
HAL Id: hal-01945663
https://hal.science/hal-01945663

Submitted on 14 Nov 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

The automatic classification of urban open space by a
pattern-matching method of the viewshed at

intersections
Thomas Leduc, Kevin Hartwell

To cite this version:
Thomas Leduc, Kevin Hartwell. The automatic classification of urban open space by a pattern-
matching method of the viewshed at intersections. Environment and Planning B: Urban Analytics
and City Science, 2020, 47 (6), pp.1065-1080. �10.1177/2399808318816994�. �hal-01945663�

https://hal.science/hal-01945663
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr


The Automatic Classification of Urban 

Open Space by a Pattern-matching 

Method of the Viewshed at Intersections 

Thomas LEDUC 

AAU-CRENAU, UMR CNRS 1563, National School of Architecture of Nantes, France 

Kevin HARTWELL 

AAU-CRENAU, UMR CNRS 1563, National School of Architecture of Nantes, France 

Abstract 

This research focuses on the automatic classification of small urban fragments through a 

morphological analysis of cognitivist inspiration. The recognition algorithm is performed 

on observer-centric forms, constructed through the use of visibility assessment techniques 

over a series of individual points of view. These tools are 1) the isovist for its capacity to 

delineate and synthesize the visual properties of the immediate viewshed from a point, and 

2) the automatic construction of a typology of intersection patterns. The aim is to assimilate 

the forms of the theoretical intersection patterns to those extracted from the isovist field 

generated by a group of strategically placed points. Three different matching methods are 

proposed, and the significance of the parameters needed for optimal calibration are 

discussed. 
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Introduction 

Non-uniform representations of urban junctions 

A comparison of the linear road data from Web Map service providers reveals that the 

treatment of intersections (nodes in the urban graph) is not a uniform procedure, thus 



resulting in multiple interpretations. As an introductory illustration, the intersection of the 

Lecesne, Eyries, du Bastion and Delavigne Streets in Le Havre, France (49°29'36.4589", 

0°7'0.0235") is one of many such crossroads (figure 1). 

 

Figure 1: The Lecesne intersection as seen by: a) Bing; b) OpenStreetMap; c) Google 

Maps; d) Géoportail; e) Aerial View. 

As can be seen, this zone is interpreted either as consisting of an eastern three-

branch intersection and a western five-branch intersection (Bing Maps, figure 1a), a unique 

point with six branches (OpenStreetMap, Mappy, figure 1b), three distinct points (Google 

Maps, figure 1c), or two intersections with five branches for the southern point and three 

branches for the northern point (Géoportail, figure 1d). 

A satellite view of the zone (figure 1e) reinforces the perceived complexity: a great 

number of concurring roads, a juxtaposition of acute and obtuse angles, atypical corner 

buildings creating mask effects, unconventional crosswalk positions, etc. The “ground 

truth” itself defies simple determination and consistent interpretation. 

This divergence in representation exhibits the lack of consensus concerning the 

interpretation of this complex urban object. Although some dissimilarities may stem from 

differing linear road extraction methods, much of the issue concerning intersection point 

placement and characterization also lacks proper formalization. This variation has 

repercussions on cartographic representation, urban graph analysis, accurate positioning 

and wayfinding processing. 



As the difference between “correct” and “incorrect” representations of a given 

intersection are difficult to distinguish, we may rather ponder how to consistently read and 

represent complex urban junctions. 

Embracing the subjective quality of this urban object, our objective is to classify 

intersections according to their impact on their in situ cognitive repercussions. 

From street patterns and building patterns to open space patterns 

Within the framework of map generalization, whose objective is to group and simplify 

more or less complex geographical forms and phenomena, various studies exist that aim 

to automate the detection and simplification of junctions in road networks. The existing 

processes are based on a thinning of the road network, coupled with edge deletion and 

contraction mechanisms to reduce the complexity within the junction (Mackaness and 

Mackechnie, 1999). Their objective is clearly to produce schematic and meaningful 

visualizations in cartography. 

In the same vein, we can mention the attempts of (Zhou and Li, 2012), who 

produced a “comparative study of various strategies to concatenate road segments into 

strokes for map generalization”. This abstraction level is sometimes useful for better 

understanding the structure of a road network. 

Aforementioned studies should be distinguished from that on the accurate road 

centerline detection from satellite imagery in digital photogrammetry (Cao and Sun, 

2014). As (Wang et al., 2016) points out, the most recent approaches incorporate 

knowledge-based methods that complement the extractions that were previously based on 

spectral and shape features without texture information. Some authors propose to couple 

the use of vector road data to remote sensing technology in satellite image detection to 

connect broken road segments. In most of these analyses, the levels of detail used are 

coarse and the objective aims to reconstruct and guarantee the topology of the street 

network. 

This centerline-based approach does not handle large open spaces, as for instance 

squares. Thus, as can be seen from figure 2, the skeleton of a T-junction (figure 2a) is 

almost identical to the skeleton of an intersection leading to a square (figure 2b). It is de 

facto sometimes inadequate to reflect the complexity of some urban places. 



 

Figure 2: The detection of road intersections by the skeleton method does not take into 

account large open spaces, as for instance squares. 

A number of these studies employ or mention the notion of “pattern” which 

corresponds to a repeating structural, spatial or temporal feature referring to a 

composition, configuration or constitution (Marshall, 2005). For example, (Zhang et al., 

2011, 2017) have worked on “building pattern recognition” from topographic data by 

combining the results of multiple pattern-recognition algorithms. 

In our present study, we question the representation of streetspace, the 2D open 

space that fits between buildings and forms the essential connective tissue of the city. As 

(Marshall, 2005) points out, “streetspace forms the basic core of all urban public space – 

and by extension, all public space – forming a contiguous network or continuum by which 

everything is linked to everything else”. 

This particular contiguity, the “plenum of the urban space” (Couclelis, 1992), 

renders the delineation and identification of localized objects such as intersections 

difficult. In contrast, (Teller, 2003) considers that atomist space conceives of the urban 

space as a reference system, where objects are identified and defined by their clear and 



stable limits. These clearly definable objects may be transformed (through rotation, 

symmetry, translation, etc.) whilst retaining their identity. 

The isovist as a solution to delineate the void between buildings 

We have chosen the isovist field (Benedikt, 1979) which consists in immersing a 

theoretical panoptic view at a point into the urban numerical space. This point and its 

associated view constitute a translation of the perception of the microscale streetscape 

features that affect the in situ experience of the open space (Fisher-Gewirtzman, 2018). 

Essentially, isovists describe local geometrical properties of spaces with respect to 

individual observation points with an equal discretion for all possible view directions by 

forming a 2D horizontal slice of a pedestrian’s viewshed of the surrounding space. 

In the absence of any opaque surfaces, the limit of the isovist is an arbitrary artificial 

horizon. By giving form to an area around a point in the continuous field strictly defined 

by the radius of the isovist and the neighboring building footprints, the isovist may 

constitute an atomist reduction of the urban plenum. 

This appealing concept offers an intuitively attractive analytical framework of a 

spatial environment, as it provides a description of the space from the point of view of 

individuals as they perceive, interact and move through it (Turner et al., 2001). 

Positioning viewpoints 

Intuitively but also for reasons of convenience and availability of dataset, we chose to 

analyze the road network and locate these viewpoints - the viewsheds generating points - 

at the road junctions. Nevertheless, as we will discuss later in this document, one must 

recognize that with such a solution, point placement is sometimes not optimal and that 

there is often a surplus of points for a single intersection area. Alternative solutions exist, 

such as skeletonization (Sarradin et al., 2007), which make it possible to minimize this 

number of points. 

Visual patterns and geospatial patterns 

(Steiniger, 2007) describes a “visual pattern” as a subjective, immersed recognizable 

form, and a “geo-spatial pattern” as an objective form constructed with full knowledge of 



the terrain. (Ai et al., 2013) noticed that traditional spatial analysis concentrates on geo-

spatial patterns, for example geometric, topologic or semantic information, but rarely 

relies upon cognition-related information, which would be here represented by visual 

patterns. 

The isovist form, its central point of view (figure 3a, junction in road network) and 

resulting viewshed (figure 3b), hold the same characteristics as a “visual pattern” as defined 

by Steiniger. To classify these visual patterns, we posit that information extracted from the 

isovist mimics a synthetic, exterior view of the studied terrain. 

 

Figure 3: The isovist (b) created from a point of view (a) is similar to a purely geometric 

form (c). 

Such similarities allow us to compare them to a series of objective intersection 

patterns (figure 3c). Such objective patterns can be associated with “geo-spatial pattern”, 



as they are created with specific domain knowledge, independent of any specific point of 

view. In other words, we may assimilate visual patterns to geo-spatial patterns by 

understanding the in situ visual repercussions of spatial configurations. Our objective is 

therefore to match the cognition-related information (visual patterns captured in situ) with 

geospatial patterns that have been arbitrarily predefined. 

After presenting the isovist as a solution for the atomization of plenum space, the 

decomposition of its resulting form into a function of radial distances is explained, followed 

by the methodology for the automatic construction of reference patterns. After the 

description of the three pattern recognition methods, three case studies are then presented 

illustrating the impact of the urban morphologies on the results obtained. Case study results 

allow us to draw conclusions regarding the parameters affecting the quality of the process. 

Methods 

Isovist form as a function of radial distances 

The isovist is a visibility polygon, meaning all segments from the generation or view 

point to all other points within the shape lie entirely within the polygon. Taking 

advantage of this star-shaped property, we can derive a shape signature based on the 

generation point and its correspondent boundary. This dimensionality reduction solution 

limits the study of the form to that of its contour which is sampled at their intersection 

with a series of equally-angled segments (rays) originating from the center point. 

This angular abscissa sampling solution allows us to transform the 2D-polygonal 

surface into a simple 1D-function of a real variable that, at a given azimuth (θk), returns the 

associated ray length (rk). Let n be the number of rays, using complex number formalism 

and Euler’s number (e), the k-ray can be represented as: 

𝑟𝑘𝑒𝑖𝜃𝑘 =  𝑟𝑘𝑒𝑖
2𝜋𝑘

𝑛  

Since this shape signature is only dependent on the location of the viewpoint and 

the points on the boundary, it sits in a local coordinate system and is thus invariant to 

translation in space. The matchmaking between the isovist form and a reference pattern is 

therefore independent from the viewpoint’s localization on the map. 



The radial “sweep” is systematically operated from 0° to 360° starting full East, in 

the counterclockwise direction. This means the function of radial distances is dependent on 

the local orientation of the intersection. 

Pattern generation 

The form-generating model that we have developed for the construction of our reference 

(or geo-spatial) patterns is entirely automatic, based on the principles of permutation of a 

“word”, that “word” being the mechanism that allows us to encode the intersection. 

Based on this formal definition of words, we may generate the figure 3c, 

representing all possible intersection forms having at most 8 branches separated by steps 

of 360/8=45°. Patterns equivalent with regards to the mirror effect share the same IDs. 

A limit of eight branches was selected, as multiples of four include the most 

frequent angularity (90°) which a multiple of 5 for example would not. The number of 

possible branches exponentially increases the number of patterns, which reduces the 

distinguishability (i.e., distance) between patterns with relatively superfluous differences, 

greatly complicating the manual assessment. As complementary information, one can 

notice that with a maximum of 4 branches (resp. 8, 12, and 16), one may generate 13 

different patterns (resp. 35, 351, and 4115). 

Patterns were created by casting the rays corresponding to their encoding, then 

buffering the resulting multilinear geometry. The width parameter describes the buffer 

breadth used during the pattern construction. This has ulterior consequences on pattern 

matching for methods using the Fourier Transform, as it dictates the quantity of 

uninterrupted open space considered for a single branch. If a branch is much larger than 

the arbitrary width, Method 2 identifies it as two branches. Inversely, if the chosen width 

is significantly larger than the real-world branch, it might be overlooked. Optimal widths 

for our chosen case studies are 14m (New York) and 10m (Paris, Le Havre). 

Pattern matching process: methodology overview 

The strategies set in place to judge of the similarity are based on different mathematical 

principles. The first method uses the turning angle function’s mean vector to reorient 

shapes and conduct a linear comparison (figures 4b and 4f). The second methods translate 

our function into the frequency domain and compares Fourier modules (figures 4c and 



4g). Finally, the third method distinguishes the angles at which ray lengths reach their 

maximum (figures 4e and 4h). 

 

Figure 4: To compare the original signatures of the isovist (a) and the pattern (e), we use 

three methods: Method 1 - the rectification of the orientation using the mean vector (b 

and f), Method 2 - the modules of the Fast Fourier Transform (c and g), and Method 3 - 

the permutation of the mean angular distribution (d and h). 

Method 1: Rectification of pattern and isovist orientations using the mean 

vector 
Using the previously established formalism, we may express the mean of all vectors 

linking the generation point to each contour as: 



1

𝑛
∑ 𝑟𝑘𝑒𝑖𝜃𝑘

𝑛

𝑘=1

=  𝑟̅𝑒𝑖𝜃̅ 

The form’s general orientation given by the mean vector allows us to “rectify” the 

viewshed (figure 4b). To do so, we position each ray length (i.e. rotation from the East-

mean alignment) and subtract the azimuth of the mean vector’s using the following 

formula: 

{𝑟𝑘𝑒𝑖(𝜃𝑘−𝜃̅)}
𝑘∈{1,… ,𝑛}

 

If the form is perfectly symmetrical (as for the patterns #20, 43, 45, 63, and 80), the 

corresponding mean vector is null. We then decide not to apply the rectifying process. 

The objective of this rotation is to rectify the studied form by aligning it full-East 

on the “azimuth of origin” for a direct linear comparison of the visual and geo-spatial 

patterns. 

Method 2: Comparison of the frequency functions using the Discrete Fourier 

Transform 
Method2, using the Fourier Transform traditionally used for time-dependent signals, 

incorporates a periodic complex-valued function composed of regular angular intervals 

and their decomposition into a set of sinusoidal functions. 

Because the function of radial distances is discrete (due to the implemented 

underlying ray-casting), we have applied the Python Numpy Fast Fourier Transform (FFT). 

FTT properties include completeness (it is an invertible and linear transform), periodicity, 

and shift capability. All three of these properties are essential to describe nearly equivalent 

shapes, if identically oriented before or after rotation. 

To bypass the effects of a form’s orientation, we exclude information relative to 

the angular distribution of the rays by omitting phase, and only consider the distribution 

of ray lengths given by the FFT modules (figure 4c). 

Method 3: Comparison of mean angular distances between peaks 



The objective of the third method is to produce a sequence of angular distances between 

the extrema of the form, which are determined by a threshold. 

Method 3 first evaluates the mean azimuth of the adjacent ray set qualified as 

extremum. In a second phase, the angular distance between two adjacent azimuths of the 

mean extrema are calculated, starting east and in a counter-clockwise order. In figure 4d, 

the application of Method3 gives the sequence [91.4°, 178.4°, 90.3°], as the Northern 

branch is recognized first, followed by the Western and Southern branches. The 

pertinence of the results, based on threshold value, is therefore dependent on the 

aforementioned ray length and the threshold ratio. 

Measures of similarity and pattern pairing 

After deriving the quantitative information from the set of real-world and auto-generated 

patterns, we assess the level of similarity between the two sets. The pairing consists in 

identifying the reference form whose distance is smallest from the real-world form 

(figure 5b). After testing multiple distance methods (Manhattan, Chebyshev, DTW, 

Canberra), we opted for the L2 Euclidian distance which yielded best results for all three 

methods. 

 

Figure 5: The distance from the actual shape (a) to each of the 35 patterns is evaluated. 

The pattern selected is the one that minimizes these distances (b). 



This pairing necessarily relies on the technique used in the previous step. It is 

therefore possible to assess the certainty of a result relative to other results found by the 

same procedure, but there is, as of yet, no suitable solution to compare the certainty of 

each method in cases of conflicting matches. 

Results: Comparison of Use Cases 

Three use cases (figure 6) with contrasting morphologies were analyzed. The first one is 

an area of about 4.6 km² located in Borough Park, Brooklyn, New York. The second use 

case is a 2 km² wide area located in Le Havre, France, and includes the rebuilt City 

Center as well as the North East Danton borough. At last, Paris 9th borough, France, is an 

area of about 2.2 km². 

 

Figure 6: a) Map of Borough Park (New York), b) Map of Paris 9th Borough, c) Map of 

Le Havre (France). 

To assess the reliability of the different methods, each node of each real urban 

graph was preliminarily manually assessed. This manual classification is called “ground 

truth”. 

The morphology of the streetscape influences the difficulty in assigning an 

objectively “best pattern”, for several reasons. Firstly, considering different distances 

from the center point may yield different results. To remedy this ambiguity, we have built 

a short range ground truth and a long range ground truth assessment representing the 

possible intersection pattern at different distances. Furthermore, the angularity of certain 

real intersections may be ambiguously similar to more than one pattern, so much so that 

differing pattern assignments may be considered equally correct. Finally, the width of 



certain streets or plaza openings are also a cause for ambiguous manual assessment, as 

explained further on in this paper. 

As we may notice (see table 1), the first use case (New York borough) is 

relatively unambiguous, composed mainly of right-angled four-way intersections. Three 

diagonal roads disturb the orthogonal grid, forming unconventional intersections and 

plazas. As such, short range and long range assessments are undifferentiated (i.e. we 

consider that ray length has no influence on expected results). 

In contrast, the manual assessment of the second use case (Paris’s 9th borough) 

was much more challenging. Ambiguous intersections were found to be much more 

prevalent due to the complex morphology. We therefore manually assessed each node 

considering the immediate (short range) and slightly more distant (long range) streetscape 

and assigned two possible correct results in 64 out of 335 cases at a short range scale, and 

74 out of 335 at a long range scale. 

Finally, the Le Havre borough, from which the Lecesne intersection originates, 

may be considered as an “in-between”, as the Southwestern section is composed of an 

orthogonal grid, and the Northeastern is much more complex. We will notice though, that 

the orthogonal portions of the streetscape present very large open spaces. As such, the 

delimitation between “street” and “built environment” is much more ambiguous than the 

first two use cases. This caused us to consider nearly 37.4% of the intersections as 

ambiguous at a short range scale and 30.6% at a long range scale. 

Table 1: Ratio of ambiguous intersections at both short range and long range scales. 

 
Number of 

intersections 

Short range scale Long range scale 

New York borough 297  2.7% 

Paris’s 9th borough 335 19.1% 22.1% 

Le Havre borough 444 37.4% 30.7% 

Comparing Use Case Results 



The three use cases reveal contrasting results for each automatic assessment method. We 

may first notice that the less complex the urban fabric is, the better the detection rates are 

(figure 7): 78% success rate for New York (Method 2), 59% for Le Havre (Method 2), 

and 53% for Paris (Methods 2/3). Furthermore, success rates by ray length (figure 8a) 

suggest that New York did indeed not need two different scales of evaluation: maximum 

success rates remain stable for all methods regardless of the distance between center point 

and viewshed limit. In contrast, when considering the short range interpretations of the 

other two use cases, success rates for short range interpretations tend to drop and long 

range success rates tend to rise after a certain ray length. 

 

Figure 7: Box plots regarding the pattern matching assessment on the three studied 

districts. 



 

Figure 8: Results of the pattern matching assessment on Borough Park (a), Paris 9th 

Borough (b and d), and Le Havre (France, c and e). 

We may notice though, that Le Havre’s long range success rates stagnate whilst 

Paris’s long range success rates present a dip at longer ray lengths. This means that some 

of Paris’s intersections change pattern more than twice when increasing ray length, whilst 

two scales of interpretation are sufficient for Le Havre. As an example, the junction node 

#193 in Paris is similar to pattern #30 when the radius length is 30m, to pattern #45 when 

the radius length is 50m and to pattern #50 when the radius length is 100m (figure 9a). In 

addition, the threshold at which long range interpretations become more pertinent than 

short range interpretations is smaller for Paris than for Le Havre. 

Furthermore these complex urban fabrics include many curved streets, dead ends, 

or kiosks which limit isovists' lines of sight. All these obstacles justify the evolution of 

the success rate curbs at the long range scale. Thus the peak of the long range 

interpretations ratio at 70-80m (decreasing or increasing the length leads to a 

deterioration in performance) in Paris 9th borough is clearly due to the fact that the 

corresponding intersections are tightly clustered and their interpretations vary greatly 

with ray length. Interpretations are modified when another intersection enters the line of 



sight, or when longer ray lengths prematurely end, such as in close-knit, three-way 

intersections or convoluted spaces such as winding roads. 

We can also notice that the ground truth is even questionable. Thus, in New York 

and for the used dataset, node #87 (figure 9b) has been empirically assimilated to pattern 

#45 (X-junction). By means of Method 2, we detected it as pattern #43 (right angle 

crossroads). This "wrong" detection is relative insofar as an ambiguity remains related to 

the chosen angular distance sampling (which cannot be lower than 45°). 

 

Figure 9: Examples of spatial configurations exhibiting special features. 

As an exception to this rule, the Lecesne intersection presented at the beginning of 

the paper (figure 1) requires a single point with a viewshed of 55 meters for the six 

branches to be taken into account. A smaller viewshed requires at least two intersection 

(i.e. generation) points to cover the entire area. 



Comparing Method Results 

We may first notice that Method 1 yields unsatisfactory results for nearly all terrains, and 

more especially on the urban fabric composed mainly of right-angled four-way 

intersections (New York), regardless of ray length. This may be explained by the radial 

symmetry of many intersections, leading to a null mean vector and therefore the absence 

of proper rotation, strongly limiting the use of this method. Nonetheless, Method 1 yields 

satisfactory results on nodes that are not symmetrical. 

Method 2 yields the more stable and convincing results on all three terrains. It is 

able to differentiate streets from large open spaces (plazas), but is sensitive to point 

position and building geometry such as uneven street widths or curbed streets. Method 3 

is quite effective on the very regular urban fabric (New York) and the complex urban 

morphology (Paris), but does not differentiate between streets and plazas, giving a single 

mean direction for the opening of the plaza rather than recognizing that the plaza offers 

multiple directional choices, as Method 2 do. For example, in the case presented in figure 

9c, Method 2 will return “Pattern 47” whereas Method 3 will return “Pattern 22”. This 

explains the rather feeble success rates for Method 3 in Le Havre on a short range scale, 

which presents a nearly “Corbusean” morphology, with large open spaces separating 

individual buildings rather that a clear distinction between street and building blocks. 

In an effort to reduce calculation times, different numbers of rays were tested. It 

was found that for all three terrains, at least 64 rays were necessary for the correct 

approximation of the form, this number growing with ray length so as to keep an 

acceptable distance between each ray extremity. Otherwise, small branches or buildings 

may go unnoticed. Inversely, a very high ray count creates noisy signatures, which 

interferes with all three methods. 

Discussion: Unconventional or Ambiguous Intersections 

As shown in figure 9d, the detection of junction whose shape is rather evasive 

nevertheless misleads Method 2. Such junctions, full of ambiguities, probably require an 

appropriate post processing. In addition, we have already mentioned that using official 

road dataset may present several disadvantages. Point placement is sometimes 

inconsistent, there is often a surplus of points for a single intersection area, and points 

may not be ideally placed (which leads to errors in the interpretation of the junction as 



exhibited in figure 9e). The use of a skeleton would reduce the necessary datasets to the 

single buildings layer. By building the road graph according to the built environment, we 

hope it will make for fewer, better and more consistently placed points considering the 

overall visibility of each street from the intersection. 

For a further analysis of point location on expected results, we have pinpointed five 

intersections in the Parisian borough and compared the results of the graphs from the Real 

Urban Graph (RUG, figure 10a) with OpenStreetMap (OSM, figure 10b) road data and a 

network created by skeletonization (SKEL, figure 10c).These five intersections are here 

described by their position: three Northern intersections, including the Center and East 

intersections which are small and relatively unambiguous, and two southern intersections 

(east and west) which, like the Northwestern intersection, cover a much larger area and 

carry a varying number of points in all three networks. 

 

Figure 10: Real Urban Graph (a), OpenStreetMap (b), and Skeleton (c) intersection points 

as characterized by Method 2 at a line of sight of 45m and with 64 rays. The result of 

selecting the point at each intersection with the greatest isovist area (e). 

The most Northwestern, Southwestern, Southeastern junctions (but also to a lesser 

extent the Northeastern one) are obviously ambiguous and therefore hard to interpret. Due 

to misplacement and proliferation, viewpoints have incomplete views of the entire 



intersection; their interpretation is therefore incomplete yet coherent considering their local 

visibility. Identifying unique pattern that correctly agglomerates the information for the 

entire zone would be a more satisfactory result. 

A closer look at the maps, let us think that the viewpoint offering the most complete 

and appropriate information appears to be the most centered one, such a vantage location 

would logically offer a simultaneous perspective on multiple branches. 

The table presented in figure 10d lists, for each data layer, for each intersection 

and for each node, the corresponding isovist area. This listing is sorted by decreasing area 

value. In an effort to join the results of all three graphs, we noticed that the isovists with 

the largest areas at each intersection were those that gave the most pertinent results 

(figure 10e). This presumption that intrinsic isovist characteristics may indicate correct 

point placement needs to be further tested. If this hypothesis were confirmed, we could 

imagine an empirical research method from the optimal point of view (covering the most 

of the intersection studied). This heuristic would exploit some simple shape indicators 

such as area, perimeter or number of concavities. 

Conclusion 

We have presented three methods to consistently symbolize the open streetscape at urban 

intersections, based on the comparison of auto-generated patterns and isovist signatures. 

We have further provided guidelines for the most informative symbolization of the 

intersection of streets and plazas. We have defined a complex intersection as a concave 

space where all inlets are not visible at once, and provided orientations towards a way of 

partitioning such a space. Our case studies have uncovered a correlation between the 

area’s urban morphology and the optimal isovist parameters needed to recognize the 

correct pattern. 

An isovist creates a distinct separable entity to which we may give an identity, 

including the visual pattern associated with the rest of the atomized plenum. We have found 

multiple criteria for optimal isovist generation and pattern recognition. Most importantly, 

ray length and point placement are the two most determining factors in the quality of the 

results, along with angular distance sampling and the size of the pre-constructed patterns. 

The values of these four parameters are entirely dependent on the area’s urban morphology. 

We may strongly presume that similar terrains will require similar parametrization. 



In the future, legitimate distance measures for direct comparison of the three 

methods should be determined, to better identify which of the three methods consistently 

offers more suitable patterns. The method-based differences between matched patterns, as 

illustrated with differences at corner inlets of plazas, may be resolved by the addition of a 

new set of geo-spatial patterns taking into account the representation of large openings. 

Finally, the question of point placement for the optimal visibility of the most 

outlets is still open. Several possibilities come to mind, but our research indicates that the 

centroid of the intersection’s kernel, which would lead to the isovist with the largest area, 

may be an interesting path to pursue. The amount of convex areas within an intersection 

would then indicate the minimum number of points needed to fully describe the 

surrounding intersections. 
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