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Abstract	

Electrochemical	Impedance	Spectroscopy	(EIS)	is	a	powerful	tool	to	assess	and	understand	the	
degradation	of	Li-ion	battery	(LIB)	performances	during	operation	(i.e.	upon	charge	and	discharge	
cycles).	 The	 full	 interpretation	 of	 EIS	 diagrams	 associated	 to	 complex	 electrode/electrolyte	
interfaces	 is	 however	 tedious.	 An	 analytical	 solution	 for	 the	 electrochemical	 impedance	 of	 a	
porous	 electrode	 composed	 of	 spherical	 intercalation	 particles	 in	 contact	 with	 concentrated	
electrolyte	is	presented	herein.	The	proposed	model	which	is	based	on	the	concentrated	solution	
theory	previously	developed	but	which	also	accounts	for	kinetic	limitations,	and	both	solution-
phase	and	solid-phase	diffusion	limitations,	can	predict	the	EIS	response	of	a	porous	electrode	at	
any	state	of	charge	using	a	limited	set	of	parameters.	Moreover,	the	developed	model	can	predict	
the	optimal	porosity	of	the	electrode	to	be	targeted	during	the	manufacturing	process	for	the	
best	cycling	performances	depending	on	the	composition	of	the	electrode	(volume	fractions	of	
active	material,	binder	and	conductive	agent).		
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Introduction	

Insertion	materials	have	been	subject	of	numerous	investigations	as	battery	electrode	materials,	

especially	alkali	and	divalent-ion	insertion	structures	[1-5].	Host	materials	for	lithium	insertion	

have	been	highly	optimized	and	are	already	widely	used	in	Lithium-ion	batteries	(LIBs)	to	power	

both	 small	 electrical	 devices	 and	 electrical	 vehicles	 (EV)	 or	 hybrid	 electrical	 vehicles	 (HEV).	

Commercial	 LIBs	 are	 complex	 systems	 composed	 of	 two	 porous	 composite	 electrodes	

impregnated	with	electrolyte.	Thus,	the	understanding	of	the	performance	degradation	of	such	

systems	 (specific	 capacity,	 charging	 rate)	 and	 their	optimization	 requires	 the	development	of	

non-invasive	 characterization	 tools	which	 can	 be	 implemented	 under	 the	 conditions	 of	 their	

operation.	This	can	be	achieved	using	electrochemical	impedance	spectroscopy	(EIS)	which	has	

become	increasingly	popular	in	the	LIB	community	these	last	decades	for	the	in	situ	assessment	

of	LIB	performances	[6-8],	since	it	reflects	the	kinetics	of	the	processes	at	the	electrodes	(charge	

transfer	reactions	at	the	electrode/electrolyte	interface	and	diffusion	processes	in	both	solid	and	

liquid	phases).	The	full	interpretation	of	EIS	spectra	of	LIBs	can	be	however	tedious	because	of	

the	complexity	of	porous	composite	electrodes	made	of	active	material,	conductive	agent	and	

binder	deposited	on	thin	current	collectors.	Moreover,	in	a	compact	battery	design,	where	a	third	

reference	electrode	cannot	be	easily	introduced,	the	convoluted	impedance	response	resulting	

from	the	contributions	of	both	the	positive	and	the	negative	electrodes	is	hardly	decipherable.	

Models	can	thus	be	helpful	to	interpret	the	behavior	of	such	systems.	Most	of	the	time,	electrical	

equivalent	circuits	(ECCs)	are	used	to	describe	the	electrode/electrolyte	interface	and	to	extract	

parameters	(capacitances	and	resistances)	through	fittings	of	EIS	spectra	[9,	10].	These	empirical	

models	often	fail	 in	extracting	reliable	properties	because	of	the	inaccurate	description	of	the	

electrochemical	system	under	scrutiny.	De	Levie	devised	the	transmission	line	model	(TLM)	[11],	

in	which	a	first	improvement	of	ECCs	was	proposed	by	considering		a	porous	electrode	composed	

of	cylindrical	pores	of	finite	or	infinite	length	filled	with	electrolyte.	Inspired	from	de	Levie’s	work,	

impedance	models	taking	into	consideration	potential	gradient	[12],	concentration	gradient	[13]	

or	both	[14]	also	emerged.	Later	on,	impedance	models	including	the	mathematical	description	

of	 the	 physical	 processes	 occurring	 inside	 porous	 electrodes	 have	 been	 developed.	 In	 2000,	

Meyers	et	al.	[15]	established	an	analytical	solution	for	a	single	lithium	host	particle	considering	
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the	kinetics	of	the	electron	transfer	at	the	particle/electrolyte	interface	with	the	use	of	the	Butler-

Volmer	equation,	and	also	the	kinetics	of	 the	 lithium	diffusion	 in	 the	particle	 (i.e.	 in	 the	solid	

phase).	 Assuming	 a	 continuous	 particle-size	 distribution,	 they	 were	 able	 to	 determine	 the	

impedance	of	a	porous	electrode.	Doyle	et	al.	[16]	developed	a	numerical	approach	to	calculate	

the		impedance	of	a	porous	electrode	system	(anode/separator/cathode)	taking	into	account	the	

solution	and	solid-phase	diffusion	processes	and	the	interfacial	kinetics.	Subramanian	et	al.	[17]	

proposed	an	analytical	solution	for	a	porous	electrode	by	neglecting	the	solid-phase	diffusion	

process,	which	was	taken	into	account	later	on	in	a	model	proposed	by	Sikha	and	White	[18].	

They	extended	this	model	to	an	anode/separator/cathode	geometry	with	two	porous	electrodes	

[19].	More	recently,	Huang	et	al.	[20]	developed	the	so-called	secondary	particle	model,	which	

could	reproduce	the	experimental	impedance	data	obtained	by	Dokko	et	al.	on	LiCoO2	particles	

[21]	with	a	better	accuracy	than	Meyers.	They	also	studied	the	influence	of	a	passivation	layer	at	

the	surface	of	the	lithium	host	particles	on	the	impedance	response,	and	proposed	an	analytical	

solution	for	the	impedance	of	the	electrolyte/electrode	interface	(EEI)	[22].	They	first	analyzed	

the	impedance	response	by	coupling	or	decoupling	faradaic	and	double	layer	charging	currents	

and	then	investigated	the	impedance	response	according	to	the	location	of	the	charge	transfer	

reaction	at	the	interface.	In	2016,	Huang	and	Zhang	[23]	proposed	an	analytical	solution	of	the	

impedance	for	three	different	systems:	a	blocking	electrode,	an	electrode	with	faradaic	reactions	

and	a	porous	electrode	composed	of	particles	with	insertion	reactions.		

In	 the	 present	 work,	 we	 have	 developed	 an	 analytical	 solution	 for	 the	 potential-dependent	

current	response	of	a	porous	composite	electrode	composed	of	particles	subjected	to	insertion	

reactions	 by	 considering	 the	 kinetics	 of	 the	 electron	 transfer	 reactions	 and	 the	 diffusion	

processes	in	both	solid	and	liquid	phases.	The	model	presented	here	not	only	allows	to	predict	

the	impedance	of	a	porous	electrode	depending	on	its	state	of	charge	but	it	is	also	valid	for	the	

whole	 intercalation	 range	with	 the	same	set	of	parameters.	Then,	 the	 influence	of	geometric	

parameters	of	 the	porous	electrode	on	 the	 impedance	 response	was	 investigated	 in	order	 to	

determine	the	optimal	porosity	of	the	electrode	associated	to	the	highest	performances	of	the	

battery.									
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Model	Development	

When	performing	EIS,	a	small	amplitude	potential	or	current	perturbation	(usually	a	sine-wave)	

at	different	frequencies	is	superimposed	to	a	DC-steady-state	potential.	The	resulting	current	or	

potential	allows	the	calculation	of	a	transfer	function	of	the	electrochemical	system,	which	 in	

turn	allows	the	EIS	spectra	to	be	obtained.	

Let	us	first	assume	that	the	amplitude	of	the	perturbation	is	small	enough	to	consider	the	system	

as	 linear.	 Thus,	 each	 variable	 of	 the	 system	 can	 be	 expressed	 as	 a	 sum	 of	 a	 steady-state	

contribution	and	second	term	corresponding	to	 its	 response	to	 the	perturbation	signal	at	 the	

pulsation	w.		For	instance,	if	X	is	a	dependent	system	variable,	this	response	can	be	written	as		

𝑋 = 	𝑋 + 𝑅𝑒 𝑋. 𝑒𝑥𝑝 𝑗𝜔𝑡 	 [1] 	

	

where	𝑋	is	the	steady-state	term	and	𝑋	denotes	a	complex	variable.	

Interestingly,	the	linearity	condition	which	is	one	of	the	main	requirement	for	performing	an	EIS	

measurement	usually	allows	an	easy	resolution	of	partial	differential	equations,	thus	giving	rise	

to	analytical	solutions	to	complex	systems	describing	the	overall	behavior	of	the	system.	

Thus,	the	first	order	Taylor	expansion	allows	to	express	the	equations	of	the	system	as		

𝑓(𝑋) = 	𝑓 𝑋 +
𝜕𝑓
𝜕𝑋 𝑅𝑒 𝑋. 𝑒𝑥𝑝 𝑗𝜔𝑡 	 [2] 	

	

In	the	following,	an	analytical	expression	of	the	 impedance	response	for	a	single	 intercalation	

particle	is	first	proposed	and	then	expanded	to	a	porous-electrode	system.	Although	this	model	

describes	the	 insertion	 in	positive	or	negative	porous	electrodes,	the	case	of	 lithium	insertion	

into	graphite	is	addressed	in	the	following.	

Using	 a	 simple	 geometry	 consisting	of	 a	 spherical	 insertion	particle,	we	hypothesize	 that	 the	

lithium	 ion	reduction	takes	place	at	 the	surface	of	 the	particle	only	and	that	 the	 transport	of	

lithium-ion	within	the	particle	is	achieved	only	by	diffusion,	so	that	the	faradaic	and	non-faradaic	

contributions	in	the	measured	currents	can	be	separated.		
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The	 faradaic	 current	 density,	 corresponding	 to	 the	 charge	 transfer	 reaction	 occurring	 at	 the	

surface	of	the	particle,	is	described	by	the	Butler-Volmer	relation		

𝑖2 = 𝑖3 	𝑒𝑥𝑝
𝛼5𝐹
𝑅𝑇 Ф − U − 𝑒𝑥𝑝 −

𝛼;𝐹
𝑅𝑇 Ф − U 	 [3] 	

	 	

where	Ф	is	the	potential	of	the	electrode	(Ф	is	expressed	as	the	potential	difference	between	the	

particle,		𝜑=,	and	the	solution,	𝜑>),	𝑖3	is	the	exchange	current	density,	𝛼5	and	𝛼; 	are	the	charge	

transfer	 coefficients	assumed	equals	 to	0.5,	𝐹	 is	 the	Faraday	 constant,	𝑅	 is	 the	universal	 gas	

constant,	𝑇	is	the	temperature	and	U	is	introduced	as	the	open-circuit	potential	of	the	insertion	

materials	which	varies	with	the	concentration	of	lithium	inside	the	particle	[15,	24,	25].	

𝑈 =	𝑈@A52B + 𝑓 𝑐@ 	 [4] 	

	

𝑈@A52B 	is	a	standard	redox	potential	and	𝑓 𝑐@ 	is	a	function	of	the	amount	of	lithium	inserted	in	

the	solid	matrix.		

Taking	 advantage	 of	 the	 approximation	exp 𝑎𝑥 ≈ 1 + 𝑎𝑥	when	𝑥	→ 0	 ,	 the	 linearization	 of	

Butler-Volmer	equation	expresses	as		

𝚤2 = 𝑖3
𝐹
𝑅𝑇 Ф − U 	 [5] 	

Additionally,	to	account	for	the	surface	concentration	at	the	particle,	the	slope	of	the	titration	

curve	is	introduced	as	

𝑈 =	
𝜕𝑈
𝜕𝑐@

𝑐@
@MNO	 [6] 	

where	𝑐@	 is	 the	average	concentration	 inside	the	solid	active	particle	and	𝑐@
@MNO	 is	 the	surface	

concentration	of	the	particle.	Thus,	Eq.	5	can	be	rewritten	as	
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𝚤2 = 𝑖3
𝐹
𝑅𝑇 Ф −

𝜕𝑈
𝜕𝑐@

𝑐@
@MNO 	 [7] 	

	

The	variation	of	the	concentration	within	spherical	particles	of	radius	𝑅@	is	given	by	the	second	

Fick’s	law,	which	expresses	in	spherical	coordinates	as	

𝜕𝑐@
𝜕𝑡 = 	

𝐷@
𝑟>

𝜕
𝜕𝑥 𝑟>

𝜕𝑐@
𝜕𝑟 	 [8] 	

	

where	r	is	the	radial	coordinate,	𝑐@	the	surface	concentration	of	the	active	material	particle	and	

𝐷@	the	diffusion	coefficient	in	the	solid	phase.	The	boundary	conditions	for	Eq.	8	are	given	by:	

- at	the	surface	of	the	particle	 𝑟 = 𝑅@ 	

𝑖2 = −𝐹𝐷@
𝜕𝑐@
𝜕𝑟 	

[9] 	

	

- at	the	center	of	the	particle	 𝑟 = 0 	

𝜕𝑐@
𝜕𝑟 = 0	 [10] 	

	

Using	the	Laplace	transform	to	express	Eq.	8	in	the	frequency	domain,	it	comes:		

𝑗𝜔𝑐@ = 	
𝐷@
𝑟>

𝜕
𝜕𝑥 𝑟>

𝜕𝑐@
𝜕𝑟 	 [11] 	

The	solution	of	Eq.	11	allows	the	surface	concentration	for	the	particle	to	be	obtained	as	

𝑐@
@MNO = 𝑐@ 𝑟 = 𝑅@ = 𝚤2𝑌@		 [12] 	

with	

𝑌@ = 	
𝑅@
𝐹𝐷@

𝑠𝑖𝑛ℎ 𝑗𝛺@
𝑠𝑖𝑛ℎ 𝑗𝛺@ − 𝑗𝛺@	𝑐𝑜𝑠ℎ 𝑗𝛺@
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and	 	

𝛺@ = 	
𝜔𝑅@>

𝐷@
	 	

	

The	total	current	density	at	the	interface	between	the	particle	and	the	solution	is	given	by		

𝚤AXA5Y = 	 𝚤2 + 𝚤2X2ZO5N5B5[;	 [13] 	

	

The	non-faradaic	current	density	is	expressed	by	the	charge	and	discharge	of	the	double	layer	as	

𝚤2X2ZO5N5B5[; = 	𝑗𝜔𝐶BYФ	 [14] 	

	

where	𝐶BY 	is	the	double	layer	capacitance.	

Combining	equations	Eq.	7,	Eq.	12,	Eq.	13	and	Eq.	14,	it	comes	

𝚤AXA5Y = 	
1

𝑅;A + 𝑌@
𝜕𝑈
𝜕𝑐@

Ф + 𝑗𝜔𝐶BYФ	 [15] 	

where	the	charge	transfer	resistance	𝑅;A	is	given	by	

𝑅;A = 	
𝑅𝑇
𝑖3𝐹

	 	

The	electrochemical	impedance	of	the	single	particle	is	given	by		

𝑍@^ = 	
𝚤AXA5Y
Ф

	 [16] 	

that	is	

𝑍@^ = 	
1

1

𝑅;A + 𝑌@
𝜕𝑈
𝜕𝑐@

+ 𝑗𝜔𝐶BY
	

[17] 	
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In	a	second	step,	the	model	was	further	developed	to	account	for	a	porous	electrode	system,	i.e.	

an	electrode	made	of	several	single	particles,	as	illustrated	by	the	Fig.	1.	The	porous	electrode	

model	is	based	on	the	concentrated	solution	theory.	We	consider	a	1:1	binary	electrolyte	(e.g.	Li+	

and	PF6-)	with	the	solvent	and	we	assume	a	one-dimensional	 transport	 inside	the	electrolyte.	

Moreover,	𝐷_,_OO	the	 effective	 diffusion	 coefficient	 of	 the	 electrolyte,	 𝑡a	 the	 transference	

number	of	lithium	ions,	𝜀_ 	the	volume	fraction	of	electrolyte	within	the	electrode	(i.e.	porosity)	

and	𝐶BY 	 are	 assumed	 to	 be	 constant,	 𝑓∓	 the	 mean	 activity	 coefficient	 of	 the	 LiPF6	 solute	 is	

supposed	constant	and	equal	to	1.		

	
Figure	1:	Schematic	representation	of	a	typical	porous	composite	electrode	(binder,	conductive	agent	and	active	
material,	i.e.	graphite)	in	contact	with	the	electrolyte.	

	

The	porous	electrode	model	used	in	this	study	is	derived	from	a	model	developed	by	Huang	and	

Zhang	[23]	to	obtain	an	analytical	solution	for	the	impedance	of	a	porous	electrode.	The	different	

phenomena	taking	place	in	a	porous	electrode	were	described	using	the	governing	equations	of	

Newman’s	model	[26].	
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The	mass	balance	in	the	electrolyte	expresses	as	

𝜀_
𝜕𝑐_
𝜕𝑡 = 𝐷_,_OO

𝜕>𝑐_
𝜕𝑥> +

𝑎d𝑖YX;
𝑧a𝐹

	(1 − 𝑡a)	 [18] 	

	

where	 𝑐_ 	 is	 the	 electrolyte	 concentration,	 𝑖YX; 	 the	 local	 current	 density	 at	 the	

electrode/electrolyte	interface,	𝑧a	the	charge	number	of	cations	in	the	electrolyte,	here	𝑧a = 1,	

and	𝑎d	 the	 specific	 surface	area	equals	 to	3
gh
ij
	 for	 spherical	particles	where	𝜀5	 is	 the	volume	

fraction	of	solid	active	particles.	

The	charge	conservation	in	the	electrolyte	phase	is	given	by	

𝑖> = −𝜅_,_OO
𝜕𝜑>
𝜕𝑥 +

2𝜅_,_OO	𝑅𝑇
𝐹 	(1 − 𝑡a)

𝜕𝑙𝑛 𝑐_
𝜕𝑥 	 [19] 	

	

where	𝑖>	is	the	current	density	of	the	electrolyte,	𝜑>	the	potential	of	the	electrolyte	and	𝜅_,_OO	is	

the	effective	conductivity	of	the	electrolyte.	

The	current	density	of	the	solid	matrix	is	governed	by	the	Ohm’s	law	

𝑖= = 	−𝜅@,_OO
𝜕𝜑=
𝜕𝑥 	 [20] 	

	

where	𝑖=	is	the	current	density	of	the	solid	matrix,	𝜑=	is	the	potential	of	the	electrode	and	𝜅@,_OO	

is	 the	 effective	 conductivity	 of	 the	 electrode	 (under	 the	 assumption	 of	 an	 homogeneous	

conductivity	of	the	porous	electrode).	

Additionally,	the	electroneutrality	expresses	as		

𝜕𝑖=
𝜕𝑥 +

𝜕𝑖>
𝜕𝑥 = 	0	 [21] 	

	

The	current	density	of	the	electrolyte	can	be	expressed	as	a	function	of	the	faradaic	current	as	
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𝜕𝑖>
𝜕𝑥 = 	𝑎d𝑖YX; 	

[22] 	

	

From	Eq.21	and	Eq.22,	we	can	rewrite	Eq.	18,	Eq.	19	and	Eq.	20	in	the	frequency	domain	

𝑗𝜔𝜀_𝑐_ = 𝐷_,_OO
𝜕>𝑐_
𝜕𝑥> +

𝑎d𝚤YX;
𝐹 	(1 − 𝑡a)	 	

	 	

𝑎d𝚤YX; = −𝜅_,_OO
𝜕>𝜑>
𝜕𝑥> +

2𝜅_,_OO	𝑅𝑇
𝐹𝑐_

	(1 − 𝑡a)
𝜕>𝑐_
𝜕𝑥> 	

[23] 	

	 	

−𝑎d𝚤YX; = 	−𝜅@,_OO
𝜕>𝜑=
𝜕𝑥> 	

	

	

The	local	current	density	is	related	to	the	impedance	of	a	single	particle	𝑍@^	by	

𝜑= − 𝜑> = 	𝑍@^𝚤YX; 	 [24] 	

	

Assuming	 that	 𝑍@^	 is	 uniform	 across	 the	 porous	 electrode,	 the	 analytical	 solution	 for	 the	

electrochemical	impedance	of	the	porous	electrode	is	given	by	[23]	

𝑍^_ = 	
𝑙^

𝜅@,_OO
+

𝑎d
𝑍@^𝜅@,_OO𝚤5^^

𝛼=
𝜆=
+

𝛽=
𝜆>

𝑙^ +
𝛼>
𝜆=
+
𝛽>
𝜆>

−
1
𝜆>
+
𝑣>
𝑣=

𝛬 +
1
𝚤5^^

1 −
𝑣>
𝑣=

𝛬	

[25] 	

	

where	 𝑙^	 is	 the	 length	 of	 the	 pore	 and	 the	 parameters	𝛼=, 𝛽=, 𝛼>, 𝛽>, 𝜆=, 𝜆>, 𝑣=, 𝑣>	 and	𝛬	 are	

parameters	whose	expressions	are	given	in	Appendix	1.				
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Results	and	Discussions	

The	 connection	 between	 the	 State	 of	 Charge	 (SoC)	 and	 the	 equations	 of	 the	 model	 is	 first	

presented.	Then,	the	results	for	a	single	active	material	particle	are	presented	and	the	results	for	

a	porous	electrode	are	thoroughly	discussed	in	a	last	part.	

- Relation	between	the	SoC,		rs
r;j

	and	𝑖3	

In	 this	 section,	we	propose	 to	model	 the	 impedance	 spectra	 at	 a	 given	 SoC	of	 the	 electrode	

material	 through	 the	 use	 of	 the	 two	 parameters	 	 rs
r;j

	 and	 𝑖3	 which	 depend	 on	 the	 lithium	

concentration	within	the	host	material.	

The	 exchange	 current	 density	 𝑖3	 can	 be	 derived	 from	 the	 Butler-Volmer	 equation	 and	 be	

expressed	as:	

𝑖3 = 	𝐹𝑘𝑐_
uh(𝑐A − 𝐶v

@MNO)uh 𝐶v
@MNO uw 	 [26] 	

where	𝑘	is	the	electrochemical	reaction	rate	constant	in	𝑚. 𝑠Z=, 𝐶v
@MNO	is	the	concentration	of	Li-

ion	 at	 the	 surface	 of	 the	 particle	 and	𝑐A	 is	 the	maximum	 concentration	 of	 lithium	 inside	 the	

particle.	

To	estimate	the	SoC	of	the	particle,	one	can	consider	the	lithium	insertion	ratio,	𝑥,	defined	as:		

𝑥 = 	
𝐶v
@MNO

𝑐A
	 [27] 	

Thus,	the	exchange	current	density	can	be	rewritten	as		

𝑖3 = 	𝐹𝑘′𝑐_
uh(1 − 𝑥)uh𝑥	uw 	 [28] 	

where	𝑘z = 𝑘𝑐A	and	expresses	in	𝑚𝑜𝑙.𝑚Z>. 𝑠Z=	

This	relation	shows	that	the	exchange	current	density	can	be	directly	 linked	to	the	SoC	of	the	

porous	 electrode	 as	 shown	on	 Fig.	 2a,	 for	 different	 set	 of	 parameters	𝛼5	 and	 	𝛼;.	 The	other	

parameters	used	to	calculate	𝑖3	are	reported	in	Table	I.	 In	other	words,	the	knowledge	of	the	
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insertion	ratio	of	the	porous	electrode	allows	the	kinetic	of	the	charge	transfer	reaction	to	be	

determined.		

	

	

Figure	2	:	(a)	Evolution	of	the	exchange	current	density	with	the	SoC	of	the	porous	electrode.	When	the	insertion	ratio	
is	equal	to	0,	the	porous	electrode	is	considered	to	be	fully	delithiated.	When	the	insertion	ratio	is	equal	to	1,	the	
porous	electrode	 is	considered	to	be	 fully	 lithiated.	 (b)	Experimental	charging	curve	achieved	at	a	C/50	rate	on	a	
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graphite	porous	electrode	and	(c)	the	associated	rs
r;j

	variation	for	a	maximum	concentration	of	lithium	in	the	particle	

𝑐A = 16,1	10Z|	𝑚𝑜𝑙. 𝑐𝑚Z|.	

Moreover,	each	SoC	is	also	associated	to	a	specific	value	of	rs
r;j

		which	can	be	determined	from	

the	charging	curve	of	a	porous	electrode	performed	very	low	C-rate	(C/50	or	C/20)	to	assume	the	

steady	state	condition	is	achieved	for	each	data	point.	This	OCP	curve	can	then	be	represented	

as	a	function	of	the	insertion	ratio	𝑥	as	shown	on	Fig.2b,	similarly		rs
r;j

	can	be	expressed	as		

𝜕𝑈
𝜕𝑐@

=
1
𝑐A
𝜕𝑈
𝜕𝑥 	

[29] 	

using	Eq.	27	and	calculated	using	the	variation	of	the	OCP	with	the	insertion	ratio	and	knowing	

𝑐A.	Fig.	2c	shows	the	variation	of	
rs
r;j

	corresponding	to	the	OCP	curve	presented	in	Fig.	2b.			

Experimental	OCP	and	rs
r;j

	curve	were	then	fitted	with	a	polynomial	function	to	be	used	as	input	

parameters	for	both	the	single	particle	and	the	porous	electrode	models.		

- Single	Particle	Model	

Using	the	experimental	titration	curve	presented	in	Fig.	2b	for	a	graphite	porous	electrode,	we	

first	calculated	the	impedance	𝑍@^	of	a	single	graphite	particle	at	different	SoC	using	a	single	set	

of	parameters	(Table	I).	For	each	impedance	diagram	depicted	in	Fig.	3a,	different	domains	are	

observed:	 at	 high	 frequency,	 a	 semi-circle	 ascribed	 to	 the	 charge	 transfer	 at	 the	 electrode	

concomitant	with	the	formation	of	the	electrical	double	layer,	and	a	45°	slope	line	characteristic	

of	the	diffusion	in	the	solid	particles	in	the	low	frequency	region.	Note	that	a	vertical	line	typical	

of	a	capacitive	behavior	is	expected	a	very	low	frequency	but	is	not	observed	in	the	frequency	

range	explored.			
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Table	I.	Parameters	used	in	the	Single	Particle	
Impedance	simulations	

Parameter	 Value	 Reference	

𝑐A	 16,1.10-3	mol.cm-3	 [27]	

𝑘		 10-4	cm.s-1	 Assumed	

𝐹	 	 96485	C.mol-1	 	

𝛼5, 𝛼; 	 0.5	 	

𝑖3	 𝐹𝑘′𝑐_
uh(1 − 𝑥)uh𝑥	uw 	 	

𝑅@		 1	µm	 [27]	

𝐷@	 2.10-12	cm2.s-1	 [27]	
𝜕𝑈
𝜕𝑐@

	 -20.27	V.cm3.mol-1	 [15]	

𝐶BY 	 20	µF.cm-2	 Assumed	

	

As	 the	 lithium	 content	 increases	 (i.e.	 when	 the	 SoC	 increases),	 the	 semi-circle	 diameter	 first	

decreases	from	1	%	SoC	to	50	%	SoC	and	then	increases	for	higher	SoC,	following	the	evolution	

of	the	exchange	current	density	(Fig	3.)	as	shown	on	Fig.	3a	(charge	transfer	coefficient	equal	to	

0.5).	This	specific	behavior	for	SoC	greater	than	50	%,	can	be	explained	by	the	depletion	of	lithium	

hosting	sites	within	the	particle,	which	translates	into	charge	transfer	with	higher	impedance	on	

the	EIS	diagrams.	It	is	also	worth	mentioning	some	specific	behaviors	of	the	impedance	diagrams:	

- At	1	%	of	SoC,	the	impedance	response	is	characteristic	of	a	capacitance	behavior.	Indeed,	

the	 porous	 electrode	behaves	 as	 a	 blocking	 electrode	 resulting	 in	 an	 accumulation	of	

charged	species	at	the	interface	electrode/electrolyte.	A	similar	behavior	is	observed	at	

100	%	of	SoC	(two	top	curves	in	Fig.	3a)	because	the	porous	electrode	is	fully	lithiated.	

However,	the	difference	observed	on	the	simulated	curves	is	ascribed	to	the	value	of	rs
r;j

		

(Fig.	2c)		

- At	 20	 %	 and	 50	 %	 of	 SoC,	 the	 impedance	 response	 shows	 the	 charge	 transfer	 loop	

overlapping	with	the	45°	slope	line	characteristics	of	the	diffusion	in	the	solid	particles.	

This	unexpected	behavior	originates	from	a	shift	in	the	value	of	the	diffusion	part	𝑌@
rs
r;j

	of	
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the	impedance	solution	given	in	Eq.	17	and	more	specifically	of	the	parameter	rs
r;j

	since	

𝑌@	remains	constant	for	any	SoC	at	a	given	frequency.	The	fluctuations	of	rs
r;j

	at	20	%	and	

50	%	of	SoC	as	seen	on	the	titration	curve	in	Fig.2c	correspond	to	phase	transitions	within	

the	graphite	particle	(staging)	which	impact	severely	the	impedance	response.			

	

	

		
Figure	3:	(a)	Impedance	simulations	for	a	1	µm	in	diameter	single	graphite	particle	at	different	SoC	showing	
the	variation	of	the	charge	transfer	with	the	lithiation	degree	(broadening	of	the	low	frequency	semi	loop).	An	
offset	has	been	added	on	the	imaginary	part	of	the	impedance	diagrams	for	the	sake	of	clarity.	(b)	Impedance	
simulations	of	a	single	graphite	particle	as	a	function	of	the	particle	size	for	60	%	of	SoC.	To	better	evidence	
the	different	time-constants,		a	diffusion	coefficient	in	the	solid	phase,	𝐷@,	of	1. 10Z}	𝑐𝑚>𝑠Z=	has	been	used.	

	

The	influence	of	the	particle	radius	presented	in	Fig.	3b,	shows	that	the	low	frequency	capacitive	

behavior	is	observed	at	higher	frequencies	for	particles	with	lower	radius.	This	peculiar	behavior	

can	be	interpreted	in	terms	of	penetration	depth	of	the	reaction.	In	other	words,	for	large	radius	

particles,	 the	 frequency	 perturbation	 is	 not	 low	 enough	 to	 affect	 the	 whole	 volume	 of	 the	

particle,	i.e.	all	available	hosting	sites	within	the	particle	enable	lithium	diffusion	(45	degree	angle	

straight	line).	Conversely,	the	accumulation	of	lithium-ions	inside	the	particle	for	smaller	particles	
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translates	 into	 a	 capacitive	 behavior	 (90	 degree	 angle	 straight	 line)	 for	 the	 low	 frequencies	

presented	in	this	work.	It	should	be	noted	that	the	transition	frequency	between	the	diffusive	

behavior	 and	 the	 capacitive	 behavior	 depends	on	both	 the	particle	 size	 and	on	 the	diffusion	

coefficient	 in	 the	 solid	 phase.	 For	 high	 frequencies,	 the	 charge	 transfer	 resistance	 remains	

constant	and	independent	of	the	radius	of	particle	because	impedance	is	expressed	per	surface	

unit.	For	comparison,	usual	button	battery	results	in	impedance	values	spreading	over	few	tens	

ohms	from	high	to	low	frequencies.	

- Porous	Electrode	Model	

The	parameters	used	for	the	simulations	presented	below	are	given	Table	II.		

Fig.	4a	shows	a	typical	impedance	diagram	for	a	porous	electrode	composed	of	graphite	particles.	

Compared	to	the	single	particle	impedance	simulations,	a	new	domain	appears	in	the	middle	to	

high	frequency	region.	We	indeed	observe	in	addition	to	a	non-perfect	semi-circle,	a	22.5°	slope	

characteristic	of	the	diffusion	of	the	electrolyte	in	the	pore	structure	of	the	porous	electrode	[28,	

29].		Interestingly,		the	semi-loop	ascribed	to	the	charge	transfer	in	the	high	frequency	region	is	

also	affected	by	the	porous	behavior	of	the	system	and	shows	a	non-perfect	semi-circle	with	an	

initial	45°	slope,	as	predicted	by	the	work	of	de	Levie	[11].				
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a)	
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Figure	 4:	 (a)	 Impedance	 simulations	 for	 a	 porous	 electrode	 composed	 of	 graphite	 particles	 in	 contact	 with	 the	
electrolyte	considering	an	exchange	current	density	𝑖3 = 0.0036	𝐴. 𝑐𝑚Z>	and	(b)	influence	of	the	state	of	charge	of	
the	electrode	(SoC)	–	Simulation	parameters	are	given	in	Table	II.	

	

	

	

	

	

	

b)	
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Table	II.	Parameters	used	in	the	Porous	Electrode	Model	for	the	impedance	simulations	

Parameters	 Value	 Reference	

Geometrical	parameters	

𝛿		 100	µm	 [23]	

𝜖_		 0.4	 [23]	

𝜏		 1 − 1.6𝑙𝑛	(𝜖_)	 [23]	

𝑙^	 𝛿. 𝜏	 [23]	

𝜖@		 0.2	 [23]	

𝜖�		 0.05	 [23]	

𝜖5		 1 − 𝜖_	 − 𝜖@	 − 𝜖�		 [23]	

𝑎d		 3
𝜖5	
𝑅@	

	 	

𝑅@		 1	µm	 [27]	

Transport	and	Kinetic	parameters	

𝑖3	 𝐹𝑘′𝑐_
uh(1 − 𝑥)uh𝑥	uw 	 [27]	

𝑐A	 16,1.10-3	mol.cm-3	 [27]	

𝑘		 10-4	cm.s-1	 Assumed	

𝐹	 	 96485	C.mol-1	 	

𝛼5, 𝛼; 	 0.5	 	

𝐷@	 2.10-12	cm2.s-1	 [27]	

𝐷_	 2.6.10-6	cm2.s-1	 [27]	

𝐷_,_OO	 𝐷_.
𝜖_	
𝜏
	 [23]	

𝜅@	 10.10-2	S.cm-1	 [23]	

𝜅@,_OO	 𝜅@.
𝜖@	
𝜏
	 [23]	

𝜅_	 10-2	S.cm-1	 [23]	

𝜅_,_OO	 𝜅_.
𝜖_	
𝜏
	 [23]	

𝑐_	 1.10-3	mol.cm-3	 	

𝑡	a	 0.363	 [27]	

𝜕𝑈
𝜕𝑐@

	 -20.27	V.cm3.mol-1	 [15]	

𝑓∓	 1	 [27]	

𝐶BY 	 20	µF.cm-2	 	
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Fig.	4b	shows	the	evolution	of	the	impedance	of	a	graphite	porous	electrode	as	a	function	of	the	

SoC.	The	effect	of	the	polarization	on	porous	electrode	is	quite	similar	to	the	one	observed	with	

the	single	particle,	as	the	resistance	to	the	charge	transfer	decreases	from	1	%	to	50	%	of	SoC	and	

then	 increases	 for	 higher	 SoC	 due	 to	 the	 lack	 of	 available	 lithium	hosting	 sites.	We	 can	 also	

observe	the	same	behavior	as	for	the	single	graphite	particles	for	20	%	and	50	%	of	SoC.	For	1	%	

SoC,	the	capacitive	behavior	is	still	observed	but	with	a	slope	of	45°	due	to	the	porosity	of	the	

electrode.	For	100	%	SoC,	the	impedance	is	characterized	by	a	very	 large	charge	transfer	rate	

loop	as	observed	for	the	single	particle.		

Fig.	5a	shows	the	impedance	diagrams	corresponding	to	simulations	for	different	particle	size.	

For	the	set	of	results	presented	in	this	work,	we	consider	that	the	porous	electrode	is	constituted	

of	identical	particles.	It	can	be	seen	from	Fig.	5b	that	changing	the	radius	of	the	particle	changes	

the	charge	transfer	resistance.	Indeed,	the	bigger	the	particles	the	larger	the	charge	transfer	loop.	

This	result	can	be	explain	by	the	change	of	the	specific	interfacial	area	which	is	given	by	𝑎d	 =

3 �h	
ij	
.	As	the	volume	fraction	of	active	material	 is	assumed	to	be	constant,	any	 increase	of	the	

particle	 radius	 reduces	 the	active	 surface	area	 resulting	 in	an	 increase	of	 the	 impedance	and	

especially	an	increase	of	the	charge	transfer	resistance.	
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Figure	 5:	 (a)	 Impedance	 simulations	 of	 a	 porous	 electrode	 composed	 of	 graphite	 particles	 in	 contact	 with	 the	
electrolyte	 for	 different	 particle	 size	 (Rs	 particle	 radius)	 considering	 an	 exchange	 current	 density	 𝑖3 =
0.0036	𝐴. 𝑐𝑚Z>;	(b)	zoom	on	the	high	frequency	domain	–	Simulation	parameters	are	given	in	Table	II.	

	

b)	

a)	
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We	 can	 observe	 that	 the	 change	 of	 the	 radius	 also	 influences	 the	 low	 frequency	 region	

corresponding	to	the	diffusion	of	lithium	in	the	solid	phase,	i.e.	in	the	particles.	The	capacitive	

behavior	 is	 reached	at	higher	 frequency	 for	 smaller	particles,	which	 is	 in	agreement	with	 the	

single	particle	model	previously	discussed.		

The	influence	of	the	thickness	of	the	electrode,	i.e.	of	the	length	of	the	pores,	on	the	impedance	

response	 is	presented	 in	Fig.	6a.	The	 frequency	 range	associated	 to	 the	diffusion	 in	 the	pore	

clearly	decreases	when	the	thickness	of	the	porous	electrode	is	decreased.	This	can	be	explained	

from	the	model	parameters	since	a	decrease	of	 the	 length	of	 the	electrode	corresponds	 to	a	

decrease	of	the	length	of	the	pore.	In	other	words,	the	electrical	signal	penetrates	the	entire	pore	

length	at	higher	 frequencies	when	 the	 thickness	decreases.	 These	 results	 also	 show	 that	 any	

change	 in	 the	 electrode	 thickness	modifies	 the	 electrolyte	 resistance.	 Indeed,	 the	 electrolyte	

resistance	measured	in	the	high	frequency	domain	is	a	characteristic	of	the	electrode	geometry	

and	is	independent	of	the	electrochemical	kinetics	of	the	system	under	investigation.	In	this	case,	

the	electrolyte	resistance	is	governed	by	both	the	electrode	thickness	and	the	pore	resistance,	

which	is	given	(for	a	single	pore)	by		

𝑅^XN_ = 	𝜌
𝑙^
𝑆 	

[30] 	

where	𝜌	is	the	resistivity	of	the	solution,	S	is	the	section	of	the	pore	and	𝑙^	is	the	length	of	a	pore	

depending	on	the	thickness	of	the	electrode	as	shown	in	Table	II.	Eq.	30	shows	that	when	the	

thickness	of	the	electrode	is	increased,	the	pore	resistance,	and	thus	the	electrolyte	resistance,	

increase.	 From	 a	 practical	 point	 of	 view,	 distributions	 of	 pore	 length	 and	 pore	 section	 are	

expected	and	the	impedance	response	reflects	an	average	value	for	both	parameters.		

The	variation	of	the	electrolyte	resistance	with	the	thickness	of	the	electrode	can	be	seen	on	the	

analytical	 expression	 of	 the	 impedance	 of	 a	 porous	 electrode	 (Eq.	 25),	 where	 the	 first	 term	

depends	only	on	the	length	of	the	pore	𝑙^	and	the	effective	conductivity	in	the	solid	phase	𝜅@,_OO.		
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Figure	 6:	 (a)	 Impedance	 simulations	 of	 a	 porous	 electrode	 composed	 of	 graphite	 particles	 as	 a	 function	 of	 the	
thickness	of	the	porous	electrode	for	𝑖3 = 0.0036	𝐴. 𝑐𝑚Z>	(b)	Influence	of	the	porosity	on	the	impedance	simulations	
of	 a	 porous	 electrode	 composed	 of	 graphite	 particles	 for	 𝑖3 = 0.0036	𝐴. 𝑐𝑚Z>;	 (c)	 zoom	 on	 the	 high	 frequency	
domain	–	Simulation	parameters	are	given	in	Table	II.	

	

Fig.	 6b	 shows	 the	 variations	 of	 the	 impedance	 diagram	 as	 a	 function	 of	 the	 porosity	 of	 the	

electrode	(from	0.1	to	0.7).	The	diffusion	contribution	in	the	pore	of	the	electrode	is	less	visible	

on	the	diagram	when	the	porosity	increases.	Indeed,	in	Fig.	6b,	the	frequency	domain	associated	

to	the	diffusion	in	the	pore	has	a	lower	impedance	when	the	porosity	of	the	porous	electrode	is	

larger.	For	low	porosity	–	when	the	electrode	is	more	compact	–	the	diffusion	inside	the	solution-

phase	becomes	a	limiting	kinetic	factor	resulting	as	an	increase	in	the	impedance.	By	increasing	

the	 porosity,	 the	 pores	 fill	with	 the	 electrolyte	 and	 the	 solution-phase	 diffusion	 is	 facilitated	

resulting	in	a	decrease	of	the	impedance.	For	a	specific	porosity	of	0.6,	only	the	diffusion	within	

the	hosting	particles	is	observed,	the	diffusion	process	inside	the	pore	is	therefore	no	longer	a	

limiting	kinetic	process.	This	observation	is	however	true	for	a	given	set	of	parameters	(exchange	

current	density,	 diffusion	 coefficient	of	 lithium	 in	 the	 solution	etc.),	 and	 the	 specific	porosity	

described	here	changes	with	the	parameters	used	for	the	simulation.	As	previously	discussed,	

the	porosity	of	the	electrode	strongly	influence	the	electrolyte	resistance	(Fig.	6c).	

Fig.	 7a	 shows	 the	 evolution	 of	 the	 charge	 transfer	 resistance,	 determined	 from	 a	 graphical	

analysis	of	 the	 impedance	diagrams	 simulated	as	a	 function	of	 the	porosity	of	 the	electrode.	

Interestingly,	 the	 parabolic	 profile	 obtained	 shows	 that	 an	 optimal	 porosity	 for	 the	 porous	

electrode,	 minimizing	 the	 charge	 transfer	 resistance,	 can	 be	 predicted	 with	 from	 these	

simulations.	
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Figure	7:	(a)	Variation	of	the	charge	transfer	resistance	with	the	porosity	of	the	electrode;	(b)	Evolution	of	the	charge	
transfer	resistance	with	the	porosity	for	different	electrode	thickness;	(c)		and	for	different	particle	radius	–	Simulation	
parameters	are	given	in	Table	II.		

	

When	the	porosity	diminishes,	the	effective	conductivity	of	the	solution-phase	diminishes	and	

thus	the	supply	of	lithium	to	the	active	material	is	lower.	This	results	in	an	increase	of	the	charge	

transfer	resistance.	On	the	other	hand,	increasing	the	porosity	improves	the	effective	solution-
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phase	conductivity	but	also	diminishes	the	volume	fraction	of	active	material.	As	a	consequence,	

less	host	material	is	available	for	lithium,	resulting	in	an	increase	of	the	charge	transfer	resistance.	

It	is	noteworthy	that	modifying	the	porosity	of	the	electrode	does	not	change	the	thickness	of	

the	electrode	or	 the	effective	 solid-phase	 conductivity.	 Indeed,	we	consider	here	 the	volume	

fraction	of	active	material,	binder	and	conductive	carbon.	

These	simulations	thus	make	possible	to	target	a	specific	porosity	depending	on	the	kinetics	and	

geometrical	parameters	of	the	system.	Fig.	7b	which	shows	the	variations	of	the	charge	transfer	

resistance	 with	 the	 porosity	 of	 the	 electrode	 and	 for	 different	 thicknesses	 of	 the	 electrode,	

highlights	that	a	similar	parabolic	profile	is	always	observed.	We	can	also	notice	that	Rct	value	

remains	 constant	 for	 all	 thickness	 except	 for	 porosity	𝜖_ > 0.6.	 It	 also	 shows	 that	 for	 a	 high	

porosity,	 thin	 electrodes	 have	 a	 larger	 charge	 transfer	 rate	 than	 for	 thick	 electrodes.	When	

increasing	the	porosity,	the	volume	fraction	of	active	material	diminishes	whereas	the	effective	

solution-phase	conductivity	remains	the	same.	Thus,	increasing	the	thickness	of	the	electrode	at	

constant	porosity	somehow	promotes	the	contact	between	the	active	particles	resulting	in	an	

easier	charger	transfer	reaction.	 	 Interestingly,	when	 increasing	the	radius	of	 the	particle,	 the	

charge	transfer	resistance	increases,	as	shown	in	Fig.	7c.	As	explained	before,	this	increase	with	

the	radius	of	the	particle	is	ascribed	to	the	decrease	of	the	interfacial	area.	
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Figure	 8:	 (a)	 Influence	 of	 the	 volume	 fraction	 of	 the	 conductive	 phase	 on	 the	 variation	 of	 the	 charge	 transfer	
resistance	with	the	porosity;	(b)	influence	of	the	volume	fraction	of	the	binder	phase	on	the	variation	of	the	charge	
transfer	resistance	with	the	porosity;	and	(c)	influence	of	the	volume	fraction	of	the	conductive	agent	phase	and	the	
volume	fraction	of	 the	binder	phase	on	the	variation	of	 the	charge	transfer	resistance	with	porosity	–	Simulation	
parameters	are	given	in	Table	II.	
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The	influence	of	the	radius	of	the	particles	is	of	both	fundamental	and	practical	 interest	since	

these	results	show	the	possibility	to	determine	the	optimal	porosity	of	the	electrode	depending	

on	its	physical	properties.	Moreover,	this	optimal	porosity	can	be	determined	as	a	function	of	the	

composition	 of	 the	 electrode	 that	 is	 a	 function	 of	 the	 amount	 of	 conductive	 agent,	 active	

materials	and	binder	constituting	the	electrode.	For	a	fixed	value	of	the	volume	fraction	of	binder	

phase	(𝜖� = 0.05)	and	varying	the	volume	fraction	of	the	conductive	carbon	phase	𝜖@		(Fig.	8a),	

we	observe	that	the	ratio	of	conductive	carbon	influences	the	optimal	porosity.	For	𝜖@	=	0.01,	the	

charge	 transfer	 resistance	 is	 the	 largest	because	 the	effective	solid-phase	conductivity	 is	very	

low.	 On	 the	 other	 hand,	 for	 high	 volume	 fraction	 of	 conductive	 carbon,	 the	 charge	 transfer	

resistance	 remains	 high.	 However,	 these	 results	 show	 that	 it	 is	 better	 to	 have	 too	 much	

conductive	carbon	in	the	electrode	composition	than	not	enough.	The	influence	of	the	volume	

fraction	of	the	binder	phase	induces	less	variations	on	the	value	of	the	optimal	porosity	as	shown	

on	Fig.	8b,	for	which	𝜖@		was	set	to	0.05	and	𝜖�	was	varied.	For	higher	binder	content,	the	volume	

fraction	of	active	material	diminishes	(the	volume	fractions	of	conductive	carbon	and	solution-

phase	remain	constant)	resulting	in	a	larger	charge	transfer	resistance.		

Fig.	8c	shows	the	variation	of	the	charge	transfer	resistance	with	the	porosity	for	different	ratio	

of	conductive	agent	and	binder	phases.	 It	can	be	seen	that	depending	on	the	ratio	of	carbon	

black,	active	particles	or	binder,	the	optimal	porosity	varies.	

Thus,	 the	 prediction	 of	 the	 impedance	 response	 of	 composite	 electrode	 allows	 the	 optimal	

porosity	 to	 be	 determined	 to	 achieve	 the	 fastest	 kinetics	 for	 lithium	 reaction.	 However,	 the	

model	faces	some	limitations	that	need	to	be	addressed:		

- The	analytical	solution	of	the	impedance	used	here	is	based	on	the	Newman’s	model.	So	

the	impedance	model	has	the	same	weaknesses	than	Newman’s	model	beginning	by	the	

number	of	parameters	involved.	Indeed,	the	determination	of	some	parameters	is	tedious	

experimentally	 and	 sometimes	 they	 are	 just	 assumed.	Moreover,	 the	 high	 number	 of	

parameters	 facilitates	 the	 fitting	 of	 experimental	 impedance	 spectra.	 The	 interactions	

that	might	exist	between	particles	are	also	not	considered.	

- This	model	does	not	take	into	account	the	principle	of	percolation.	Even	if	we	introduce	

the	tortuosity	which	modifies	the	pore	length,	any	change	in	the	volume	fraction	of	the	
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conductive	 agent	 phase	 only	 modifies	 the	 conductivity	 of	 the	 solid	 matrix	 without	

considering	the	way	the	particles	are	organized.	Indeed,	it	is	assumed	in	this	work	that	

the	local	current	 is	homogeneous	all	over	phase	the	electrode	which	is	not	necessarily	

true.		

	

Conclusions	

In	 this	 study,	 a	 new	 insight	 is	 provided	 for	 the	 impedance	 modeling	 of	 porous	 electrodes	

describing	battery	electrode	materials	under	operation.	First,	the	common	approximation	made	

on	 the	 linearity	 of	 the	 Butler-Volmer’s	 law	 for	 the	 calculation	 of	 the	 EIS	 diagram	 was	 not	

considered	here,	which	permits	 to	 study	 the	 impedance	as	a	 function	of	 the	potential	of	 the	

electrode,	i.e.	of	the	state	of	charge	of	the	host	material.	Then,	based	on	the	pioneering	work	of	

Newman,	and	taking	into	account	the	model	devised	by	Huang	and	Zhang,	we	developed	and	

studied	an	analytical	solution	for	the	impedance	of	a	single	particle	and	for	a	porous	electrode.	

For	 the	 single	 particle	model,	we	 showed	 that	 the	 charge	 transfer	 resistance	 varies	with	 the	

potential	applied	to	the	electrode	and	we	studied	the	influence	of	active	material	particle	size.	

We	could	establish	a	clear	dependence	between	the	value	of	the	charge	transfer	resistance	and	

the	 lithiation	 ratio	 of	 the	 particle.	 For	 the	 porous	 model,	 we	 investigated	 the	 influence	 of	

geometrical	parameters	of	the	electrode	and	we	showed	that	it	was	possible	to	determine	the	

porosity	for	which	the	charge	transfer	resistance	is	minimized	and	thus	for	which	the	kinetics	of	

lithium	reaction	is	optimal	at	a	specific	applied	potential	or	current.	We	also	showed	that	this	

optimal	porosity	strongly	depends	on	the	composition	of	the	electrode,	i.e.	on	the	ratio	of	active	

material,	conductive	agent	and	binder.	
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Appendix	1:	Derivation	of	the	analytical	expression	of	impedance	of	a	porous	

electrode	

Eq.23	and	Eq.24	can	be	rewritten	as		

𝜕>𝑐_
𝜕𝑥> = 𝜃=𝑐_ + 𝜃> 𝜙= − 𝜙> 	 [31] 	

	 	

𝜕> 𝜙= − 𝜙>
𝜕𝑥> = 𝜃|𝑐_ + 𝜃� 𝜙= − 𝜙> 	 [32] 	

	

where	

𝜃= =
𝑗𝜔ε
𝐷_,_OO

	 	

𝜃> = −
1 − 𝑡a
𝐹𝐷_,_OO

𝑎d
𝑍YX;

	

[33] 	

𝜃| = −
2𝑗𝜔ε𝑅𝑇	 1 − 𝑡a

𝐹𝐷_,_OO𝑐3
1 +

𝜕𝑙𝑛	𝑓
𝜕𝑙𝑛	𝑐_

	

𝜃� =
2𝑅𝑇	 1 − 𝑡a >

𝐹>𝐷_,_OO𝑐3
1 +

𝜕𝑙𝑛	𝑓
𝜕𝑙𝑛	𝑐_

+
1

𝜅_,_OO
+

1
𝜅@,_OO

𝑎d
𝑍YX;
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The	 two-equation	 system	 formed	 by	 Eq.26	 and	 Eq.27	 can	 then	 be	 expressed	 using	 matrix	

notation	as		

𝜕>

𝜕𝑥>
𝑐_

𝜙= − 𝜙>
=

𝜃=
𝜃|
𝜃>
𝜃�

𝑐_
𝜙= − 𝜙>

	 [34] 	

	

From	𝑋 = ;�
��Z��

	and	𝐴 = ��
��

��
��

,	we	can	come	up	to	the	following	equation	 r
�

r��
𝑋 = 𝐴𝑋	

The	eigenvalues	and	the	eigenvectors	of	this	system	are	given	by	

𝜆= =
𝜃= + 𝜃� − 𝜃= − 𝜃� > + 4𝜃>𝜃|

2 	 [35] 	

𝜆> =
𝜃= + 𝜃� + 𝜃= − 𝜃� > + 4𝜃>𝜃|

2 	 [36] 	

𝑉= =
𝑣=
1 =

2𝜃>
𝜃� − 𝜃= − 𝜃= − 𝜃� > + 4𝜃>𝜃|

1
	 [37] 	

𝑉> =
𝑣>
1 =

2𝜃>
𝜃� − 𝜃= + 𝜃= − 𝜃� > + 4𝜃>𝜃|

1
	 [38] 	

	

We	then	introduced	the	transformation	matrix	𝑃 = d�
=
d�
= ,	the	diagonal	matrix	𝐻 = ��

3
3
��

	and	

the	vector	𝑌 = ��
��

.	

Assuming	

𝑋 = 𝑃𝑌	 [39] 	

	

Then	we	can	rewrite	 r
�

r��
𝑋 = 𝐴𝑋	as	
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𝜕>

𝜕𝑥> 𝑃𝑌 = 𝐴𝑃𝑌	 	

𝜕>

𝜕𝑥> 𝑌 = 𝑃Z=𝐴𝑃𝑌	 [40] 	

𝜕>

𝜕𝑥> 𝑌 = 𝐻𝑌	 	

	

Giving	rise	to	the	following	system		

𝜕>𝑦=
𝜕𝑥> = 𝜆=𝑦=
𝜕>𝑦>
𝜕𝑥> = 𝜆>𝑦>

	 [41] 	

	

The	solution	to	this	system	are	

𝑦= = 𝛼=𝑠𝑖𝑛ℎ 𝜆=𝑥 + 𝛼>𝑐𝑜𝑠ℎ 𝜆=𝑥
𝑦> = 𝛽=𝑠𝑖𝑛ℎ 𝜆>𝑥 + 𝛽>𝑐𝑜𝑠ℎ 𝜆>𝑥

	 [42] 	

	

From	Eq.34,	we	can	then	express	𝑐_	and	𝜙= − 𝜙>		

𝑐_ = 𝑣= 𝛼=𝑠𝑖𝑛ℎ 𝜆=𝑥 + 𝛼>𝑐𝑜𝑠ℎ 𝜆=𝑥

+ 𝑣> 𝛽=𝑠𝑖𝑛ℎ 𝜆>𝑥 + 𝛽>𝑐𝑜𝑠ℎ 𝜆>𝑥 	
[43] 	

𝜙= − 𝜙> = 𝛼=𝑠𝑖𝑛ℎ 𝜆=𝑥 + 𝛼>𝑐𝑜𝑠ℎ 𝜆=𝑥

+ 𝛽=𝑠𝑖𝑛ℎ 𝜆>𝑥 + 𝛽>𝑐𝑜𝑠ℎ 𝜆>𝑥 	
[44] 	

	

The	constants	𝛼=, 𝛼>, 𝛽=	𝑒𝑡	𝛽>	are	obtained	from	the	boundary	conditions.	
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𝜆=𝑣= 0 𝜆>𝑣> 0
𝜆= 0 𝜆> 0

𝑠𝑖𝑛ℎ 𝜆=𝑙^ 𝑣= 𝑐𝑜𝑠ℎ 𝜆=𝑙^ 𝑣= 𝑠𝑖𝑛ℎ 𝜆>𝑙^ 𝑣> 𝑐𝑜𝑠ℎ 𝜆>𝑙^ 𝑣>
𝑐= 𝑐> 𝑐| 𝑐�

	

X		

𝛼=
𝛼>
𝛽=
𝛽>

=

0
− =
�j,���
0
=

��,���

𝚤5^^	

[45] 	

where	

𝑐=
𝑐>
𝑐|
𝑐�

=

𝜆=𝑐𝑜𝑠ℎ 𝜆=𝑙^ 1 −
𝜃|
𝜃=
𝑣=

𝜆=𝑠𝑖𝑛ℎ 𝜆=𝑙^ 1 −
𝜃|
𝜃=
𝑣=

𝜆>𝑐𝑜𝑠ℎ 𝜆>𝑙^ 1 −
𝜃|
𝜃=
𝑣>

𝜆>𝑐𝑜𝑠ℎ 𝜆>𝑙^ 1 −
𝜃|
𝜃=
𝑣>

	 [46] 	

	

After	calculation,	we	obtain		

	

𝛼= = −
𝚤5^^

𝜅@,_OO 𝜆=

𝑣>
𝑣> − 𝑣=

	 [47] 	

𝛽= =
𝚤5^^

𝜅@,_OO 𝜆>

𝑣=
𝑣> − 𝑣=

	 [48] 	

𝛼>

= −
𝚤5^^
𝜅@,_OO

1

𝜆> 1 − 𝜃|𝜃=
𝑣> 𝑣=𝑡𝑎𝑛ℎ 𝜆>𝑙^ − 𝜆= 1 − 𝜃|𝜃=

𝑣= 𝑣>𝑡𝑎𝑛ℎ( 𝜆=𝑙^)
	 [49] 	



	

	 35	

−
𝑣>

𝑐𝑜𝑠ℎ 𝜆=𝑙^
−
𝜅_,_OO
𝜅@,_OO

𝑣>
𝑣> − 𝑣=

1 −
𝜃|
𝜃=
𝑣= 𝑣>

+
𝜅_,_OO
𝜅@,_OO

𝑣>
𝑣> − 𝑣=

1 −
𝜃|
𝜃=
𝑣> 𝑣=

1
𝑐𝑜𝑠ℎ 𝜆=𝑙^ 𝑐𝑜𝑠ℎ 𝜆>𝑙^

+
𝜆>
𝜆=
𝑡𝑎𝑛ℎ( 𝜆=𝑙^)𝑡𝑎𝑛ℎ( 𝜆>𝑙^) 	

𝛽>

= −
𝚤5^^
𝜅@,_OO

1

𝜆> 1 − 𝜃|𝜃=
𝑣> 𝑣=𝑡𝑎𝑛ℎ 𝜆>𝑙^ − 𝜆= 1 − 𝜃|𝜃=

𝑣= 𝑣>𝑡𝑎𝑛ℎ( 𝜆=𝑙^)
	

𝑣=
𝑐𝑜𝑠ℎ 𝜆>𝑙^

−
𝜅_,_OO
𝜅@,_OO

𝑣=
𝑣> − 𝑣=

1 −
𝜃|
𝜃=
𝑣> 𝑣=

+
𝜅_,_OO
𝜅@,_OO

𝑣=
𝑣> − 𝑣=

1 −
𝜃|
𝜃=
𝑣= 𝑣>

1
𝑐𝑜𝑠ℎ 𝜆=𝑙^ 𝑐𝑜𝑠ℎ 𝜆>𝑙^

+
𝜆=
𝜆>
𝑡𝑎𝑛ℎ( 𝜆=𝑙^)𝑡𝑎𝑛ℎ( 𝜆>𝑙^) 	

[50] 	

When	expressing	the	impedance	𝑍^_ =
Ф1(𝑥=0)−Ф2(𝑥=𝑙𝑝)

𝑖𝑎𝑝𝑝
,	the	term	𝛬	appears		

𝛬 = −
𝚤5^^
𝜅_,_OO

𝑣= 1 +
𝜅_,_OO
𝜅@,_OO

1
𝑣> − 𝑣=

1 − 𝜃|𝜃=
𝑣= 𝑣>

𝑐𝑜𝑠ℎ 𝜆=𝑙^
−

1 − 𝜃|𝜃=
𝑣> 𝑣=

𝑐𝑜𝑠ℎ 𝜆>𝑙^

𝜆> 1 − 𝜃|𝜃=
𝑣> 𝑣=𝑡𝑎𝑛ℎ 𝜆>𝑙^ − 𝜆= 1 − 𝜃|𝜃=

𝑣= 𝑣>𝑡𝑎𝑛ℎ( 𝜆=𝑙^)
	

[51] 	

	

	


