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Abstract

Metamodeling techniques have been widely used as substitutes of high-fidelity and time-

consuming models in various engineering applications. Examples include polynomial chaos

expansions, neural networks, Kriging or support vector regression. This papers attempts

to compare the latter two in different case studies so as to assess their relative efficiency

on simulation-based analyses. Similarities are drawn between these two metamodels types

leading to the use of anisotropy for SVR. Such a feature is not commonly used in the SVR

related literature. A special care is given to a proper automatic calibration of the model

hyperparameters by using an efficient global search algorithm, namely the covariance ma-

trix adaptation - evolution scheme (CMA-ES). Variants of these two metamodels, associated

with various kernel or auto-correlation functions, are first compared on analytical functions

and then on finite-element-based models. From the comprehensive comparison, it is con-

cluded that anisotropy in the two metamodels clearly improves their accuracy. In general,

anisotropic L2-SVR with the Matérn kernels is shown to be the most effective metamodel.

1 Introduction

Structural design is nowadays routinely performed in order to assess that any newly built

structure will operate reliably throughout its lifetime. Such an assessment has been made
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mainstream thanks to the advances in computer simulation that allow analysts to reduce

their dependence on overly expensive and time-consuming physical testing. Indeed, upon

relying on high-fidelity models, one is able to finely predict the behavior of a structure

given its operating conditions. However, discrepancies can still be observed when compar-

ing results of model-based simulations and physical experiments. The ubiquitous presence

of uncertainty which departs reality from idealized deterministic mathematical modeling is

now commonly acknowledged. Methods to characterize uncertainty and to propagate them

in a model so as to assess their impact on the model response have been developed in the

literature under the framework of uncertainty quantification (Sudret, 2007; De Rocquigny,

2012). In structural reliability for instance, the concern is to find the failure probability of

a structure given a design configuration. In such analyses, Monte Carlo simulation is the

reference method, mostly because it is quite easy and natural to implement. However, its

computational burden is too high for complex problems where one can only afford a limited

computational budget due to the cost of a single simulation. Variance-reduction techniques,

such as importance sampling or subset simulation (Au and Beck, 2001), have been proposed

as an alternative in the literature (Asmussen and Glynn, 2007). The improvement they bring

is however not sufficient when one needs to simulate from a time-consuming model. Typical

examples are transient analyses of structural systems submitted to earthquakes or crash test

simulations in the automotive industry where one simulation of a frontal impact may last up

to 24 hours on a high-performance computing infrastructure. Such models are unusable in

computationally intensive methods like optimization, reliability or sensitivity analysis which

are based on simulation methods. Another approach has gained popularity over the past

few decades. It consists in considering the model as a black box function for which outputs

can only be evaluated on a limited set of inputs and then constructing a simplified math-

ematical model, called metamodel or surrogate model, to emulate the underlying mapping

of the black box function. Various types of metamodels exist, e.g. polynomial response

surfaces (Box and Draper, 1986; Kleijnen, 2007), polynomial chaos expansions (Ghanem and

Spanos, 2003), artificial neural networks (McCulloch and Pitts, 1988; Broomhead and Lowe,

1988), Gaussian process modeling (Sacks et al., 1989; Santner et al., 2003) or support vector

machines (Vapnik, 1998; Smola and Schölkopf, 2004). Methodological developments that

combine simulation methods and surrogate modeling have been proposed in the literature to

solve complex problems. For instance, polynomial chaos expansions have been used in con-

junction with Monte Carlo simulation in Blatman and Sudret (2008, 2010b). Monte Carlo

simulation and importance sampling were associated with Kriging in Picheny et al. (2010);

Dubourg et al. (2011); Balesdent et al. (2013). Support vector machines were combined with

subset simulation in Bourinet et al. (2011); Deheeger and Lemaire (2007) or with importance
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sampling in Hurtado (2007). All these applications have shown a dramatic decrease in the

number of calls to the original model compared to the use of crude simulation methods,

whatever sophisticated the latter may be. The quality of the results however depends on

the accuracy of the surrogate models. The first step in implementing such approaches is the

choice of the metamodel type. This may depend on the type of problem at hand. Various

studies have been carried out to compare different metamodeling approaches with respect to

their efficiency and robustness in solving various problems. For instance, Anoop and Messac

(2006) compared radial basis functions with Kriging and polynomial response surface. Fang

et al. (2005) compared radial basis function and polynomial response surface for multiobjec-

tive crashworthiness optimization. Using a variety of metrics, Jin et al. (2000) conducted a

benchmark on a wide panel of metamodeling methods which include multivariate adaptive

regression splines, radial basis functions, polynomial response surface and Kriging. Zhao and

Xue (2010) performed a similar comparative study with almost the same set of metamodels

which additionally includes Bayesian neural networks. As can be seen from their publica-

tion dates, these comparisons do not take into account the recent development in surrogate

modeling. In this contribution, we consider Kriging and support vector regression. Despite

their extensive use in the literature, they have been developed and considered by different

research communities. To the authors knowledge, only a few studies have considered a cross-

comparison between these two metamodels even though they bear some similarities such as

the recourse to the kernel or auto-correlation functions for high-dimensional mapping. Be-

sides, each of the methods possesses a number of options whose setting can influence largely

the prediction quality. For instance, Li et al. (2010) compared these two metamodels, among

others, in the context of decision support systems. The authors argued that a proper choice

of the hyperparameters is crucial, yet only a grid search is conducted on a pre-determined

candidates set to choose the optimal hyperparameters. Similarly, Nik et al. (2014) performed

a comparative study. However, the hyperparameters of the SVR model were simply set ac-

cording to some heuristics. In this paper, the similarities between Kriging and support vector

regression are first highlighted. The selection of the optimal hyper-parameters is introduced

in a unified framework for the two metamodels. In this sense, anisotropy, a feature which is

widely used in Kriging, is also considered for SVR as suggested in Chapelle et al. (2002). A

derandomized stochastic evolution scheme, namely covariance matrix adaptation - evolution

strategy (CMA-ES) is then considered for a robust and efficient solution of the resulting high

dimensional optimization problem. The paper is organized as follows. In section 1, the basic

theory on Kriging and support vector machines is introduced. Section 2 then focuses on how

to properly calibrate these two metamodels. The comparative study is finally carried out

in Sections 3 and 4 using respectively a set of analytical functions and two finite element
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based applications, namely a structural frame and the so-called sidemember subsystem under

frontal impact.

2 Introduction to metamodeling

2.1 Kriging surrogate

Coming from geostatistics, Kriging has been originally developed by D.G. Krige as a spatial

interpolation method (Krige, 1951). It has later been adapted to computer experiments by

Sacks et al. (1989).

In this context, let us consider a set of observations: D = {(x(i), yi), i ∈ {1, . . . , n},x(i) ∈

X ⊂ Rs, yi ∈ Y ⊂ R} , where the scalar outputs yi result from an unknown mapping of the

s-dimensional inputs {x(i), i = 1, . . . , n}. The idea behind Kriging surrogates is to consider

the output y(x) as a realization of a stochastic process Y (x) (Santner et al., 2003):

Y (x) = µ(x) + Z(x), (1)

where µ(x) is a deterministic function approximating the mean trend of the output. The

departure from this trend is assumed to be a Gaussian process Z(x) with zero mean and au-

tocovariance Cov [Z(x), Z(x′)] = σ2R(x,x′), where σ2 is the process variance and R(x,x′)

is the auto-correlation function providing the dependence structure.

The form of the deterministic function and additional hypotheses on the nature of Y (x)

lead to various types of Kriging (Rasmussen and Williams, 2006; Ginsbourger, 2009). The

most general one is universal Kriging where the trend is cast as a linear combination of

simple regression functions:

Y (x) =
p∑

j=1
βjfj(x) + Z(x), (2)

where β = {βj , j = 1, . . . , p} is a weight vector and f = {fj , j = 1 . . . , p} is a collection of

regression functions.

Estimates of the parameters β and σ2 can be derived by maximizing the likelihood

function defined from the assumption that the noise Z = Y − Fβ is a correlated Gaussian

vector:

(β̂, σ̂2) = arg max
(β,σ2)∈Rp×R∗+

L(β, σ2|y) =

1
((2πσ2)n detR)2 exp[− 1

2σ2 (y − Fβ)TR−1(y − Fβ)],
(3)

where F = {Fij = fj(x(i)), i = 1, . . . , n, j = 1, . . . , p}.
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Solving Eq. (3) provides the estimators (β̂, σ̂2) once R is known:

β̂ = (F TR−1F )−1F TR−1y,

σ̂2 = 1
n

(y − Fβ)TR−1(y − Fβ),
(4)

where y contains the model response, i.e. y = {y1, . . . , yn}T .

Eventually, the prediction for a new point is defined by requiring it to respect three condi-

tions, namely linearity with respect to the observed data, unbiasedness and minimal variance.

Once the associated problem is solved, one can get the mean and variance formulations of

the Universal Kriging estimator (Rasmussen and Williams, 2006):

µ
Ŷ

(x) = f(x)T β̂ + rTR−1(y − F β̂),

σ2
Ŷ

(x) = σ̂2(1− rTR−1r + uT (F TR−1F )−1u),
(5)

where u = F TR−1r − f(x) and r is a vector gathering the auto-correlation function com-

puted between x and each point of the set of observations D:

r = {r1, . . . , rn}T , with: ri = R(x,xi). (6)

This formulation has many interesting features. First, it is interpolating as shown in Vazquez

(2005), meaning that the prediction is exact at the training points and the associated variance

is zero. Second it is asymptotically consistent (provided that the auto-correlation function

is regular) i.e. increasing the size of D decreases the overall variance of the process. Last, as

stated above, the prediction at a given point x, is considered as a realization of a Gaussian

random variable (Ŷ ∼ N (µ
Ŷ
, σ2
Ŷ

)). It is thus possible to derive confidence bounds on a

prediction. The variance information is mostly used as an error measure of the epistemic

uncertainty of the metamodel due to the sparsity of data. This quantity has favored the

fast development of probabilistic infill sampling criteria (Jones, 2001; Sasena, 2002) in the

context of optimization analyses where the accuracy of the metamodel is improved iteratively

only in regions of interest.

2.1.1 The nugget effect

In the case of noisy data, we shall not require the prediction to be interpolating. The

commonly-used technique to account for noisy data is the introduction of the so-called nugget

effect (Matheron, 1971). It consists in making the auto-correlation function discontinuous

at the origin.

In practice, an independent white noise U(x) is considered as an additional term of the

5



stochastic process in Eq. (1):

Y (x) = µ(x) + Z(x) + U(x), (7)

where U(x) is a zero mean Gaussian variable with variance σ2
U . This actually corresponds

to the addition of a Dirac auto-correlation function. The corresponding auto-covariance is

the identity matrix, leading to the following modified expression of the auto-covariance of

Y (x):

C = σ2R+ σ2
UIn, (8)

whereC is the auto-covariance matrix defined by {Cij = Cov
[
Z(x(i)),Z(x(j))

]
, i = 1, . . . , n, j =

1, . . . , n} and In is the identity matrix of size n×n. In practice, the auto-correlation matrix

in the previous equations is modified by adding the nugget term at its diagonal.

2.2 Support Vector Regression

2.2.1 Learning machines and structural risk minimization

Support vector machines are a learning machine technique developed by Vapnik and col-

leagues in the late 1980s. It is based on the principle of structural risk minimization where

the complexity of the metamodel is controlled to avoid overfitting (Vapnik, 1995, 1998). This

is in contrast to empirical risk minimization where the best metamodel is selected as the

one that minimizes a so-called empirical risk (examples are neural networks and radial basis

functions). For the empirical risk may only be computed with a finite set of samples, it may

potentially differ from the true risk. Vapnik (1995) has hence developed a distribution-free

bound on the true risk which is a function of the empirical risk and the complexity or capac-

ity of the metamodel. It has been a solid foundation for the development of support vector

machines for classification (SVC) and later for regression (SVR) (Smola and Schölkopf, 2004).

2.2.2 SVR formulation

Support vector regression consists in a linear equation that can be cast as follows:

f(x,w) =< w,x > +b, (9)

where < , > denotes the dot product in X.

To build the model, Cortes and Vapnik (1995) introduced the so-called ε-insensitive loss

function. Its concept is illustrated in Fig. 1: As long as the difference between the actual

and estimated values for a given point is less than ε, the loss function is zero. Beyond this

limit, the point is penalized either in a linear (L1-SVR) or in a quadratic (L2-SVR) fashion.
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Figure 1: Principle of support vector regression - After Smola and Schölkopf (2004).

For linear penalization, the formulation of the SVR problem reads:

min
w

1
2 ‖w‖

2 + C
n∑

i=1
(ξi + ξ∗i ),

subject to yi − 〈w,x(i)〉 − b ≤ ε+ ξi,

〈w,x(i)〉+ b− yi ≤ ε+ ξ∗i ,

ξi, ξ
∗
i ≥ 0,

(10)

where ξi and ξ∗i are the so-called slack variables which measure the acceptable deviation of

a point from the insensitive tube shown as the shaded area in Fig. 1. In this formulation,

the minimization of 1
2 ‖w‖

2 corresponds to the capacity control. The second term is for

empirical risk minimization.

Eq. (10) is a convex quadratic optimization problem with linear constraints and can be

solved in its dual formulation by introducing the Lagrange multipliers. The Lagrangian of

the problem then reads:

L(w, b,α) =1
2 ‖w‖

2 + C
n∑

i=1
(ξi + ξ∗i )−

n∑

i=1
(ηiξi + η∗i ξ

∗
i )

−
n∑

i=1
αi(ε+ ξi − yi + 〈w,x(i)〉+ b)−

n∑

i=1
α∗i (ε+ ξ∗i + yi − 〈w,x(i)〉 − b),

(11)

where αi , α∗i , ηi and η∗i ≥ 0 are Lagrange multipliers.

The saddle point of this Lagrangian gives the coefficients α that allow one to make a

SVR prediction at any new input point x:

f(x,w) =< w,x > +b =
n∑

i=1
(αi − α∗i ) < x(i),x > +b. (12)

This solution has many features. First αi and α∗i are the Lagrange multipliers associated
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to the constraints on the ε-insensitive tube. This means that when a point x(i) is inside the

tube, its associated αi (or α∗i ) is zero. Besides, αi and α∗i cannot be nonzero simultaneously

as there is no point x(i) which could lie on the two sides of the tube. Second, the solution

only depends on points for which αi − α∗i 6= 0. Such points are called support vectors

(SV). It can be shown using the Karush-Kuhn-Tucker optimality conditions of Eq. (10) that

0 ≤ α
(∗)
i ≤ C, where α(∗)

i refers to both αi and α∗i . The SVs for which α(∗)
i = C are called

bounded support vectors and those for which 0 < α
(∗)
i < C are called unbounded support

vectors. The former correspond to the points lying strictly outside the ε-insensitive tube,

while the latter correspond to those lying at the boundary of the tube defined as the margin.

They are useful when it comes to computing the bias term b. In fact, for those SVs, the

slack variables vanish and the inequalities in the constraints of Eq. (10) becomes equalities,

leading to the following expression for b:

b = 1
NUSV

NUSV∑

i=1

(
sign(αi − α∗i )ε− yi + 〈w,x(i)〉

)
, (13)

where NUSV is the number of unbounded support vectors. Alternatively, when interior-

point is used to solve the optimization problem in Eq. (11), b may be simply retrieved as a

by-product of the solution (Bompard, 2011).

For L2-SVR, the quadratic optimization problem to solve for the coefficients α is slightly

different (Gunn, 1998). In fact, the penalization term is quadratic thus leading to a different

Lagrangian formulation. The solution of this optimization problem gives the coefficients of

the expansion which now are no more upper bounded by C.

Many other loss functions such as Huber, Laplace or quadratic and other formulations of

SVR exist (Gunn, 1998). In this article, we limit our study to the ε-insensitive loss function

and its two formulations (L1-SVR and L2-SVR).

2.2.3 Non-linear regression

So far we were only interested in the case of linear regression. There may exist situations

where the underlying inputs-outputs mapping is highly non-linear. In such a case, SVR

allows non-linear regression. This is achieved by mapping the sampling points into a high-

dimensional feature space where the transformed data may be handled by linear regression,

following the idea by Aizerman et al. (1964). However when doing so, the size of the opti-

mization problem dramatically increases, making it harder to solve. The solution is to resort

to the so-called kernel trick. Indeed, Eq. (12) shows that the metamodel relies only on the in-

ner product between points in the input space. Consequently, if x(i) is replaced by its image

in the feature space Φ(x(i)), the only information needed to construct the metamodel is the
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inner product < Φ(x(i)),Φ(x) >. Thus, there is no need to explicitly know the underlying

mapping to the feature space and Eq. (12) becomes:

f(x,w) =
n∑

i=1
(αi − α∗i )k(x(i),x) + b, (14)

where k(x(i),x) represents the inner product in the feature space, usually referred to as the

kernel function. For a given kernel, the so-called Mercer’s conditions need to be fulfilled for

the underlying mapping to actually exist (Chapelle, 2002; Cherkassky and Mulier, 2007).

Examples of well-known kernel functions are polynomials and radial basis functions.

3 Calibration of the two metamodels

3.1 Hyperparameters of the metamodels

3.1.1 Kernel parameters

The generalization ability of these metamodels highly rely on a proper choice of their hy-

perparameters. Kriging and SVR are both built using respectively the auto-correlation and

kernel functions. In the first case, the function relates to the assumption about the nature and

the shape of the model being approximated. Rasmussen and Williams (2006) review some

commonly-used auto-correlation functions for Kriging. In the second case, the kernel is used

to map the data onto a higher dimensional space so as to construct non-linear regression. In

practice, similar functions may be used in some cases. A noticeable example is the family of

radial basis functions such as the Gaussian auto-correlation/kernel function. In general, for

two distinct points x and x′, such functions can be expressed in the form k(x, x′, θ) where θ

represents the parameter to be tuned. When the problem is multi-dimensional, two possible

cases can be assumed:

• Isotropy: In this case, the same parameter is assumed in all dimensions. This may be

a sound assumption when the variation rate of the function is similar in all directions.

When the input parameters are defined on completely different scales, it is necessary

to normalize them so that their ranges become similar in all dimensions.

• Anisotropy: In this case, a different parameter is assumed in each direction. The

associated functions may be expressed as follows:

k(x,x′,θ) =
M∏

i=1
k1(xi, x

′
i, θi), (15)

where k1(•) corresponds to the one-dimensional kernel function and θi is its parameter
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along the i-th dimension. This anisotropy introduces new degrees of freedom to the

approximation which results in some cases in higher accuracy. However, when the di-

mension of the problem is large, the resulting optimization procedure is more difficult

to solve, often leading to erroneous models. Henceforth, it is necessary to use appropri-

ate and robust optimization algorithms to calibrate the hyperparameters. The use of

anisotropic auto-correlation function is widely acknowledged in Kriging applications.

This is not the case for support vector machines where very often only isotropic kernels

are considered. Enhanced formulations such as multiple kernels has been introduced

(Yeh et al., 2011). Anisotropic kernels were introduced by Chapelle et al. (2002). How-

ever, the calibration of these enhanced kernels remain a challenging task. Therefore,

they have not been widely used in the literature to the authors knowledge. In this

paper, we consider a global optimization scheme, namely the covariance matrix adap-

tation - evolution scheme (CMA-ES) (Hansen and Kern, 2004) to solve the associated

optimization problem.

3.1.2 Specific SVR hyperparameters

Apart from the kernel parameters, SVR has two additional hyperparameters that need to be

calibrated, namely the penalty term C and the insensitive tube width ε. The first parameter

introduces some regularization in the minimization of the generalization error by penalizing

prediction errors larger than ε as shown in Fig. 1. The higher its value the less errors

are tolerated. In contrast, the second parameter allows the model to freely deviate from

training points up to a certain value ε. All the points belonging to this insensitive tube

are actually not support vectors and do not appear in the expansion in Eq. (14). To the

authors experience, by setting the value of C extremely large and that of ε extremely low,

the model behaves in prediction similarly to Kriging with a very small nugget, i.e. it is

almost interpolating. This is the reason why we set very low and high optimization bounds

respectively for ε and C in the following applications. To illustrate this idea, let us consider

the one-dimensional function x 7→ x sin(x) where x ∈ [0, 15]. The results are shown in Fig. 2,

where the support vectors are circled in red whereas the insensitive tube is represented by the

blue-shaded area. Fig. 2a shows the resulting SVR approximation using optimized values of

the hyperparameters. The found solution is actually almost interpolating the data because of

the extremely high and low values found respectively for C (6.38 ·1010) and ε (1.80 ·10−7). In

contrast, if we consider values as heuristically set in Matlab’s machine learning toolbox, i.e.

C = 19.87 and ε = 0.71, the produced model is no more interpolating because of the large

width of the insensitive tube and the small value of the penalty term (Fig. 2b). Besides, all

the training points are no more support vectors as it was the case in the optimized example.

10



0 5 10 15
-15

-10

-5

0

5

10

15
True model

SVR approximation

Training points

Support Vectors

insensitive tube

(a) SVR model - optimized hyperpatameters
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(b) SVR model - heuristically set hyperparameters

Figure 2: SVR approximation of the function x 7→ x sin(x) with optimized hyperparameters and
heuristically set values for C and ε.

This simple illustration shows that the optimization of the hyperparameters is a key issue

when using SVR, a topic that has been rather overlooked in the recent literature.

Let us now consider the same problem using Kriging. As explained in Section 2.1.1,

the nugget can be used either for handling noisy data by requiring the model to not be

interpolating or simply to avoid numerical instabilities in the inversion of the auto-correlation

matrix. In the latter case, a small value of nugget is often set by default. In the left panel

of Fig. 3, a Kriging model is trained using a nugget value of 10−10. The resulting prediction

is interpolating as expected, similarly to the SVR case with large C and small ε. However,

when we set the nugget to 10−1 (Fig. 3b), the resulting model is no more interpolating and

the local Kriging variance is never equal to zero. This is due to the large value of the nugget

and the resulting behavior is close to that of an SVR with a relatively large ε. In practice,

these two parameters can be optimized during the calibration of the model. If the simulation

is noisy and if there are enough data points, the resulting nugget values and ε naturally tend

to be large. In contrast, with smooth models or when there is not enough data i.e. sufficient

information for automatic identification of any noise, their values tend to be small. In this

paper, all the applications fall in the second category. It should be noted that the Kriging

nugget is not optimized in our applications but set by default to 10−10. Furthermore, all

input data are normalized before fitting the hyperparameters, as it is common practice.
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(a) Kriging model - small nugget (σ2
U = 10−10)
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(b) Kriging model - large nugget (σ2
U = 10−1)

Figure 3: Kriging approximation of the function x 7→ x sin(x) with optimized hyperparameters
using small and large values of the nugget.

3.2 Model training

3.2.1 Kriging

As said earlier an aspect of prime importance when building a Kriging surrogate is the choice

of the auto-correlation function and its parameters. For a given auto-correlation function,

there exists many methods for the estimation of its parameters. Among them variographic

analysis which is mostly used in geostatistics, cross-validation where the generalization error

is minimized with the available set of observations (Bompard, 2011) or Bayesian estimation

(O’Hagan, 2006). In computer experiments, the most widely used technique is maximum

likelihood estimation (Koehler and Owen, 1996; Bachoc, 2013; Dubourg et al., 2011; Roustant

et al., 2012; Lophaven et al., 2002a). Gathering the auto-correlation function parameters in

θ, it has been shown that the maximum likelihood estimate of θ is the solution of the

following optimization problem:

θ̂ = arg min
θ∈RM

ψ(θ) = σ̂2(θ) detR(θ) 1
n , (16)

where M is the number of parameters of the auto-correlation function and ψ(θ) is the so-

called reduced likelihood function (Dubourg, 2011; Marrel et al., 2008).

This reduced likelihood function is not easy to minimize for various reasons. Lophaven

et al. (2002a) showed how badly conditioned is the auto-correlation matrix for some values of

θ, leading to inaccuracies in the optimization process. ψ(θ) may also have many local minima

in the space of the parameters. In the DACE Matlab toolbox, Lophaven et al. (2002b)

use a pattern search algorithm to tackle these problems, and more specifically the Hook &
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Jeeves method. In the R package DiceKriging, Roustant et al. (2012) use a genetic and/or

the second-order BFGS (Broyden-Fletcher-Goldfarb-Shanno) algorithm. In this paper, we

consider UQLab (Marelli and Sudret, 2014), a Matlab-based framework for uncertainty

quantification which offers additional optimization algorithms.

3.2.2 Support vector regression

The generalization ability of a SVR model relies on a good choice of its parameters. They

are usually estimated through cross-validation where an error measure is minimized solely

on the training points. More specifically, the leave-one-out (LOO) error is defined as:

eloo = 1
n

n∑

p=1
(f∼p(x(p))− yp)2, (17)

where f∼p(x(p)) is the prediction on the point x(p) by the model built when removing x(p)

from the training set.

It is obvious that the actual computation of the LOO error as in Eq. (17), considered in

an iterative scheme is unaffordable. In the past few years, many researchers have developed

bounds or approximation of the LOO error that are much cheaper to compute. One of them

is the span bound developed by Chapelle (2002) for classification. Chang and Lin (2005)

derived this bound for regression. For L1-SVR, it reads:

êloo = 1
n

(
n∑

p=1

(
αp + α∗p

)
S2
p +

n∑

p=1

(
ξp + ξ∗p

)
)

+ ε (18)

The computation of the span bond S2
p depends on the nature of the support vector:

• For unbounded support vectors

S2
p = 1(

K̃
−1
USV

)
pp

with K̃USV =


 KUSV 1USV

1TUSV 0


 . (19)

• For bounded support vectors

S2
p = k(xp,xp)− ṽTpK−1

USV ṽp (20)

In these equations, KUSV is the matrix of dot products between the unbounded support

vectors, (K̃−1
USV )pp is the p-th element of the diagonal of matrix K̃−1

USV , ṽp is the p-th

column of KUSV and 1USV is the identity matrix of size NUSV ×NUSV.

For L2-SVR, the slack variables are no more considered and the LOO estimate reduces

13



to:

êloo = 1
n

(
n∑

p=1

(
αp + α∗p

)
S2
p

)
+ ε. (21)

The span is now defined by considering the set of all support vectors (Chapelle et al., 2002):

S2
p = 1

(K̃
−1
sv )ii

, (22)

with K̃SV =


 KSV 1SV

1TSV 0


 and K̃SV = [k(xi,xj) + 1/Cδij ]i,j∈Isv . δij is the Kronecker

symbol, i.e. δij = 1 if i = j and δij = 0 otherwise and 1SV is the identity matrix of size

NSV ×NSV .

The computation of the LOO error as stated in Eqs. (18) and (21) directly results from

the model construction. The only additional operation is the inversion of K̃USV or K̃sv .

However, this estimate is not a continuous function of the model parameters. Vapnik and

Chapelle (2000) smoothened it by introducing a regularization term in the expression of S2
p .

This allowed them to consider gradient methods to find the optimal parameters of the model.

In this paper, we use a stochastic global optimization technique to minimize êloo and we find

it is not necessary to smoothen the estimates for proper optimization.

3.3 Hyperparameters calibration using hybrid CMA-ES

The Covariance Matrix Adaptation - Evolution Strategy (CMA-ES) is a derandomized

stochastic search algorithm introduced by (Hansen and Ostermeier, 2001). It relies on an

evolution strategy which appropriately adapts the covariance matrix of a normal distribution

by increasing its variance along the directions that have increased the fitness in the recent

past iterations. The updating scheme also relies on information from older iterations which

is set to decay slowly.

In the so-called (µ, λ)-CMA-ES strategy, the candidate solutions of the next generation

are sampled using the normal distribution as follows (Hansen and Kern, 2004; Hansen, 2005):

m
(g+1)
k ∼ 〈m(g)〉+ σ(g)N (0,Σ(g)), for k = 1, . . . , λ, (23)

wherem(g+1)
k is the k-th offspring at generation g+ 1, σ(g) is the global step size and Σ(g) is

the covariance matrix at generation g. The so-called recombination point 〈m(g)〉 is obtained

as the weighted means of µ selected individuals, i.e.

〈m(g)〉 =
µ∑

i=1
wim

(g)
i:λ for i = 1, . . . , µ (24)
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where wi > 0, i = 1, . . . , µ are weighting coefficients and x(g)
i:λ denotes the i-th best solution

from generation g.

The covariance matrix is adapted using an exponentially fading record of all successful

previous steps. This is practically implemented by first monitoring a so-called evolution path

which reads:

p(g+1)
c = (1− cc)p(g) +

√
cσ(2− cσ)B(g)D(g)B(g)

√
µeff

σ(g) (〈m(g+1)〉 − 〈m(g)〉), (25)

where µeff = 1/
∑µ
i=1 w

2
i is the so-called variance effective selection mass and the matrices

B(g) and D(g) are obtained using a principal component analysis of Σ(g), i.e. Σ(g) =

B(g)D(g)2
B(g)T . The global step size is updated using the following rule:

σ(g+1) ≈ σ(g)exp( cσ
dσ

( ‖p(g+1)
σ ‖√

s(1− 1
4s + 1

21s2 )
− 1)), (26)

where s is the dimension of the optimization problem. The remaining parameters in these

two equations (i.e. cc, cσ, dσ) are coefficients whose optimal values can be found in Hansen

and Kern (2004).

Once the evolution path is updated, the covariance matrix can be adapted as follows:

Σ(g+1) = (1− ccov)Σ(g) + ccov
µcov

p(g+1)
c (p(g+1)

c )T

+ ccov(1−
1

µcov
)
µ∑

i=1

wi

σ(g)2 (m(g+1)
i:λ − 〈m(g)〉)(m(g+1)

i:λ − 〈m(g)〉)T ,
(27)

where ccov and µcov are CMA-ES internal parameters whose values can be found in Hansen

and Kern (2004).

It should be noted here that a degenerate case of CMA-ES is the cross-entropy method

for optimization which has been successfully used by Bourinet (2015) for the calibration

of support vector machines classification’s hyperparameters in high dimension. Here we

consider directly CMA-ES in its general formulation as it has shown to be an efficient and

robust search algorithm, especially for ill-posed problems (Hansen and Kern, 2004). The

suggested optimal population size is usually given as λ = 4 + b3 ln(s)c and µ = bλ/2c where

b•c denotes the floor function. These optimal values, which actually grow sub-linearly with

respect to the dimension s allow, CMA-ES to be an extremely efficient local search algorithm

as it was originally intended. However, by increasing the population size, one achieves also

an efficient global search algorithm at has been shown by various benchmark problems in

Hansen and Kern (2004). In this paper, we consider λ = 20(4 + b3 ln(s)c) and µ = bλ/2c.
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4 Comparative study

4.1 Description of the study

Kriging and SVR models are built in the different configurations introduced above i.e. using

isotropic and anisotropic kernels and with L1− and L2−penalization for SVR. Uqlab, a

Matlab-based framework for uncertainty quantification is used in this purpose (Marelli

and Sudret, 2014). The span estimate of the leave-one-out error is computed as described

above following Chapelle et al. (2002) and Chang and Lin (2005) for the calibration of the

SVR model. Maximum likelihood estimation is considered for the calibration of the Kriging

models. The resulting optimization problems are solved using hybrid CMA-ES, i.e. a CMA-

ES optimization procedure whose solution is refined by a gradient-based approach.

Three different kernel functions are considered which read in their isotropic form as

follows:

• Gaussian:

k(x,x′; θ) = exp(−‖x− x
′‖

2θ2 ); (28)

• Matérn 3/2:

k(x,x′; θ) = (1 +
√

3‖x− x
′‖

θ
) exp (−

√
3‖x− x

′‖
θ

); (29)

• Matérn 5/2:

k(x,x′; θ) = (1 +
√

5‖x− x
′‖

l
+ 5

3
‖x− x′‖2

θ2 ) exp (−
√

5‖x− x
′‖

θ
). (30)

In these three equations, θ stands for the characteristic length-scale.

The metamodels are compared with respect to three error metrics, namely:

• the normalized mean-square error :

NMSE =
∑ntest

i=1 (f(x(i))− yi)2
∑ntest

i=1 (ȳ − yi)2 , (31)

• the normalized average absolute error:

NAAE =
∑ntest

i=1 |f(x(i))− yi|
ntest σY

, (32)

• and the normalized maximum absolute error:

NMAE = maxntest
i=1 |f(x(i))− yi|
ntest σY

, (33)

where ntest is the size of the validation set, f(x(i)) and yi are respectively the estimated
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and actual outputs at the point x(i), ȳ is the mean value of the actual outputs in the

validation set and σY =
√

1/(ntest − 1)
∑ntest

i=1 (ȳ − yi)2. The first two error metrics

(NMSE and NAAE) give the metamodel’s global accuracy measure while the third one

rather relates to a local measure of accuracy.

Three analytical functions of different dimensions are used to generate the training and

validation sets. The training samples are generated on a hypercube following three different

designs of experiments:

• Sobol’ quasi-random numbers, as originally developed in Sobol (1967);

• Centroidal Voronoi Tessellations (CVT) which are geometrically optimized initial de-

signs based on the so-called Voronoi regions (Du et al., 1999);

• Optimized latin hypercube (OLH) which here corresponds to an initial Latin Hypercube

design (McKay et al., 1979) optimized with respect to its L2-discrepancy as proposed

in Franco (2008).

The different experimental design types are introduced here, not as a mean to assess their

respective efficiency per se, but to increase the robustness of the computed error metrics

through replications. In this sense, we only present the median values of the resulting errors

for each configuration. This allows us to reduce the number of printed comparative figures

in the same time.

4.1.1 Two-dimensional function

For this first example, we compare the metamodels on a two-dimensional function, which

reads:

f(x) = 0.75 exp (− (9x1 − 2)2

4 − (9x2 − 2)2

4 ) + 0.75 exp (− (9x1 + 1)2

49 − 9x2 + 1
10 )

+ 0.5 exp (− (9x1 − 7)2

4 − (9x2 − 3)2

4 )− 0.2 exp (−(9x1 − 4)2 − (9x2 − 7)2),
(34)

where the input x = {x1, x2}T ∈ [0, 1]2.

This function is highly non-linear and features two Gaussian peaks and a local minimum

as illustrated in Fig. 4. For each design, three sizes are considered: 10, 20 and 40. The

validation set consists of a Monte-Carlo sample set of 106 points.

The median global error metrics (NMSE and NAAE) computed with respect to each

experimental design type are shown in Fig. 5. For n = 10 and n = 20, all the metamodels

exhibit similar errors, even though Kriging performs in general slightly better than SVR.

The latter shows better results when using the Matérn kernels instead of the Gaussian ones.

Finally, for n = 40, the error are dramatically reduced as expected since the design space
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Figure 4: Representation of the two-dimensional function.

is densely sampled. However, there are some abnormally large errors produced by SVR,

especially with the Gaussian kernel. This is due to difficulties encountered while optimizing

the hyperparameters. In the case of the Gaussian kernel, for some reasons, matrices KUSV

and Ksv in Eqs. (19),(20),(22) are not well conditioned when considering some values of the

hyperparameters. This makes their inversion difficult and the overall optimization problem

extremely noisy and thus difficult to solve.

The normalized maximum absolute errors are shown in Fig. 6. The trend is the same as

for the global error except that the difference between the two metamodels is not so large in

terms of relative errors.

For all the metrics (global and local), anisotropy does not seem to improve the results

substantially in this example. This may be explained by the shape of the function as shown

in Fig. 4. The characteristic length-scale should be roughly the same for each direction.

While using anisotropy, the optimization problem size is thus increased uselessly.

As a final remark, it can be pointed out that NMSE and NAAE exhibit the same trends.

This is also observed for all the examples considered in this paper as should expected given

Eqs. (31) and (32). In the sequel, we thus present only the NMSE and NMAE results.

4.1.2 Critical Euler force limit-state function

The second example is related to the buckling of a simply supported beam of length L with

a rectangular cross-section b× h (h > b) submitted to a normal compressive load Fser. The

Euler critical load for buckling is Fcr = π2EI
L2 where I = bh3

12 . The margin-to-buckling is then

obtained by:

y(x) = π2Ebh3

12L2 − Fser, (35)

where x = {E, b, h, l, Fser}T . The variation ranges of the parameters are given in Table 1.

The results for the three sizes of experimental designs (25, 50 and 100) are gathered in
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Figure 5: Two-dimensional analytical function - Median values of the normalized mean square
and normalized average absolute errors.

19



Gaussian Matern-3/2 Matern-5/2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

(a) NMAE with n = 10

Gaussian Matern-3/2 Matern-5/2
0

0.5

1

1.5

2

2.5

3

3.5

(b) NMAE with n = 20

Gaussian Matern-3/2 Matern-5/2
0

1

2

3

4

5

6

7

(c) NMAE with n = 40

Figure 6: Two-dimensional analytical function - Median values of the normalized maximum
absolute error.

Table 1: Inputs parameters for the critical Euler force limit state function.

Parameter Young’s modulus width height length Service load
E (MPa) b (m) h (m) L (m) Fser (kN)

Minimum 60000 0.10 0.25 1 10
Maximum 80000 0.25 0.30 3 70

Fig. 7. Contrary to the previous example, anisotropy plays an important role here as the

errors are dramatically decreased when considering anisotropic kernels. Whether focusing

only on isotropic cases or not, SVR is slightly better than Kriging on this example. In some

cases, such as with the Matérn 3/2 kernel, isotropic L2-SVR even leads to slightly better

results than anisotropic Kriging with respect to the normalized maximum absolute error.

4.1.3 Sobol’ g-function

For this last example, we consider the Sobol’ g-function. It is a function widely used in

global sensitivity analysis as its sensitivity indices can be expressed analytically (Marrel

et al., 2008). We use it here for benchmarking surrogate models since it is fairly complex

and its parameters can be tuned to control the importance of a given dimension. The function

reads:

y(x) =
M∏

i=1

|4xi − 2|+ ai
1 + ai

, (36)

where M = 20 is the dimension of the problem and ai are coefficients which control the

importance of a variable. As indicated in Marrel et al. (2008), it can roughly be said that

the dimension i is important when ai → 0 and becomes insignificant for ai ≥ 100. In this

paper, we choose to have some non-important variables as it is likely to happen in real

physical high-dimensional problems. Besides, we alternate the level of importance between
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Figure 7: Euler critical force limit-state function - Median values of the normalized mean square
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the dimensions so that we have:

ai =





3(i− 1) if i is odd,

30i if i is even.
(37)

The validation set is reduced to a Monte Carlo of 105 points. Fig. 8 shows the different

results. Once again, as expected anisotropy increases the metamodels accuracy in all cases. In

general, isotropic models are not able to approximate this high-dimensional highly anisotropic

Sobol function accurately, except for L2-SVR with the Matérn 5/2 kernel. Same trends are

observed with NMSE and NMAE. Whether considering isotropic or anisotropic cases, the

increase in the experimental design size does not considerably improves the metamodels

accuracy. Given the dimensionality of the problem (M = 20), such increases hardly modifies

the data point density in the space i.e. the experimental design remains scarce.

5 Applications using finite element models

5.1 Frame structure

The first example we consider in this section is a three-span five story frame structure as

sketched in Fig. 9. This structure has been used in structural reliability for various applica-

tions. It was considered by Liu and Der Kiureghian (1991) and by Wei and Rahman (2007),

respectively for assessing optimization algorithms for reliability analysis and for benchmark-

ing various reliability methods. It was more recently considered in Blatman and Sudret

(2010a) for illustrating the efficiency of sparse polynomial chaos expansions. The frame

structure is horizontally loaded and the quantity of interest is the horizontal displacement

in the right corner of the top floor. The model consists of 21 parameters gathering the three

lateral loads, eight moments of inertia and cross-sectional areas and two Young’s moduli.

In the original problem, these parameters follow lognormal and truncated Gaussian distri-

butions. The design space considered to build the SVR and Kriging models is defined by

considering a mean-centered bounded area covering 95% of the probability mass in each di-

mension. The lower and upper bounds are therefore set using respectively the 0.025− and

0.975−percentiles computed over a large Monte Carlo set (106 points). The experimental

design consists of a Latin hypercube sampling of size 214, which is the optimal size obtained

for sparse PCE in Blatman and Sudret (2010a). The results are shown in Fig. 10. Once

again anisotropic L1-SVR with the Gaussian kernel does not appropriately approximate the

function leading to an extremely large error both in terms of NMSE and NMAE. The

other metamodels produce extremely high accurate approximations as in Blatman and Su-

dret (2010a). Anisotropy slightly improves the prediction accuracy. A closer look on the
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Figure 8: Sobol function - Median values of the normalized mean square and normalized maxi-
mum absolute errors.
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Figure 9: 3-span, 5-story structural frame (Blatman and Sudret, 2010a).

different results shows that the best models with respect to NMSE and NMAE are found

with anisotropic Matérn L1-SVR and anisotropic Gaussian L2-SVR, respectively. This is

illustrated in Fig. 11 where the predictions are plotted against the true values on a sample

set of size 1000.

This example proves to be relatively easy to approximate. To have a sharper distinction

between the metamodels, we run again the comparison by reducing the experimental size to

100. The results are shown in Fig. 12. Even with this extremely scarce experimental de-

sign, results are accurate enough. However, the difference between isotropic and anisotropic

models is more important, especially between the SVR models. The accuracy improvement

brought by anisotropy in the case of Kriging is actually not too high. The best model

with respect to NMSE and NMAE is obtained with anisotropic Gaussian L2-SVR. Some

samples are plotted in Fig. 13a. In contrast, the worst model with respect to NMSE and

NMAE is obtained using isotropic Kriging with Matérn 3/2. The corresponding predictions

are plotted in Fig. 13b against the true responses.

5.2 The sidemember subsystem

5.2.1 Context of the study

The second example deals with crashworthiness analysis in a context of lightweight design

of car bodies. More specifically, the body-in-white of an automotive, which is made of metal

sheets welded together, has great potential for weight savings. Indeed, when designing a

car, engineers aim at finding an optimal distribution of the thicknesses of the body structure
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Figure 11: Frame: Best results with respect to NMSE and NMAE. Predicted against actual
model responses for n = 214.
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with minimal weight while respecting some requirements. These are related to security

and comfort of passengers e.g. acceptable level of noise and vibration in the passenger

compartment or sufficient protection of the occupants in an event of crash.

These requirements are usually translated into constraints simulated by the finite ele-

ment (FE) method, e.g. Noise Vibration and Harshness (NVH) analyses and frontal or side

impact. Unfortunately, these FE simulations are extremely time-consuming (up to 20 hours

on clustered PCs for each single analysis). This, in conjunction with an iterative scheme

of optimization, is incompatible with the project timeline, making the methodology unaf-

fordable. Thus one has to resort to surrogate models. However some simulations such as

the frontal impact are hardly replaceable by metamodels. The sought outputs are actually

highly non-linear and are subjected to noise as they result from a chaotic phenomenon. In

other words, bifurcations in the crash simulation can be triggered and exacerbated by small

perturbations in the initial conditions, leading to noticeable different crash scenarios (Thole

and Mei, 2003; Roux et al., 2006). Moreover, the number of metal sheets involved in an

optimization is usually large, making the problem high-dimensional and more difficult to

solve.

These are the main three problems encountered when building metamodels for crashwor-

thiness design. Kriging and SVR may be good candidate surrogate models to cope with the

above-mentioned features. They are capable of catching non-linearities in the input/output

relationship. Besides, the former features the nugget effect for noise handling and a measure

of its epistemic uncertainty which is useful in an adaptive experimental design based opti-

mization process (e.g. Efficient global optimization (Jones et al., 1998) and related methods).

The latter features the ε-insensitive parameter for noise handling.

5.2.2 Presentation of the sidemember subsystem

As an application of the study presented above, a so-called sidemember subsystem is intro-

duced. The sidemember is a critical part in the engine compartment structure. It is meant to

absorb a high amount of kinetic energy during a frontal impact by properly crushing along

its longitudinal axis. It is usually made as an extruded hollow section with strategically

positioned mechanical fuses. The sidemember subsystem introduced in this article is a set of

parts consisting of the sidemember itself, some parts around it and other impact absorbing

parts such as the bumper. An illustration is given in Fig. 14a. Fig. 14b represents an entire

car after crash: one can see regions of the front end from which the sidemember subsystem

is extracted. Thus the latter leads to a finite element model of smaller size which is far less

time-consuming. Nonetheless, it presents approximately the same characteristics as a full

car frontal impact i.e. high non-linearity and noise.
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(a) Sidemember subsystem (b) Entire model crash simulation

Figure 14: Sidemember subsystem.

5.2.3 Surrogates models and results analysis

The thicknesses of five parts are considered as inputs of the crash simulation, as shown

in Fig. 14a. These are the forward sidemember (x1), the rear sidemember (x2), the lower

bulkhead (x3), the forward sidemember base (x4) and the wheel arch (x5). The range

of their thicknesses is [0.5, 2.95], standing for the minimum and maximum available sheet

metals thicknesses (in mm). The learning set for this example consists of 150 points of

a 5-dimensional Sobol’ design. The testing set consists of an already available database

consisting of a 500-point Halton sequence. A large set of output quantities can be obtained

through simulation. We select a few of them according to the type of output (displacement,

force or speed) and the intensity of the noise observed in those outputs.These are respectively

the sidemember compression, the wall contact force and the left and right sidemember forces.

The results for these outputs are shown in Figures 15 to 18. According to the selected

output, anisotropy may increase significantly (maximum right and left sidemember forces,

respectively in Figures 17 and 18) or not (maximum sidemember compression and wall

contact force respectively in Figures 15 and 16) the metamodels accuracy. In general, SVR

is slightly better than Kriging. Once again, there are some cases when the optimization of

the SVR hyperparameters completely fails, leading to spurious results. This mainly happens

when using the Gaussian kernel with isotropic L1-SVR or anisotropic L2-SVR.

For all the outputs, the best results were globally obtained using anisotropic L2-SVR

with Matérn kernels. Fig. 19 illustrates those best results by plotting the predictions against

the actual responses as computed on the validation set. The resulting values of NMSE

and NMAE are also indicated on the figures. They respectively range from 0.0028 to

0.0913 and from 0.3017 to 2.3666. While the right sidemember subsystem is the most easily

approximated, the left sidemember force exhibits large errors. For the latter, even though

the NMSE is not so large compared to the other models, its NMAE is quite important.
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Figure 15: Subsystem - Maximum sidemember compression - Normalized mean square and
normalized maximum absolute errors.
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Figure 16: Subsystem: Maximum wall contact force - Normalized mean square and normalized
maximum absolute errors.
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Figure 17: Subsystem: Maximum right sidemember force - Normalized mean square and nor-
malized maximum absolute errors.
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Figure 18: Subsystem: Maximum left sidemember force - Normalized mean square and normal-
ized maximum absolute errors.
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This is because the extreme upper values are not well approximated as explained by the few

points which depart completely from the upper diagonal in Fig. 19d. This is indeed the type

of local error (or outliers) that NMAE allows one to identify.

6 Conclusion

In this article, it is proposed to investigate the application of Kriging and support vector re-

gression to the emulation of non-linear, possibly noisy functions. The theoretical background

for these two classes of metamodels is first introduced. A unified framework is presented for

the calibration of their respective hyperparameters. Both Kriging and SVR are considered

with isotropic or anisotropic kernels. Finally, CMA-ES is introduced as a mean to efficiently

solve the resulting optimization problems. A comparative study of different forms of these

metamodels is then carried out. This involves L1-SVR, L2-SVR and Kriging with three dif-

ferent kernels or auto-correlations functions (Gaussian, Matérn 3/2 and 5/2). Three global

and local error metrics are considered to assess the accuracy of each metamodel. Some

global trend could be identified. First, the introduction of anisotropy dramatically increases

the ability of the metamodel to approximate the functions. This is expected as additional

degrees of freedom are given to the metamodels. Even though the dimension of the problem

is increased, using a robust optimization algorithm allows us to effectively find some opti-

mal hyperparameters, thus leading to extremely accurate models. Despite the use of such

an algorithm, there were some failed cases, mostly when using anisotropic SVR with the

Gaussian kernel. This may be explained by ill-conditioned matrices that do not allow one to

properly estimate the leave-one-out error. Overall, introducing anisotropy and thoroughly

calibrating the hyperparameters increases SVR accuracy. In fact, the performance of any

metamodeling approach is intrinsically linked to a proper calibration of its hyperparameters,

a feature which has been often overlooked in previous comparative studies involving SVR.

In this paper, the performance of SVR is improved to the standard of Kriging which was

consistently shown to be of higher accuracy in previous comparative studies. Finally, most of

the examples were considered with increasing sizes of the experimental design. As expected

the errors decrease as the experimental design size increases. However, the optimal experi-

mental design size cannot be known a priori as it depends on factors such as the regularity

or the shape of the function to approximate. The configuration that is of interest for real

applications is the one where the experimental design is scarce, i.e. the number of samples

is extremely low compared to the problem’s dimension. In such cases, anisotropic L2-SVR

with Matérn has shown overall to be consistently the best model.
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