AnharmoniCaOs, and compafed th
FCI ones for different valueSof thé tuning parameters rs,
r4, and h. Table I shows How accyfacy of Anharmon-

iCaOs changes for decr values of r = r3 = ry, while
keeping fixed the parateter 4. Decreasing values of r
cause more and mote terms to be‘taken out of the pertur-

bative treatmentd anduinstead considered as resonances,
in setting up and solving rads in a variational way. For
comparison, we list in the same Table I the VSCF
results, whith we obtained as an intermediate step of our
reference VIMFCI cdlculation. Clearly, the VSCF discrep-
ancies are much lafSer than those of our GVPT2 results,
ing parameters used. Conversely, Ta-
the results of AnharmoniCaOs for fixed

rgy of AnharmoniCaOs steadily improves for
and larger h (at the price of a considerable in-
crease i computational cost), while this is not the case
for r. Indeed, we see in Table I that the best accuracy,
for h = 4, is obtained with r ~ 0.3, and it gets worse,
not better, if r is reduced while keeping h fixed. This
is due to the way in which polyads are built, and their

truncation mechanism: no matter how weak it is, a reso-
nance always adds at least one basis state to the starting
ones. The idea behind this is that it is pointless to add
a term to the list of resonances and then just neglect
it because it is too weak. Conversely, if one decreases
too much r without in parallel increasing h one gets an
unbalanced truncation, with some weakly coupled basis
states included (namely the ones connected to starting
states via very weak resonances) while others, compara-
tively more strongly coupled, are not. Indeed, Table II
shows that with = 0.05 one does obtain more accurate
results than with » = 0.3 provided that one then uses a
large enough value of h to allow for a balanced truncation
of polyads. All in all, it appears that r ~ 0.3 and h ~ 4
provide a good compromise in terms of accuracy versus
computational cost.

B. Convergence tests on pyrene

The quartic force field and first and second derivatives
of the electric dipole moment were obtained using DFT
with the B-97159 exchange-correlation functional and the
TZ2P5! Gaussian basis set, as described in Sect. II C. We
then used the AnharmoniCaOs code with the resulting
quartic force field and second order Taylor expansion of
the electric dipole, using the harmonic ground vibrational
state as a starting state. We started with » = 0.3 and
h = 4, based on the results of Sect. IIT A, as a reason-
able compromise between speed and accuracy, bearing in
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l s F@ VMFCI VSCF r=1.0 r=0.5 r=0.3 r=0.2 r=0.1 r=0.05 r=0.01
T 2920° 3015 2955 2955 2918 2918 2918 2920 2930
Publishing 1496 1525 1502 1502 1502 1503 1502 1503 1503
3 1271 1286 1271 1271 1271 1271 1271 1272 1272
4 1122 1160 1128 1128 1128 1128 1129 1127 1132
5 879 891 878 878 878 878 879 878 879
6 3029 3108 3043 3043 3043 3043 3060 3065 3097
7 1148 1172 1154 1154 1154 1154 1156 1156 1166
8 1018 1050 1025 1025 1025 1025 1027 1028 1037
9 2910 3032 2920 2920 2920 2921 / 2921 2920 2949
10 1468 1487 1474 1474 1474 1474 1475 1475 1482
11 1124 1158 1131 1131 1131 1131 2 1132 1133
12 822 842 822 822 822 2 82 822 826
13 3041 3125 3058 3058 3058 305 3055 3054 3085
14 1146 1169 1151 1151 1151 1 1152 1152 1152
15 793 837 802 802 802 4 302 802 803 803
root mean square error 55.3 12.1 12.1 8.0 N\ /80 10.8 11.8 25.2

those assigned in this work on the basis of the

_—
¢ VMFCI assignments of step n are in terms of eigenstates of step n — 1 and not in %\of the initial harmonic oscillator (HO) basis
except for v see supplementary material.

[

TABLE 1. Fundamental frequencies for ethylene Ow @tion of the threshold r and for h = 4.

mode VMFCI h=4 h=8 h=16 h71\ P 5 Auh ) . ; L the C_H stretch
) . 2. Anharmonic spectrum of pyrene in the C-H stretc
é 219425())6 iggg %ggg iggg 1948\wgi0n for various values of the threshold r, keeping fixed h =
3 1271 1272 1272 12 971 8. Black bars indicate the precise position of individual bands,
\52 whereas red envelopes are convolved with Lorentzian profiles

4 1122 127 1127 127 N 1127 with a 1 cm™! width. Spectra computed with different values
5 879 878 878 78 of r are shifted for clarity by multiples of 15 km mol™' cm
6 3029 3065 306 3083 3043 with respect to the previous one.
7 1148 1156 115 NJ%\ 155
8 1018 1028 1028 2 1026
9 2910 2920 2919 29 2917 FIG. 3. Anharmonic spectrum of pyrene from 600 to
10 1468 147 1 1474 1474 1100 cm ™! computed with various values of the threshold r,
11 1124 1132 % 1132 1132 keeping fixed h = 8. Black bars indicate the precise position
12 89292 822 822 of individual bands, whereas red envelopes are convolved with
13 3041 4 30 3051 3050 Lorentzian profiles with a 1 cm ™! width. Spectra computed
14 1146 11 52 1152 1152 with different \lzalues of r are shifted for clarity by multiples
15 793 803 803 803  go2  of40kmmolThem.

root mean square gfror, 119§ 11.8 8.9 7.0

& Same remark as i TN
TABLE II. Fundamenftal frequencies for ethylene oxyde as a

function of t Q_Ear eter/{ and for r = 0.05.

polyads. The size of the largest polyad, keeping fixed
h = 8, ramped up from ~ 650 with » = 0.3, to ~ 2700
with » = 0.2, to ~ 15000 with » = 0.1, and to ~ 36000
with » = 0.05 harmonic states. In particular, the polyads

containing the states involved in the fundamental tran-
S sitions in the C—H region include states spanning an en-
mind fthat our final goal will eventually be to perform  ergy range increasing from ~3015-5120 cm ™~ for r = 0.3,
tens ‘or hundreds of thousands of such individ-  to ~2540-5120 cm~?! for r = 0.2, ~500-9800 cm~! for

ioris to obtain a good enough Monte Carlo
of the energy dependence of vibrational bands.
il the case of pyrene, we conducted exploratory cal-
; where these parameters were pushed further,
to check convergence with respect to the number of res-
onances and the number of states being included in the
polyads to be explicitly diagonalised. For the smallest
value of the threshold (r = 0.05) we obtained very large

r =0.1, and ~450-10000 cm ™! for r = 0.05.

Some spectra for various values of r are shown in Fig. 2
for the region of C-H stretches and in Figs. 3, 4, and 5 for
three other representative spectral ranges. We studied
how the positions of specific bands change with different
r values. A large set of bands as they result from cal-
culations with different r values is given in Table V in
Supplementary Material. In some cases, most notably in
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AL,

Publigfe

keenin

Anharmonic spectrum of pyrene from 1100 to

computed with various values of the threshold r,
xed h = 8. Black bars indicate the precise position
of individual bands, whereas red envelopes are convolved with
Lorentzian profiles with a 1 cm™! width. Spectra computed
with different values of r are shifted for clarity by multiples
of 5 km mol~! cm.

FIG. 5. Anharmonic spectrum of pyrene from 1600 to
2000 cm ™! computed with various values of the threshold 7,
keeping fixed h = 8. Black bars indicate the precise position
of individual bands, whereas red envelopes are convolved with
Lorentzian profiles with a 1 cm™' width. Spectra computed
with different values of r are shifted for clarity by multiples
of 2.8 km mol™! cm.

the C-H stretch spectral region, with decreasing r values
some bands split in several ones due to resonances. This
happens, for example, for the bands which are computed
at 3034, 3037, and 3042 at the r = 0.3 level, which split
into a multitude of bands at smaller r values. Some of
these results are summarised in Fig. 6, which shows the
ratio between anharmonic and harmonic frequencies o

unambiguously identified fundamentals, for the differh\ :
0.3

r values. In general, this exploration shows that 7¢=
(and h = 8) already provides an acceptable level
curacy for most bands, when compared with
calculations. In almost all cases in which the s
damental band can be unambiguously identified
r values, the calculation for » = 0.3 alre

>90% of the anharmonic correction toffrequenciess, Go-
ing from r = 0.3 to » = 0.05 only chang eg?ﬂ'eqa,gsitions
of fairly strong bands (i. e. with peak intensities larger
than ~1 km mol~! c¢cm when c d with a 1 cm™!
wide Lorentzian) by less than %3-5 cm%', usually (but
not always) slightly redwards! Only«in very few particu-
lar cases, e. g. around 143 'm*}’, when, some resonance
is taken into account ?é to crea?i’ng r, a significant

0

band may split in two ones, but the overall spectral
structure does not e h anyway except for the
C-H stretch regiond Very weak bands (i. e. bands with

peak intensities < 1 mol~! cm when convolved with a
1 cm~! wide L ent;ian ‘e more sensitive. However, in

i~ 4

FIG. 6. Ratio between the computed anharmonic frequencies

= 0.1, blue ones for » = 0.05. The overlaid lines
reprgsent the scaling factors for C-H stretches (dotted) and for
r bands (dashed). Red lines mark scaling factors from
1amely 0.966 for C-H stretches and 0.982 for all the
other bands. Blue lines mark scaling factors obtained from
our best anharmonic calculation for pyrene, namely 0.962 for
C-H stretches and 0.978 for all other bands except the two
lowest modes, for which it is 0.946

most cases this is because some of them are “peripheric”
states in big polyads, “borrowing” just very little intensity
from fundamentals to which they are very indirectly con-
nected by resonances. These states are indeed expected
to be less well described, due to basis truncation errors.

Bands in the C-H stretches region, in contrast to other
strong ones, appear very sensitive to thresholds and more
difficult to get to converge. This is clearly due to the
crowding of a much lapger number of resonating states
than the ones involve{g transitions in other spectral re-
gions. When more an n%mgr:onances are included, and

d, the fundamental bands split
d a multitude of weak bands. In

some cases, thi
a given fun

de of very weak Fermi resonances. Fermi resonances

scae transitions, which would be IR-inactive in
e double harmonic approximation, to “borrow” some
sity from a fundamental transition. When such
1i resonance is treated explicitly, the total inten-
sity“is conserved, i. e. the “borrowed” intensity that ap-

are treated explicitly. This happens due to the multi-
CL&

Ncars from the band becoming active simultaneously dis-

appears from the resonating fundamental. In contrast,
when the same Fermi resonance is treated via a pertur-
bative treatment, the “borrowed” intensity from a fun-
damental by a combination/difference band appears as a
second order contribution, whereas the intensity decrease
from the resonating fundamental appears as a third or-
der one. Consequently, the latter is not included in the
second order perturbative treatment. Some caution is
therefore in order when considering band intensities ob-
tained by these kinds of calculations, when a large num-
ber of weak resonances can add up and reach a total
“borrowed” intensity which amounts to a sizeable frac-
tion of the fundamental transition intensities. We actu-
ally implemented in our code an optional intensity cor-
rection which enforces the conservation of total intensity
when computing the contribution of mechanical anhar-
monicity to the van Vleck transformed second deriva-
tives of the electric dipole moment. This correction is
not really well-balanced, since it approximately includes
only one selected 34 order correction to the transformed
dipole moment operator, and not for example the one,
at the same order, transferring intensity in the oppo-
site direction from an IR-active combination/difference
band (produced by a sizeable second derivative of the
dipole moment itself) to a fundamental resonating with
it. This new functionality should be more fully tested
under conditions in which other sources of error are neg-
ligible, hence it is disabled by default in AnharmoniCaOs,
we just use it in the next section to get an estimate of
how large its effect might be.

We carried out similar convergence tests for coronene.
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uartic force field and derivatives of the dipole ing to total evaporation with different column densities.

nloment were obtained using DFT with the B97-1°° For pyrene at 523 K, we had only one such case and used
PUb“éa lllgl& -correlation functional. However, for coronene a second case by applying an average global scaling on all
we used the 6-31G* Gaussian basis set to perform all the  bands. We deemed this useful to get an estimate of the
numerical derivatives required to obtain the quartic force relative errors from one experiment to the other but the

field, since using the TZ2P?' basis-set would be compu- absolute values might be less accurate in this case com-
tationally too expensive. For AnharmoniCaQOs we used pared to coronene. In hot gas phase spectra it is often

r = 0.3, r = 0.2, and r = 0.1, keeping fixed h = 6. difficult to separate overlapping bands. After substrac-
Calculations with » = 0.05 and h = 8 were computation- tion of a continuum from the spectra, we defined intervals

¢

I:‘ | This manuscript was accepted by J. Chem. Phys. Click here to see the version of record.
‘ s 1

ally too expensive. The results of this exploration for  to calculate band intedsities. We then identified the cor-
coronene were by and large the same as for pyrene, with responding bands in coretical spectra and summed
the C-H stretch region being the only fairly sensitive one  them for comparisén:«The slight differences that can be
to thresholds and relatively difficult to converge. found between theqew, gas-phase intensities and the ones
previously repdtted”is attributed to changes in the con-
sidered intervals 1e way the continuum level is

C. Comparison with experimental results and previous substracted. ‘)
—

theoretical calculations

ideally require spectra recorded in gas-phase at very low
temperatures. Such data are now becoming available for
the CH stretch region.’06! We therefore took the band
positions reported for pyrene in ref. 61. Since this data L . .
is limited to the CH stretch range and does not repo he kleetric dipole moment were obtained as described

absolute intensities, we also used experimental data fr%\ in tions IIC and IIIB. We then used the Anhar-

—
Benchmarking our calculations on PAHs at 0 K would
1. _I"yr 3

e q‘Lartic force field and first and second derivatives

Joblin et al.,®2 both in Ne matrix at 4 K and in gas phas 10niCa0s code with the resulting quartic force field and
v t&:ﬁcond order Taylor expansion of the electric dipole, us-

ing the harmonic ground vibrational state as a starting
state.

at relatively high temperatures (~ 300-500 °C) du
low vapour pressure of PAHs. Since the matri
the band position is expected to be weak for n
used the measured positions in Ne as the best avai
experimental data to be compared with ouralcilated ~ those obtained by Mackie et al.®* and with the exper-
positions. For most of the spectrum, th banx{f re imental data as described above. The comparison is

that the  shown in Table III for band positions and Table IV for
%lved in  band intensities. We remark that the calculated spec-

Bles The results of our calculations can be compared with

very sharp and well resolved. We remar
band structure in the CH stretch range is

Ne matrices compared to gas-phaseiat low temfiperature, trum shown in Ref. 64 is nearly identical to the one we
which can be observed from thé valueSgeporded in Ta-  obtained with r = 0.1 and h = 8, shown in Fig. 2, which
bleITI. Again this indicates astr role of anharmonic- is not completely converged yet. We tentatively suppose
ity in this range. Ne matax spectradck an absolute that the smallest thresholds they tested for convergence,
calibration of band intensiti 1 order to compare the necessarily limited by computational constraints (the run
experimental integrate ns;gf;s with calculated including the largest polyads we tested required about
band strengths, we therefo e gas-phase spectra 100 Gbytes of RAM) were smaller than the ones we ar-

from Joblin et al.52 Brrox bars age not easy to derive but rived at. Since the computed spectrum changes abruptly

we proceeded as follews for the gas-phase data that are every time the decrease of the threshold causes a sig-

int in deriving absolute intensi- nificantly larger number of states to be included in the

lumn density. For gas-phase polyads, they probably did not reach threshold values low
1 all/ﬂle PAH sample was evaporated enough to obtain the top spectrum we show in Fig. 2.

interest, we were able to derive Table IV also includes the results of AnharmoniCaQOs

the column'density‘of molecules in the gas-phase. If the including the partial correction enforcing total band in-

t total then this density is controlled by tensity conservation in the perturbative calculation (see

the vapour pressure, which is less precisely known. For previous section), to get an estimate of how large this

at 728 K we could use two spectra correspond- effect is.
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LIl III: List of the main band positions for pyrene. Theoretical data are from (a) this work and (b) Ref. 64. The
xperiinental band positions are those of the main bands in the Ne matrix spectrum recorded at 4 K taken from Ref. 62.
Publisﬁ(iangw CH stretch range we also report the values recorded in gas-phase at low-temperature from Ref. 61.
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Gross pos. (um) Position (cm™*)
Ne Matrix 4K Theory 0 K
*Gas-phase (low T)
harm. scaled anhayKonic
‘ e
(a) (a) N (b)
4
*3118.7
*3108.9 3102, 3098 V1o + Usa + vs
*3096.0 3095, 3092 V30 +44 53, + v34 + Va0 + Vst
*3087.8 3089, 3086 vy + Seldas + Vea
*3071.9 3084, 3083 Vgh =k V62 w64, Vo + V13 + V2t
“30667, *3064.9 3074 3076, 3073, 3071 o3, voe +a/57 4 + V36 + 70 3072
*3063.3 3066, 3065 Va9 + vas § V53, V28 + V32
*3059.5 3062 ( V26 476 Us1
*30575 30567 3050 Vi /28, V10 + V28 —|— Vg5, V4 —|— V10 —|— Us3
*3055.6 3045 %1/56 + V7o 3043
*3052.9 3042 Vg3 Vao + Vs3 + V63, V11 + Vs1 + V63 + Ves
3053,*3049.8 3057 3040 /42 3048
*3044.0 303 12 + V31 + V32 + Us2
3033 V17 + Vaga + Vg6, Vo1 + V26 + V37

3.3 5 vi2 + V29 + V32 + VUs3, V21 + V2e + V37
] HQ:L\

vs2 + Us7 + 2v70, Vs + Var,V26 + V30 + Us3

0
26 V19 + V39 + Va5, V35 + Vag + Us3
0 ~ V12 + V37 + Ves
4 V17 + V34 + Ve2 + Uss
m V13 + V4 + Ve2, V33 + Use + Us3, Vs + Vas
2

V21 + V36 + Vs1 + Vea
\)019, 3018 Vs + Va7, V30 + V58 + Vea
014 Vs + V35 + V70
3011 Vi2 + V32 + Use
3002 V28 + Use
2960 V15 + Vao + Vs7, Vas + Vst
2940 V35 + V39 + Va7, Vae + Usg, V7 + V30 + Uss
2927 V4 + var
2908 V21 + Vs9 + Use
1937 V14 + V35 1945
5.9 1934 V35 + Ves 1937
’ 1921 V14 + V36 1932
1919 V36 + V66
5.3 1866 V14 + Vig 1860
: 1858, 1848, 1842 v + V69, V15 + V35 V15 + V36
56 o 1801 var + Ves 1804
’ 1792 V15 —|— V19 1799
1766 V14 + V20 1774
1745 V19 + Vet
1725 Vis + Va7
5. 1695 1697 V35 + Ves
wo‘\ 1670, 1665 1669 V36 + V69
. 1648 1651, 1645 vie + V35, V20 + ver
1617 1617, 1612, 1610 v19 + ves, V3s + Ver, V19 + V69

Continued on next page



http://dx.doi.org/10.1063/1.5050087

AlP_

11

| This manuscript was accepted by J. Chem. Phys. Click here to see the version of record.

TABLE III - continued from previous page

P

PUb“éholsgg 0s. ( Position (cm™*)
Ne Matrix 4K Theory 0 K
*Gas-phase (low T)
harm. scaled anharmonic
(a) (a) /\ (b)
1605 1606 1600, 1596 Va4, V12 + V3 \
1597 1585, 1575 Vo6, V12 +#41 + , V16 + V19 1588
65 1545 15377 1544 V39 + V66, V2 Vg8
1517 1521, 1505 vie + V3
1473, 1489, 1485 vys, 1479
6.8 1496 1481 1460, 1459
1442 1442, 1438 1444
7.0 1438, 1436 1430 1424 1431
1427 1418,1417, 14 V34 Va6, V10 + Us3
7.7 1311 1314 1311, 1320, 1 7 1/4 13 + V67, V32 + Vea 1319
8.0 1244 1242 1241, 123 1/68, V29 1243
V49 Vi6 + Vao
4 11 1182 1181 11 ’ ’ 11
8 85, 118 8 80 39 + Va1 + Us3, V39 + Va1 + Us3 88
9.1 1097, 1087 1089 1 89 1 V30, V12 + V34, Us3 + Uss 1081, 1095
9.4 1063 V39 + V7o
10.0 1004 993 V31, Vs2 + Vs
10.4 966 966 Vg6, Va1 + Veg 969
11.8 844 845 Vet 861
’ 822 815 V32 822
13.4 745 74 73 Ves 750
14.0 713 10 V69 741
18.5 542 538 Vs2
200 49 493 V34
20.5 48 483 1%(0)
290 347 342 l/537 V292 —|— 1% @)
50 / 198 V71

er ):curacy of our calculations, we
s IIT and TV our results with the lab-
oratory data th ve been described above, as well as
with the scaledhar Kéalculation (see Supplementary
material for all harmonic results and scaling factors). We

To assess the
compare in T

kie et al.%* Since in this latter paper
ensities are given, we estimated absolute

abselute intensity we calculated for the band the au-
osé for reference. This excludes C-H stretches
authors studied separately from the rest of the
spectrum with an unknown scaling factor. Concerning
band positions, we listed all states which carry a signifi-
cant intensity and only one position was listed when these
states are too close to be resolved. Assigning a given the-

oretical band to an experimental one can be tricky. We
did our best on the basis of band proximity. This can
be disputable especially in the case of the CH stretch re-
gion for which the calculations face some difficulties, as
discussed above and in Sect. IV. For anharmonic cal-
culations we label bands by the leading harmonic base
state in the expansion of the upper state of the transi-
tion. The harmonic modes are given in tables in the sup-
plementary material. While in some cases anharmonic
states are close enough to a single, well-defined harmonic
state, in others they happen to be linear combinations of
many harmonic states with coefficients of about the same
magnitude, which can be as small as 10-20% for the lead-
ing harmonic state (which is nonetheless chosen to label
the transition). Clear examples of both cases occur in
the C-H stretch region. The v45 harmonic state remains
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Integration range (cm~1)

Intensities (km - mol ')

Al

Publishing

Gas 570K Theory 0K
harm. anharm.
(1) ® ®)
nc c
3.3 [2850-3250] 140(+£10) 95 99 74
5.2 [1900-1950] 9.5 (£0.5) 9.0 9.3 18.2
5.3 [1830-1880] 3.8 (£0.1) 5.5 5.7 2.0
5.6 [1780-1830] 7.8 (£0.7) 8.8 9.1 14.1
5.7 [1715-1760] 5.8 (+0.2) / 2.7 2.9
5.9 [1677-1704] - 1.9 2.0
6.0 [1655-1677] 2.5 (+0.2) v 2.7
6.1 [1630-1655] - 5 2. 2.9
6.2 [1560-1620] 11.4 (£1.2) 3.2 17.3 16.4 7.1
6.6 [1531-1552] - 2.6 2.7
6.8 [1467-1525] - ‘) 3.7 3.5 3.0
7.0 [1405-1430] 11.4 (£0.1) T2 8.8 7.8 6.1
7.7 [1300-1327] 4 (£0.1) =~ 4.9 5.2 4.5 6.1
8.0 [1224-1245] 1.9 (£0.3 . 2.6 2.4 2.0
8.4 [1165-1200] 10.5 (£0.1) 514.0 13.7 12.1 14.1
9.1 [1074-1100] 5.4 (£1.2) 7.0 5.4 47 8.1
10.0 [988-1003] 0:6) ‘) 1.7 1.6
11.8 [824-863] (16) 112 101 93 101
13.4 [730-750] 20.8 ($l.4 175 15.2 14.0 24.2
14.0 [695-725] \% 44.8 45.3 42.9 41.4
18.5 [526-550] \ 2.5 2.3 2.1
20.0 [487-501] 2.7 2.4
20.5 [474-487] 2.1 1.9 1.7
29.0 [335-354] \\ 1.4 1.3
50 [185-212] -~ 9.7 9.0

TABLE IV. List of the integrated intensities fo N Theoretical data are (a) this work and (b) from Ref. 64. Since only
R Vv

relative intensities are reported in this lat
CH out-of-plane bend mode. For our anhar
our correction borrowing some third order per
in resonances treated with perturbati 1e0ry.
570 K from two independent spec
the scatter around these valuegt
integrated the corresponding
been slightly shifted to cov t

kargomc calculation, with a

y therefore in a single band at
040 ecm~!. The corresponding
is 4 linear‘combination of the harmonic
s + vsy (19%), va + vas (4%),
nic states contributing each less
onversely, the v43 and 3 harmonic states
ibuté over a large number of anharmonic

1g resonances. For example, the anhar-

responding to the band at 3076 cm™!,
led v53, is a linear combination of the har-
ates vo3 (the “leading” one with 12%), vy + vor
24 (9%), plus a large number of other harmonic
states contributing less. The harmonic state 143, while
contributing to many states, is not the leading one in any.

states g9
plus many

When compared to values in Ne matrices and exclud-
ing the CH stretch range, band positions appear to be

e scaled the values to the theoretical anharmonic intensity of the main

sults we list two columns, the “nc” one is standard GPVT2, “c” includes
bat10n theory terms to enforce conservation of the intensity of transitions
xperimental values have been derived from measurements in gas-phase at
taken from Refs. 62 and 63. The mean values are listed and the values in brackets provide
in these spectra band overlapping is unavoidable, we selected integration ranges and
nds. The listed ranges are the ones considered for the theoretical spectra and have

accurate on average to better than 0.8%. The worst case
is the band at 20.0 um for which the shift reaches 1.2%.
There is a very slight tendency to underestimate band
positions, with an average ratio between theoretical and
experimental positions of 0.998, which shows that sys-
tematic error is minimal. Of course Ne matrix positions
will also be affected by some matrix shift effect, even if
it is expected to be small. Concerning integrated band
intensities, we listed the integration limits we adopted to
allow comparison with the gas phase spectra. We give
here for pyrene the results both using our higher order
correction enforcing conservation of band intensity and
without it. The difference between the two theoretical
sets of values are much smaller than the differences with
experimental values, with the uncorrected ones appear-
ing, if any, slightly better on average. For band inten-
sities, the largest differences between calculated and ex-
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Pen al values appear in some of the weakest bands,
.one at 5.7 um being lower by a factor of two in cal-

tactor. T[he C-H stretch at 3.3 um, typically one of the
most difficult bands to compute accurately with DFT, is
lower in calculations by ~40%, the remaining bands are
within 25%. The fractional differences have both signs
and average to about zero.

Our results are generally consistent with those pub-
lished by Mackie et al.5* for pyrene, even if a detailed
one-to-one comparison depends on the possibility of un-
ambiguously matching them based on what is given in
Table 1 of their supplementary material. For this reason,
not all theoretical band positions reported by Mackie et
al.%* are listed in last column of Table III, but only those
whose identification could be matched with a correspond-
ing band in our calculations. In particular, in the C-H
stretch region we only included the three bands with the
largest component of the three C-H stretch IR-active fun-
damentals. Differences are non-negligible nonetheless, as
could be expected from using two different implemen-
tation of Van-Vleck theory (see Sect. IV) and could also
originate from small differences in the initial quartic force

r = 0.1, extremely similar to the one shown in Ref. 64.
This hints that the accuracy we can achieve with this
kind of calculation is, in this case, limited by the ac-
curacy of the underlying DFT calculations yielding the
quartic force field. The apparent slightly better accuracy
of the r = 0.1 calculation with respect to the nominally
better one with » = 0.05 is likely due to a partial acci-
dental cancellation of errors. The complete, anharmonic
spectrum of pyrene, computed with » = 0.05 and h = 8,
is shown in the supz%lnentary material, and available
in tabulated form fr online database by Malloci,
Joblin, and Mula: 53

2. Coronene \
D

16, the guartic force field and first and sec-
f the electric dipole moment were ob-
tained,as desctibed in Sections IIC and IIIB. We then
used th resum obtained by our AnharmoniCaOs code
wé:ir = 0. d h = 6, leading to the largest polyads we
¢ utationally handle, to obtain positions and in-

the permitted transitions. We did not use our

e
nsitiﬁs_
field. We remark that the best agreement with the lo corsection to enforce intensity conservation, since we saw
temperature gas-phase data in the CH stretch range, is in the case of pyrene that its effect is small compared to
t

found with our not completely converged calculation wi

TABLE V: List of the main band positions for coron
positions are those of the main bands in the Ne

17,

rrors arising from the underlying DFT calculations.

retical data are from this work. The experimental band

:trum recorded at 4 K taken from Ref. 62.

Gross pos. (um)

Position (cm™")

Theory 0 K

Ne Matrix 4 K ®‘
N

harm*scaled

anharmonic

&

3066
43035 3048
£
5 1926, 1913, 1898
5.6 1809, 1801, 1786
ﬁ
1721
5.9 f) 1697
‘~“j> 2 1621 1614
- 1317 1309

3121 v30 + 2v61, V30 + V61 + Ve2, V30 + 2V62

3120 Vg + Us1, V2 + VUs2

3112 V30 + V71, V30 + V71

3071 V45, V46

3056 V10 + Vs1, V1o + Vs2, V21 + V71, V21 + V72

3049 v21 + 2v61, V21 + V1 + Ve2, V21 + 2U62

3050 Va9 + V75, Vag + V76, Vso + V75, Vso + Ve

3038 V1o + Vs1 V1o + VUs2

3025 Va7, V48

1918, 1920 V35 + Vo1,V35 + Vo2, V36 + Vo1,V36 + Vo2

1889, 1892, 1895 V7 + V35, V7 + V36

1886 Ve + V14

1783 V7 + V37, V7 + V38

1708 V14 + V37, V14 + V38

1692 V17 + Vo1, V17 + Vo2

1681 V37 + Vo3, V37 + Voa, V38 + Vo4, V38 + Vo4

1619 V49,V50

1315 Vs5,V56

1310 V14 + V41, V14 + Va2

Continued on next page
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All2

TABLE V — continued from previous page

Publish(i;rrlcgE

pos. (um) Position (cm™")

Ne Matrix 4K Theory 0 K

harm. scaled anharmonic

8.8 1139 1134 1143 V59,60
11.7 857 857 862 V14
13.0 772 767 767 V63
18.2 549 548 553 )
26.5 376 379 65,16
81 121 126

In Table V we compare our computed results for the
band positions of coronene with laboratory data that
were described above and with the scaled harmonic cal-
culation, using the same approach as that described for
pyrene. The band positions appear to be accurate to bet-

< V16
DN

i
—
lutiont low température gas phase measurements, which
availaple in the C-H stretch region for a small
60:51 For the present work, we mostly relied

Né matrix spectra for band positions and high tem-
eraturreﬂ?as—phase spectra for band intensities.6%:%3 Our

, low temperature gas phase spectra of such species
come available.

ter than 0.7% except for the weak band at ~5.3 um fxluﬁons might slightly change if/when full high reso-

ment is 1.1%. As for pyrene, there is a balance betwe
negative and positive values for this shift, since thé a

which the normalized shift between theory and expg—\

~0.998.

Theoretical band intensities appear som whatkab.

Mﬂe};e per-
iment. The average difference is about 3 with errors
on both the positive and negative sides, withya preva-
lence of theoretical underestimation of‘experimental val-
ues. However, the accuracy ig rather goad for the most
intense bands at 3.3 and 11.7 um., Thig is‘consistent with
what we found in the cas y{ene. e slightly worse
agreement with experivzé;;ltal a relative to the case of
pyrene, is likely due tothe'smaller*basis set used to ob-
tain the quartic for d for*ggronene. The complete,
(ﬁoronene is shown in the supple-
vailable in tabulated form from
oci, Joblin, and Mulas.®

IV. DISCU
ﬁ

ION AND CONCLUSIONS

We performed anharmonic calculations of the vibra-
tibnal speetra©f neutral pyrene and coronene at 0 K us-
in R’?AnharmoniCaOs code, and compared them to
St available experimental data. The results are
airly satisfactory, yielding a significant improve-
ment over the conventional double harmonic DFT cal-
culations normally used for molecules of this size. As
we already remarked at the beginning of Sect. III C, the
most meaningful comparison should be with high reso-

Hﬁ\% The accuracy of our anharmonic calculations is clearly
is

lated to several different independent limiting factors,
respectively:

1. The representation of the true adiabatic potential
energy surface as a quartic force field, and the
dipole moment as a Taylor expansion truncated to
second order, both in terms of cartesian normal co-
ordinates ;

2. The accuracy of the determination of the quar-
tic force field and quadratic dipole parameters via
quantum chemistry calculations;

3. The accuracy of the GVPT2 method itself;

4. The accuracy of our AnharmoniCaQOs implementa-
tion (as a function of its parameters).

Point 1 is an acceptable approximation when oscillations
have a relatively small amplitude. Therefore, it is suit-
able for semirigid molecules at not too high vibrational
energies. So, it should be appropriate for PAHs, unless
they have side groups that give rise to internal rotations,
that are poorly represented by a truncated Taylor expan-
sion in normal coordinates.%® We notice that it would be
desirable in some cases, to opt for non-cartesian coor-
dinates so that the associated quartic force field would
have a better asymptotic behaviour, and the potential
would be reasonably described even along large ampli-
tude motions.5"%® Such coordinates, however, are not di-
rectly applicable in our case: the Van Vleck approach
used here for GVPT2 requires a description of the Hamil-
tonian in terms of normal coordinates, since it exploits
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Exp. Range (cm™1!)

AR

Publishing

Intensities (km - mol ')

Gas 570K Theory 0 K
harm. anharm.
3.3 [2995-3110] 190 (1) 134.7 177
5.3 [1870-1906] 23 (3) 31.5
5.6 [1770-1825] 18 (4) 5.9
5.9 [1670-1720] 20 (3) 13.9
6.2 [1600-1629] 19 (2) 15.2 24.9
7.6 [1300-1330] 37 (2) 42.3 22.7
8.8 [1128-1158] 22 (4) / 17.3 144
11.7 [845-880] 138 (s) 167. 9 147
13.0 [745-785] (1) 13.2
18.2 [530-565] 2 3 42 7 23.0
26.5 [360-395] 5.9
81 [110-140] \ 4.6

TABLE VI. List of the integrated intensities for coronene. Theoretical da
been derived from measurements in gas-phase at 570 K from two indep d@t
values are listed and the values in brackets provide the scatter around these values.
(s)) was saturated in one of the two experimental spectra so ounly a sI
band overlapping is unavoidable, we selected integration ranges and‘integr

spectra.

)f m this work. Experimental values have
ctra taken from Refs. 62 and 63. The mean
1e strongest band at 11.7 um (annotation
le val!&g could be reported. Since in these spectra
d the corresponding theoretical bands. The listed

ranges are the ones considered for the theoretical spectra and have been slig%ly shifted to cover the band envelopes in gas-phase

In contrast, strong Coriolis inter-

their commutation properties to obtain a formally si NS:J is resonances. iolis i
ple representation of the infinitesimal contact tr sfor— ns are bound to occur for v1brat10na1 states which

mations and of the transformed Hamiltonian and
moment operators.

Point 2 is basically a matter of trade-off bet
putational cost and accuracy. Band positions &
fairly accurate for PAHs, as shown also b re
even using moderate size basis sets (stich as\ghesgri
zeta ones we used) with DFT using Tl change-
correlation functionals.®® This can be furtheg, i
approaching spectroscopic accur using more accu-
rate (and computationally way nsive) methods
harmonic fre-
erivatives of the
potential, and for the fir, d}eond derivatives of
the dipole moment (se f 70 eferences therein).
Absolute intensities are RII&\d}ﬂicult to get with the
r positions using DFT calculations
irly precise when using high (com-
rels of theory.”™
PT2:has been used successfully for
“[Retf. 29), and it has been reviewed
. 70. In general, GVPT2 should

g as point 1 is valid.
as been assessed in our comparisons
with higher level vibrational calculations, in Sect. IIT A.
as’the limitation that rotational degrees of
and their interaction terms with vibrational
ile. terms due to the Coriolis and centrifugal pseudo
forces)Nare not included in our approximated Hamilto-
nian. his is not expected to be an important limit
for relatively large, semi-rigid, asymmetric top molecules
such as e. g. pyrene. However, it is always possible that
a small number of individual states undergo accidental

putationally e
As to point

olewlare degenerate due to symmetry reasons, and this will
be more likely for symmetric species like coronene. How-
ever, we remark that the agreement between theoretical
and experimental data for coronene does not seem signif-
icantly worse than that of pyrene, hinting that Coriolis
coupling is not crucial.

Summing up, we find that for the cases of pyrene and
coronene presented here the main limitation appears to
be point 2, since we clearly reached a point at which
increasing the accuracy of our GPVT2 calculation did not
improve the agreement with experimental data. Indeed,
it looks like there is a “sweet spot” in the accuracy of the
GPVT?2 calculations where some accidental cancellation
of errors with the underlying DFT-based quartic force
field produces the best results, even if this may not be
general.

The calculations presented here are similar to those
performed by Mackie et al. in Ref. 64. The latter authors
reported an agreement of calculated band positions with
experimental data (in rare gas matrices) of 0.4+0.6%, to
be compared with our value of better than 0.8%. Since
both studies include different sets of laboratory data, it
is difficult to conclude which one provides the best re-
sults. Still, it can be noticed that some individual bands
positions differ by more than numerical noise, when com-
paring both theoretical studies (cf. Table III). The imple-
mentation of GVTP2 in Ref. 64 is different from ours. In
particular, a different strategy is used to define which cu-
bic and quartic terms of the potential should be included
in the treatment of resonances rather than in the per-
turbation expansion, and subsequently the construction
(and truncation) of polyads differ. In spite of these differ-
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k‘ , the overall agreement can be seen as a validation of
.bOth approaches. With the parameters used, the results
PUb|I§ M“c& here appear slightly more accurate for the re-
gion of combination bands, whereas the results in Ref. 64
appear somewhat better in the C-H stretches region. We
remark once more that we actually did obtain very nearly
the same results as Mackie et al.%* for the C-H stretches
of pyrene with our not completely converged anharmonic
calculation, as discussed in Sect.III C 1 and recalled in the
previous paragraph, where we hinted that this can be due
to an accidental cancellation of errors. The availability
of two independent codes performing similar calculations
is of course important, as this can be used to test both.
Indeed, the close similarity of the results, at least with
some choice of the tunable parameters, validates both
codes and the correctness of their results. In addition we
remark that AnharmoniCaOs is freely distributed under
an open source license via SourceForge, guaranteeing it
will remain available and easy to find and download for
the foreseeable future.

Scaled harmonic calculations of fundamentals appear
to be not much less accurate than our anharmonic ones.
However, they depend on the use of empirically cali-

sitions, are likely to become commonplace. The Anhar-
moniCaQOs code, besides being usable to process quartic
force fields and first and second order electric dipole mo-
ment derivatives to obtain spectra from the vibrational
ground state, can be used for vibrationally excited states
as well, and is currently being tested to obtain moder-
ately high temperature spectra of the same PAHs studied
here.

SUPPLEMENTARY N

See supplemen ‘Daterial for:

e A description of the different ethylene oxide force
fieldsft have,been used for benchmarking pur-
pos ~

table 1 the comparison of the VMFCI refer-

ce caléulation with HIL-RRBPM calculation D of

. Refi 21 for the force field adimensionned with DFT
quadratic force constants;

Dxble with the comparison of the VMFCI ref-

[ ]
brated parameters. Moreover, harmonic calculations a \erenc‘e calcplation With a previous. VMFCI (fal'
limited Only to fundamental transitions and Comple 7 Culatlon using a dlﬂerent contraction-truncation

strong Fermi resonances occur, as shown also in' Re
64 and 61. Indeed, Fig. 2, and Table V in Su \fe?en—
tary Material, clearly show that some baufls, mégtfno-*
tably (but not only) in the C-H stretch regi
their simplistic harmonic structure i
times a multitude of, close ones, due to
a complex structure was confirmed for the
region by the low temperature,
of Refs. 34, 64 and 61. Only an
account for this. We also note that as alby-product we
can also use this kind of anharmenic ealculation to esti-

mate purely theoretical{?équ Cy sc?ling factors. Fig. 6
i

neglect combination, difference and overtone bands,some
of which may be of sizeable intensity especially\&;r:\
fs.

uch

shows the empirical sc or the level of the-

ory B97-1/TZ2P,56:60,6

fac
as well as the ones we can de-
rive from our calcu tio%on pyrene, which are consistent

with them.

itin? facter to this kind of anharmonic
ast forgspecies of up to a few tens of
ted to the computational cost of

d derivatives of the electric dipole
t be obtained via numerical differen-

tion is still a work in progress and is still private. When
such codes will become available and well-tested, anhar-
monic calculations, at least of the ground vibrational
state and of the states connected to it by permitted tran-

scheme for the force field adimensionned with
coupled-cluster quadratic force constants;

e A table with the list of harmonic vibrational normal
modes of pyrene;

e A table with the list of harmonic vibrational normal
modes of coronene;

e A table listing the (significantly IR-active) anhar-
monic states of pyrene as a function of r values, for
fixed h = §;

e Figures of the complete anharmonic spectra of
pyrene and coronene.
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