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Abstract

We show that every finitely generated group G with an element of

order at least
(
5 rank(G)

)
12

admits a locally finite directed Cayley graph
with automorphism group equal to G. If moreover G is not generalized
dihedral, then the above Cayley directed graph does not have bigons.
On the other hand, if G is neither generalized dicyclic nor abelian and
has an element of order at least 1.41 · 1019 rank(G)132, then it admits
an undirected Cayley graph with automorphism group equal to G. This
extends classical results for finite groups and free products of groups.
The above results are obtained as corollaries of a stronger form of rigidity
which says that the rigidity of the graph can be observed in a ball of
radius 2 around a vertex. This strong rigidity result also implies that
the Cayley (di)graph covers very few (di)graphs. In particular, we obtain
Cayley graphs of Tarski monsters which essentially dot not cover other
quasi-transitive graphs.

We also show that a group admits a labeled unoriented Cayley graph
with automorphism group equal to itself if and only if it is neither gener-
alized dicyclic nor abelian with an element of order greater than 2.

1 Introduction

A powerful geometric tool for the study of a finitely generated group G endowed
with a finite generating set S is the (right) Cayley graph Cay(G,S±). It is a
labeled graph with vertices G and arcs (oriented edges) G × S±, where S± =
S ∪ S−1 and the arc (g, s) goes from g to gs and is labeled by s.

The group G naturally acts on the left on Cay(G,S±) by multiplication.
This action is transitive on the set of vertices and consists exactly of label
preserving isomorphisms of the Cayley graph. Therefore, we have an embed-
ding G ∼= AutA lab(Cay(G,S±)) ≤ Aut(Cay(G,S±)). Moreover, a locally finite
graph is isomorphic to a Cayley graph if and only if it admits a subgroup of
its automorphism group which acts regularly (freely and transitively) on the
vertices, [19]. It is natural in this context to search for generating set S such
that G = Aut(Cay(G,S±)). Such a Cayley graph is called a graphical regular
representation, or GRR. An easy verification (consider the inverse map) shows
that abelian groups of exponent greater than 2 cannot admit GRR. As observed
by Watkins, [21], generalized dicyclic groups also do not admit GRR, see Propo-
sition 3.1 for a proof. The existence of GRR for finite groups as attracted a lot
of attention in the 1970’s and combined efforts of, notably, Imrich, Watkins,
Nowitz, Hetzel and Godsil, [10, 6, 21, 17, 22, 23, 11, 12, 8, 7], showed that for
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finite groups generalized dicyclic or abelian with an element of order greater
than 2 groups as well as 13 exceptional groups (all of order at most 32, see
Table 1 page 18) are the only finite groups that do not admit a GRR. Moreover,
Babai and Godsil showed [4] that if G is a nilpotent non-abelian group of odd
order, asymptotically almost all Calyey graphs of G are GRR. These results use
deeply the fact that the groups under consideration are finite and are mostly
based on "unscrewing" groups. They do not admit straightforward generaliza-
tions to infinite groups. For example, the proof of the existence of GRR uses
the Feit-Thompson theorem that states that every finite group of odd order is
solvable. On the other hand, Watkins showed, [24], that a free product of at
least 2 and at most countably many groups has a GRR. Moreover, if the group
in question is finitely generated, then the GRR in question is locally finite. Here
the method used is to start with a free group and then consider quotients of it.

Our first main result states that for a finitely generated non-generalized di-
cyclic nor abelian group, having an element of large order is enough to guarantee
the existence of a GRR (see Corollary 2.10 for a detailed statement):

Theorem 1.1. Let G be a finitely generated group. Assume that G is not
abelian, not generalized dicyclic and that G admits an element of order at least
1.41 · 1019 rank(G)132. Then G admits a locally finite Cayley graph whose only
automorphisms are the left-multiplications by elements of G.

We hence partially recover existing results about existence of GRR for finite
groups and free products and also extend it to more infinite groups. Moreover,
we also show that if G has elements of arbitrary large order, then every finite
generating set S is contained in a generating set T such that Cay(G, T±) is a
GRR for G. This result can be thought as a weak form of the statement that
asymptotically almost all Cayley graphs of the group are GRR.

Cayley graphs are often studied as undirected graphs, but their oriented,
or directed, versions are also of interest. The (right) directed Cayley graph
~Cay(G,S) has vertex set G and arc set G× S. It is a digraphical regular repre-

sentation, or DRR, if G ∼= AutA lab( ~Cay(G,S)) = Aut( ~Cay(G,S)). Since every

homomorphism of ~Cay(G,S) naturally extends to Cay(G,S±), the existence of
a GRR implies the existence of a DRR, but the converse does not hold. In [3],
Babai showed that a finite group G admits a DRR if and only if it is neither
the quaternion group Q8 nor any of (Z/2Z)2, (Z/2Z)3, (Z/2Z)4 or (Z/3Z)2.
This result is obtained by a rather general construction and the study of a few
special cases; in great contrast with the existence of GRR which requires a lot
of specific constructions. On the other hand, Babai also showed in [2] that
every infinite group, with no restriction on generation or cardinality, admits a
DRR. However the DRR’s he constructed are never locally finite and the proof
is rather complicated and use combinatorial set theory. Finally, in November
2018, Morris and Spiga showed in [16] that for a finite group G of cardinality

n, the proportion of subsets S of G such that ~Cay(G,S) is a DRR goes to 1 as
n → ∞.

A variation of the notion of directed graphs is the notion of oriented graphs:
directed graphs without bigons. For a Cayley digraph ~Cay(G,S), this is equiv-

alent to the fact that S ∩ S−1 is empty. An oriented graph ~Cay(G,S) which
is a DRR is called a oriented regular representation or ORR. Generalized dihe-
dral groups do not admit a generating set without elements of order 2 and thus
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cannot have ORR. For finite groups, Morris and Spiga showed, [14], that these
are, alongside 11 groups of order at most 64, the only groups that do not admit
ORR, answering a question posed by Babai in 1980. Their proof rely on the
classification of finite simple groups.

Our methods also apply to prove that many finitely generated groups admit
a DRR and an ORR (see Corollary 2.9 for a detailed statement).

Theorem 1.2. Let G be a finitely generated group. If G contains an element
of order at least (5 rank(G))12, then it has a locally finite directed Cayley graph
whose only automorphisms are the left-multiplication by elements of G.

If G is not a generalized dihedral group, then this digraph can be chosen
without bigons.

In contrast with the above mentioned results, the methods we develop to
prove Theorem 1.1 and 1.2 only use the finite generation of G and the existence
of an element of large order (depending only on the rank of G). Moreover, we
only use elementary group theory, and no structure theorems about subgroups
or quotients. One strength of the method developed in this article is that it
produces DRR, ORR and GRR altogether in an unified way.

Another way to study Cayley graphs is via the graphs they cover. Ev-
ery subgroup H ≤ G gives rise to a label-preserving covering Cay(G,S±) ։

Sch(G,H, S±), where Sch(G,H, S±) is the so-called (right) Schreier coset graph
(also called Schreier orbital graph). All label-preserving covering from Γ =
Cay(G,S±) come in this way, but in general Γ may cover other graphs. In
particular, in [20], the second author together with Romain Tessera proved that
if G is finitely presented and contains an element of infinite order, then there
exists a finite generating set S and an integer R (depending only on the rank of
G) such that every graph that is R-locally isomorphic to Cay(G,S±) is covered
by it. On the other hand, the first author showed in [13] that Cayley graphs of
Tarski monsters do not cover by label-preserving covering other infinite transi-
tive graphs, hence partially answering a question of Benjamini.

In this paper, we introduce a notion of strong graphical rigidity for a triple
(G,S, T ) where S ⊆ T are two finite generating set for G. Strong graphical
rigidity of the triple (G,S, T ) implies both that Cay(G, T±) is a GRR and that
essentially every covering Cay(G, T±) ։ ∆ preserve the labels when restricted
to Cay(G,S±). This allows us to show that for Tarski monsters there is essen-
tially no covering Cay(G, T±) ։ ∆ with ∆ transitive, see Theorem 2.12 for a
precise statement. We also introduce the notion of strong digraphical rigidity
for the triple (G,S, T ) which implies the existence of a DRR for G as well as
the oriented version of the covering statement.

We introduce the notion of prerigidity which is a weakening of the property to
admit a GRR. This notion is about colour-preserving automorphisms and every
prerigid graph is in particular a so called CCA (Cayley Colour Automorphism)
graph. See [9, 5] for more details about CCA graphs. In Theorem 2.4 we show
that a group is prerigid if and only if it is not a generalized dicyclic group nor an
abelian with an element of order greater than 2 group, hence giving a geometric
interpretation for these groups.

Finally, we stress out the fact that given an oracle for the word problem in
G, all our proofs are constructive and when we construct T starting from S,
there is an explicit bound on the cardinality of T±, which depends only on the
cardinality of S±.
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The next section contains all the necessary definitions and the statements of
the main results of this paper. Section 3 contains the proof of Theorem 2.4, that
is a geometric characterization of non-generalized dicyclic nor abelian with an
element of order greater than 2 groups via their Cayley graphs. Then, Section 4
provides better bounds than the ones given by Theorem 2.4 for a large subclass
of non-generalized dicyclic nor abelian with an element of order greater than 2
groups. Finally, Section 5 contains the proof of the existence of (strong) GRR
and DRR, as well as the results about coverings.

Acknowledgements: The first author was partly supported by Swiss NSF
grant P2GEP2_168302. The second author’s research was supported by the
ANR projects GAMME (ANR-14-CE25-0004) and AGIRA (ANR-16-CE40-0022).
Part of this work was performed within the framework of the LABEX MILYON
(ANR-10-LABX-0070) of Université de Lyon, within the program "Investisse-
ments d’Avenir" (ANR-11-IDEX-0007) operated by the French National Re-
search Agency (ANR).

2 Definitions and results

2.1 Graphs

We first quickly recall the basic graph terminology we will use. More details
may be found in [13]. For us, a digraph (or directed graph) will be a pair
(V,E) together with two maps ι, τ : E → V . V is the set of vertices, E the
set of arcs (also called oriented edges). Every arc e has an initial vertex ι(e)
and a terminal vertex τ(e). A graph (or undirected graph) is a digraph such
that every arc e has an inverse ē satisfying ¯̄e = e, ι(ē) = τ(e) and τ(ē) = ι(e).
Morphisms of (di)graphs are maps that preserve the structure and isomorphisms
are morphisms that are bijective on vertices and on arcs. An edge of a graph
is a pair {e, ē}. A graph is simple if it has no loop (edge from v to itself) nor
multiple edges (2 or more edges from v to w).

Two vertices v and w in a graph are adjacent if there is an edge between
them, that is if there is an arc from v to w or equivalently from w to v. A
graph is locally finite if every vertex has a finite number of adjacent vertices and
connected if every two vertices v and w can be connected by a path (a sequence
of adjacent vertices). A digraph is locally finite, if its underlying graph is.

Graphs are naturally metric spaces for the shortest path metric, where all
edges are identified with the unit segment of the reals. The ball Ball(v, r), is
the biggest subgraph included in the closed metric ball of radius r around the
vertex v. For example, if Γ is a triangle (3 vertices, 3 edges), then the ball of
radius 1 around a vertex contains all 3 vertices, but only 2 edges, while the ball
of radius 1.5 is Γ itself. Generally, it is always possible to assume that the radius
is in 1

2 Z. The following fact illuminates the importance of balls of radius 1 and
1.5 for coverings.

Lemma 2.1. Let ϕ : Γ → ∆ be a covering between two simple graphs. The
following are equivalent

1. For every vertex v, the restriction ϕ : Ball(v, 1) → Ball(ϕ(v), 1) is bijec-
tive,
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2. For every vertex v, the restriction ϕ : Ball(v, 1.5) → Ball(ϕ(v), 1.5) is
injective.

2.2 Groups and Cayley graphs

Let G be a group and S ⊂ G a generating set. For simplicity and clarity of
the exposition, we will suppose that all our generating sets do not contain the
identity element. This supposition comes at no cost, since passing from S to
S\{1} has no effect on the automorphism group of the Cayley (di)graph. We will
denote by S± = S ∪ S−1 the symmetrization of S, where S−1 = {s−1 | s ∈ S}.

Since abelian groups of exponent greater than 2 will play an important role
in the following, we begin by quickly recall two equivalent characterization of
them. For an abelian groupG, the followings are equivalent: G is not isomorphic
to (Z/2Z)(X) for some set X and G has an element of order greater than 2. Such
groups are called abelian of exponent greater than 2 or abelian but not elemen-
tary abelian 2-groups. To a pair (G,S) with G a group and S a generating set it
is customary to associated the (right) Cayley graph Cay(G,S±) = (G,G× S±)
where an arc (g, s) has initial vertex g, terminal vertex gs and is labeled by s.
This graph has no multiple edge and if 1 does not belong to S it has no loop. A
morphism ϕ : Cay(G,S±) → ∆ is said to be an arc-labeling preserving morphism
if when ϕ(e) = ϕ(f), the two vertices e and f have the same label. Every mor-
phism that preserves the label of arcs induces a labeling of ∆ by pushforward.
As said in the introduction, G ∼= AutA lab(Cay(G,S±)) ≤ Aut(Cay(G,S±))
and arc-labeling preserving coverings ϕ : Cay(G,S±) → ∆ are in bijection with

conjugacy classes of subgroups of G. Cayley digraphs ~Cay(G,S) = (G,G × S)
and their morphisms are defined similarly to the undirected case. As for the
undirected case, G ∼= AutA lab( ~Cay(G,S)) acts freely transitively on the vertices

of ~Cay(G,S). The underlying graph of ~Cay(G,S) is Cay(G,S±). Let us define
AutE lab(Cay(G,S±)) as the group of edge-labeling preserving automorphisms.
That is, ϕ is in AutE lab(Cay(G,S±)) if and only if for every edge {e, ē}, the
set of labels of {ϕ(e), ϕ(ē)} is the same as for {e, ē}. We hence have G =
AutA lab(Cay(G,S±)) ≤ AutE lab(Cay(G,S±)) ≤ Aut(Cay(G,S±)). In general,
these three groups are distincts. This can be seen by looking at G = Fn the free
group of rank 2 and S a free generating set. Then the vertex stabilizer of 1 is
trivial for AutA lab(Cay(G,S±)). On the other hand, for any vertex v, we have
|StabAutE lab(Cay(G,S±))(1).v| = 2|v| while |StabAut(Cay(G,S±))(1).v| = (2n)|v|.

Definition 2.2. A pair (G,S) of a group with a generating system is a pre-
rigid pair if AutE lab(Cay(G,S±)) acts freely transitively on the vertices of
Cay(G,S±), that is if G = AutE lab(Cay(G,S±)). The group G is prerigid
if (G,G) is a prerigid pair.

The pair (G,S) is said to be a GRR pair if Aut(Cay(G,S±)) acts freely
transitively on the vertices of Cay(G,S±), that is if G = Aut(Cay(G,S±)).

Similarly, (G,S) is a DRR pair if Aut( ~Cay(G,S)) acts freely transitively on

the vertices of ~Cay(G,S), that is if G = Aut( ~Cay(G,S)).
A triple (G,S, T ) with S ⊆ T two generating systems is said to be a r-

strong prerigid triple (respectively r-strong GRR triple, respectively r-strong
DRR triple) if any rooted edge-labeling preserving automorphism of the ball of
radius r in Cay(G, T±) (respectively any rooted automorphism of the ball in

Cay(G, T±), respectively in ~Cay(G, T )) fixes pointwise the ball of radius 1 in
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Cay(G,S±) (respectively in Cay(G,S±), respectively in ~Cay(G,S)).
A DRR pair (G,S) with S ∩ S−1 empty is called an ORR pair, while a

r-strong ORR triple (G,S, T ) is an r-strong DRR triple with T ∩ T−1 empty.

ORR pair and ORR strong triple correspond to what Babai calls oriented
graphs: directed graphs without bigon.

It is illuminating to reinterpret all the above definitions in term of the sta-
bilizer of the vertex 1. Indeed, since the action of AutA lab(Cay(G,S±)) on the
vertices is transitive, then the action of a subgroup AutA lab(Cay(G,S±)) ≤
A ≤ Aut(Cay(G,S±)) is regular if and only if StabA(1) is trivial. If t > r
and (G,S, T ) is a r-strong prerigid/GRR/DRR triple, then it is also a t-strong
prerigid/GRR/DRR triple. By the above observation and the fact that S is
generating, a pair (G, T ) is a prerigid/GRR/DRR pair if and only if there
exists a (equivalently for all) generating set S ⊆ T such that (G,S, T ) is a
∞-strong prerigid/GRR/DRR triple. In other words, (G,S, T ) is a r-strong
prerigid/GRR/DRR triple if (G, T ) is a prerigid/GRR/DRR pair and this is
witnessed by the S-ball of radius r. The following result follows from the fact
that balls of radius 1 are stars.

Lemma 2.3. A triple (G,S, T ) is 1-strongly prerigid if and only if S consists
only of elements of order 2.

A triple (G,S, T ) is a 1-strong GRR if and only if G is either the trivial
group or the cyclic group of order 2.

A triple (G,S, T ) is a 1-strong DRR if and only if T = S has at most 1
element. In particular, G is cyclic.

This tells us that for general groups, the best rigidity results we can hope
for are 1.5-strong (pre)rigidity. In Theorem 2.4 we show that if G is neither
generalized dicyclic nor abelian of exponent greater than 2, then for any gener-
ating symmetric set S, the triple (G,S, S≤11) is 1.5-strongly-prerigid. On the
other hand, in Theorem 2.8 we show that for any finite generating set S, there
exists T finite such that (G,S, T ) is a 1.5-strong DRR, provided that G has an
element of large enough (depending only on |S|) order. For the undirected case,
we are able to provide finite T such that (G,S, T ) is a 2-strong GRR triple.

Let us recall (Watkins, [21]) that (G,S) is a Class II pair if the group
Aut(G,S) of automorphisms ψ of G such that ψ(S) = S is non-trivial, while G
is a Class II group if (G,S) is a Class II pair for every symmetric generating S.
The group Aut(G,S) naturally injects into StabAut(Cay(G,S±))(1). Then (G,S)
is not a Class II pair if and only if (the image of) Aut(G,S) is trivial. This
is a necessary condition for (G,S) to be a GRR pair and Watkins conjectured
that finite groups split into groups admitting a GRR and Class II groups. The
conjecture was finally proved in 1978 by Godsil, constructing upon the works
of many others, see the introduction for a list of references. Recall that G is
a generalized dicyclic group if it is a non-abelian group, has an abelian normal
subgroup A of index 2 and an element x of order 4 not in A such that xax−1 =
a−1 for every a ∈ A. An easy exercise shows that we always have x2 ∈ A of
order 2. On the other hand, if A is abelian and y ∈ A is of order 2, then it
is always possible to construct a generalized dicyclic group G = 〈A, x〉 with
x2 = y. Watkins showed that abelian groups with an element of order greater
than 2 and generalized dicyclic groups are contained in Class II groups, see also
Proposition 3.1. Moreover, the result on GRR for finite groups shows that for
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finite groups Class II is the union of abelian groups with an element of order
greater than 2, generalized dicyclic groups and of 13 exceptionnal small groups.

Our first main result consists to show that prerigid groups are in fact the
same as the union of abelian groups with an element of order greater than 2 and
of generalized dicyclic groups, and hence a proper subclass of Class II groups.
More precisely, denoting by S≤n the set of non-trivial element of G of S-length
at most n, that is vertices distinct from 1 in the ball or radius n in Cay(G,S±),
we have

Theorem 2.4. For a group G, the following are equivalent

1. G is neither generalized dicyclic, nor abelian with an element of order
greater than 2;

2. G is prerigid;

3. for every (equivalently there exists a) generating set S, the pair (G,S≤11)
is prerigid;

4. for every (equivalently there exists a) generating set S, the triple (G,S, S≤11)
is 1.5-strongly prerigid;

There is a subclass of non-generalized dicyclic nor abelian with an element
of order greater than 2 groups for which it is possible to obtain a far better
bound; namely

Proposition 2.5. Let G be a non-abelian group. Suppose that either G has
no elements of order 4, or that it does not have non-trivial abelian character-
istic subgroup. Then for every symmetric generating set S, there exists S̃ ≤ T
symmetric and generating such that |S̃| = |S|, |T | ≤ 3|S| and (G, S̃, T ) is 1.5-
strongly prerigid.

In order to find GRR and DRR, we will make an extensive use of the notion
of triangles in graphs. This is inspired by the work of the second author with
R. Tessera, [20].

Definition 2.6. A triangle in a graph (V,E) is a subset T ⊂ V of cardinality 3
such that for every x 6= y ∈ T there is an edge e joining x to y. If S ⊂ G is a
finite generating set of a group and s ∈ S, we denote by N3(s, S) the number of
triangles in Cay(G,S±) containing the vertices 1 and s.

By regularity of Cay(G,S±), we have N3(s, S) = N3(s−1, S) and for every
g ∈ G this is equal to the number of triangles containing the vertices g and gs.
Since N3(s, S) is a geometric property, an automorphism of Cay(G,S±) cannot
send an edge labeled by s to an edge labeled by t if N3(s, S) 6= N3(t, S). The
following lemma shows the usefulness of both the notion of prerigidity and of
the triangles approach.

Lemma 2.7. Let G be a group and S a generating set. If S is such that the
N3(s, S) are pairwise distincts for s ∈ S (in particular, S ∩ S−1 consists of
elements of order 2), then ~Cay(G,S) is a DRR for G. On the other hand,
if (G,S) is a prerigid pair and all the N3(s±1, S) are pairwise distincts, then
Cay(G,S±) is a GRR for G.
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The second main theorem of this paper shows that for finitely generated
groups, the existence of elements of large enough order is a sufficient condition
to have a 1.5-strong DRR triple and also a 2-strong GRR triple. In particular,
it implies the existence of a DRR and of a GRR for these groups. Before stating
our theorem we need a little bit of notation. We note F (n) := 2(2n2 + 3n −
2)2(2n2+4n−1) and F̌ (n) := 2(2n2+3n−2)2(2n2+4n) = 4(2n2+3n−2)2(n+2)n
and for S ⊂ G, we denote by S∗ any "antisymmetrization" of S. That is, S∗

consists of a choice of one element in {s, s−1} for any s ∈ S. Equivalently, it is
also a minimal subset of S± for the condition (S∗)± = S±. If S ∩ S−1 consists
only of elements of order 2, then it is possible to take S∗ = S.

Theorem 2.8. Let G be a group and S a finite generating set. If G contains an
element of order at least F (2|S∗|2 +28|S∗|−4), then there exists a generating set
T such that T± contains S±, has at most 2|S∗|2+28|S∗| elements and (G,S∗, T )
is a 1.5-strongly DRR triple.

If S contains no elements of order 2 and G has an element of order at least
F̌ (2|S∗|2+28|S∗|−4)), then there exists a generating set T such that T± contains
S±, has at most 2|S∗|2 + 28|S∗| = 2|S∗|2 + 14|S±| elements and (G,S∗, T ) is a
1.5-strongly ORR triple.

In both cases, if (G,S0, S) is 1.5-strongly prerigid for some generating S0 ⊆
S, then the triple (G,S0, T ) is a 2-strong GRR triple.

Recall that a generalized dihedral group is the semi-direct product A⋊Z/2Z

where A is abelian and Z/2Z acts on A by inversion. In [15], Morris and Spiga
showed that any finitely generated group that is not generalized dihedral admits
a generating set S without elements of order 2 and with |S| = rank(G). We
hence obtain the following corollary.

Corollary 2.9. Let G be a finitely generated group. If G contains an element
of order at least F (2 rank(G)2 + 28 rank(G) − 4) then it has a DRR of valency
at most 2 rank(G)2 + 28 rank(G). If G is not a generalized dihedral group and
contains an element of order at least F̌ (2 rank(G)2 + 28 rank(G) − 4) then the
above DRR is in fact an ORR.

If G contains elements of arbitrary large order, then for every finite generat-
ing set S, there exists T such that T± contains S±, has at most 2|S∗|2 + 28|S∗|

elements and ~Cay(G, T ) is a DRR for G. If moreover G is not a generalized
dihedral group and S has no elements of order 2, then ~Cay(G, T ) is an ORR for
G.

Since cyclic groups always admit an ORR, it is possible in the above corollary
to suppose that rank(G) ≥ 2 and a direct computation gives F̌ (2 rank(G)2 +

28 rank(G) − 4) ≤
(
5 rank(G)

)12
as given in the introduction.

On the other hand, Theorem 2.8 together with Theorem 2.4 and Proposition
2.5 gives us

Corollary 2.10. Let G be a non-generalized dicyclic nor abelian finitely gen-
erated group. If G contains an element of order at least F (225 rank(G)22 +
214 · 7 rank(G) − 4), then it has a GRR of valency at most 225 rank(G)22 +
214 · 7 rank(G). If G has no elements of order 4 or no non-trivial characteristic
abelian subgroup, then this bound can be lowered to F (18 rank(G)2+84 rank(G)−
4) and the GRR obtained is of valency at most 18 rank(G)2 + 84 rank(G).
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If moreover G has elements of arbitrary large order, then for every finite
generating set S, there exists S ⊂ T such that Cay(G, T±) is a GRR for G with
|T |± ≤ 2|S≤11|2 + 15|S≤11|, or |T | ≤ 9

2 |S±|2 + 42|S±| if G has no elements of
order 4 or no non-trivial characteristic abelian subgroup.

SinceG is not abelian, it is not cyclic and rank(G) ≥ 2. A direct computation
gives us F (225 rank(G)22 + 214 · 7 rank(G) − 4) ≤ 1.41 · 1019 rank(G)132 which is
the bound given in the introduction.

For finitely generated groups, this subsumes the result of Watkins on free
products. Indeed, free products always have elements of infinite order. On the
other hand, Corollary 2.9 is partial improvement of Babai’s work on infinite
groups, since the DRR we obtain is locally finite. Moreover, we do not only
exhibit one DRR, or GRR, for the groups in question, but we obtain some
kind of asymptotic comportement. Nevertheless, in contrast with Watkins and
Babai’s results, we do not treat the non-finitely generated case.

It is possible to deduce from the fact that (G,S, T ) is a 2-strong GRR triple
informations about graph homomorphisms that are bijective on balls of radius
2, such homomorphisms are necessarily coverings. In fact, a slight modification
of the proof of Theorem 2.8 yields the following result.

Proposition 2.11. Let (G,S0, S) be a 1.5-strong prerigid triple with S finite
such that G contains an element of order at least F (2|S∗|2+28|S∗|−4). Let T be
the generating set given by (the proof of) Theorem 2.8 — in particular (G,S0, T )
is a 2-strong GRR triple. Then, for any covering ψ : Cay(G, T±) → ∆ that is
bijective on balls of radius 1.5, there exists a subgraph ∆̃ of ∆ such that the
restriction of ψ to Cay(G,S±) is a arc-labeling preserving covering onto ∆̃.

Recall (see for example [13]) that arc-labeling preserving coverings are in
bijections with conjugacy classes of subgroups of G and that turns ∆̃ of Propo-
sition 2.11 into a Schreier graph of G.

Using Proposition 2.11 and Proposition 44 from [13], we obtain the following
rigidity results about Cayley graphs of Tarski monsters.

Theorem 2.12. For any p ≥ 6 776 965 274 112 and any Tarski monster Tp,
there exists a symmetric generating system T of size at most 90, such that if
ψ : Cay(Tp, T

±) → ∆ is a covering that is bijective on balls of radius 1.5, then
either ψ is the identity, or ∆ is infinite and the action of its automorphism group
on its vertices has finite orbits. In particular, if the covering is not trivial, then
∆ is not transitive, and not even quasi-transitive.

The method we use, using triangles, is not able to say anything on coverings
which are not bijective on balls of radius 1.5. Nevertheless, if being bijective
on 1.5 is a restriction on which kind of coverings we consider, it is a small one.
Indeed, if ϕ : Γ → ∆ is a covering between two simple graphs (no loops, nor
multiple edges), it is bijective on balls of radius 1.5 − ε for any ε > 0 and
injective on balls of radius 1.5, as noted in Lemma 2.1.

Finally, we want to stress out the following facts.

Remark 2.13. In all the above results about GRR, the hypothesis of the existence
of an element of large enough order is a necessary. Indeed, there exists 13 finite
exceptional groups that are not generalized dicyclic nor abelian with an element
of order greater than 2 (and hence prerigid) but that do not admit any GRR.
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More details and lower bounds on the order may be found at the end of Section
4. Similarly, the 5 exceptional finite groups without DRR as well as the 11 finite
non-generalized dihedral groups without ORR show that in these cases too the
hypothesis of an element of large order is necessary.

Remark 2.14. As already said, one of the strength of our method is that the
same construction give altogether GRR, DRR and ORR. Another important
point is that the proof of our results gives an algorithm that take in entry a
generating set of G and an oracle for the word problem in G and return (given
the existence of an element of large order) a DRR, and even an ORR and a
GRR when applicable.

3 Prerigid triples

The aim of this section is to show Theorem 2.4, which implies that generalized
dicyclic groups and abelian groups of exponent greater than 2 are the only
non-prerigid groups.

Clearly, for a group G and a symmetric generating set S, the stabilizer of 1
in AutE lab(Cay(G,S±)) coincides with the group B(G,S) of all permutations
ϕ of G satisfying the following condition

ϕ(1) = 1 and ∀g ∈ G, ∀s ∈ S, ϕ(gs) ∈ ϕ(g){s, s−1}.

In particular, the pair (G,S) is prerigid if and only if B(G,S) is trivial. On
the other hand, it directly follows from the definition that if S ⊆ T , then
B(G, T ) ≤ B(G,S). In particular, if (G,S) is prerigid for some S, then G is
prerigid. On the other hand, if G is a finitely generated prerigid group, then
a compacity argument shows that there exists a finite generating set S such
that (G,S) is prerigid. We will show that G is not generalized dicyclic nor
abelian but not elementary 2 group, if and only if for every (equivalently there
exists a) S symmetric generating set, (G,S≤11) is prerigid, and that this is also
equivalent to the similar statement for 1.5-strong prerigidity.

Similarly, the group of rooted edge-labeling preserving automorphism of the
ball of radius 1.5 in Cay(G, T±) is isomorphic to the group B(G, T, 1.5) of bi-
jections ϕ : T → T such that

ϕ(1) = 1 and ∀s, t ∈ T, st ∈ T =⇒ ϕ(st) ∈ ϕ(s){t, t−1}.

We first turn our attention on generalized dicyclic groups and abelian groups.

Proposition 3.1. If G is a generalized dicyclic group or an abelian group with
a element of order at least 3, then it is not prerigid.

Proof. We have to prove that B(G,G) 6= {Id}. If G is abelian, then the inverse
map ϕ : g → g−1 belongs to B(G,G). If G is of exponent greater than 2, then
there is an s ∈ S of order greater than 2, and thus ϕ 6= Id1.

On the other hand, if G = 〈A, x〉 = A ⊔ xA is a generalized dicyclic group,
then the fonction ϕ defined by ϕ(a) = a and ϕ(xa) = (xa)−1 for every a ∈ A is

1In fact, if G is abelian but not elementary 2-group, we exactly have B(G, G) = {Id, ϕ} as
shown by a careful analysis of the proof of Theorem 3.11.
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in B(G,G) and differs from the identity as x has order 4. Indeed, it is obviously
a bijection and for a and b in A we have

ϕ(a · b) = ab = ϕ(a)b = ϕ(a)ϕ(b)

ϕ(a · xb) = ϕ(xa−1b) = b−1ax−1 = ϕ(a)(xb)−1 = ϕ(a)ϕ(xb)

ϕ(xa · b) = b−1a−1x−1 = ϕ(xa)b = ϕ(xa)ϕ(b)

ϕ(xa · xb) = ϕ(x2a−1b) = x2a−1b = ϕ(xa)(xb)−1 = ϕ(xa)ϕ(xb)

Where in the last line we used that x3b = x−1b = b−1x−1.

In fact, this proof also shows the previously known fact, [21], that generalized
dicyclic or abelian with an element of order greater than 2 groups is a subclass
of Class II groups. That is, groups such that for every symmetric generating set
S, there exists an automorphism ψ of G such that ψ(S) = S.

From Lemma 2.3 and Proposition 3.1, we deduce the following.

Lemma 3.2. An abelian group is prerigid if and only if it is an elementary
abelian 2-group. In this case, for every S ⊆ T symmetric and generating,
(G,S, T ) is a 1-strong prerigid triple.

In many of the following results, the quaternions group

Q8 = 〈i, j, k | i4 = 1, i2 = j2 = k2 = ijk〉

plays a special role and we often assume that 2 given elements do not generate
Q8. This hypothesis is necessary as shown in the following lemma than can be
checked by hand or computer.

Lemma 3.3. For every choice of (α1, α2, α3) in {1,−1}3, there exists a bijection
ϕ : Q8 → Q8 in B(Q8, Q8) such that ϕ(i) = iα1 , ϕ(j) = jα2 and ϕ(k) = kα3 .

We also record the two following facts about Q8 that we will use later. The
first one is a classical result and the proof is an easy exercise let to the reader.
It implies that if 〈g, h〉 is isomorphic to Q8, then it is isomorphic to it by i 7→ g
and j 7→ h. The second one allows us to easily detect if 〈g, h〉 is isomorphic to
Q8.

Lemma 3.4. The automorphism group of Q8 acts transitively on pairs of gen-
erators.

Lemma 3.5. Let G = 〈g, h〉. If gh = hg−1 and hg = gh−1, then G is a
quotient of Q8. If moreover G contains an element of order greater than 2 or is
not abelian, then it is isomorphic to Q8.

Proof. Recall that Q8 is also given by the following presentation

Q8 = 〈i, j | i4 = 1, i2 = j2, jij−1 = i−1〉,

and that all proper quotient of Q8 are elementary abelian 2-group. The equality
gh = hg−1 is equivalent to hg−1h−1 = g and thus to hgh−1 = g−1. Hence, we
only need to show that g4 = 1 and g2 = h2. Now, hg = gh−1 is equivalent both
to g = hgh and to g = h−1gh−1. We have

g2 = hg−1h−1 · hgh = h2

g2 = h−1gh−1 · hg−1h−1 = h−2

which gives us both g2 = h2 and g4 = 1.
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In the sequel, we fix two symmetric generating sets S ⊆ T of G, and we fix
ϕ in B(G, T, 1.5).

It is possible to partition T into A ⊔B, where

A = {g ∈ T | ϕ(g) = g}

B = {g ∈ T | ϕ(g) = g−1 6= g}.

By definition, every h in B satisfies h2 6= 1.
As a direct consequence of the definition we obtain

Lemma 3.6. Let s be in T and n be a relative integer. If ϕ(s) = s (respectively
ϕ(s) = s−1) and sn is in T , then ϕ(sn) = sn, (respectively ϕ(sn) = s−n).

Lemma 3.7. If g ∈ A is such that g2 6= 1, then CG(g) ∩ T ∩ gT ⊆ A.

Proof. Let h be an element of CG(g) ∩ T ∩ gT . So ϕ(h) = ϕ(g(g−1h)) belongs
both to {h, h−1} and {h, gh−1g = g2h−1}. So if h ∈ B, then h−1 = g2h−1, a
contradiction as we assumed g2 6= 1.

Lemma 3.8. Let g and h be two elements of A such that gh ∈ T . If 〈g, h〉 is
not isomorphic to Q8, then gh is in A.

Proof. We show that if gh ∈ B, then 〈g, h〉 = Q8. Since B is closed under
inversion, we also have h−1g−1 ∈ B. In particular, (gh)2 6= 1 and (h−1g−1)2 6=
1. So we have gh = ϕ(h−1g−1) = h−1g, or equivalently hg = gh−1, and
h−1g−1 = ϕ(gh) = gh−1, or equivalently gh = hg−1. Therefore, we could apply
Lemma 3.5 using the fact that gh is in B and hence of order greater than 2.

Lemma 3.9. Let g ∈ A and h in B be such that hg and g−1h are still in T .
Then we have hgh−1 = g−1. Moreover, if the subgroup 〈g, h〉 is not isomorphic
to Q8, then the element hg is in B.

Proof. Assume first that hg ∈ A. Then we have that hg and g−1 both belong
to A but their product belongs to B, so by Lemma 3.8 〈hg, g〉 (which is just
〈h, g〉) is isomorphic to Q8. In particular hgh−1 = g−1.

Assume now that hg ∈ B. Then ϕ(hg) = g−1h−1 ∈ {h−1g, h−1g−1}. If
g−1h−1 = h−1g, we have hgh−1 = g−1 as desired. On the other hand, if
g−1h−1 = h−1g−1, then g and h commute. By Lemma 3.7, we have g2 = 1 and
therefore hgh−1 = g = g−1.

Lemma 3.10. Let g, h ∈ A and f ∈ B be such that

{gh, fg, g−1f, fh, h−1f, fgh, (gh)−1f} ⊆ T.

Then ghg−1 ∈ {h, h−1}, with ghg−1 6= h if and only if 〈g, h〉 is isomorphic to
Q8.

Proof. If 〈g, h〉 is isomorphic to Q8, then ghg−1 = h−1 is clear. Otherwise, by
Lemma 3.8 we have gh ∈ A, and applying three times Lemma 3.9 we obtain

h−1g−1 = f(gh)f−1 = (fgf−1)(fhf−1) = g−1h−1

and g, h commute.
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Theorem 3.11. Let S be a generating set in G, and let T = S≤11. If (G,S, T )
is not 1.5-strongly prerigid, then G is generalized dicyclic or an abelian group
of exponent greater than 2.

Proof. By Lemma 3.2, we can suppose that G is not an elementary abelian
2-group.

Let T = S≤i for some i. We will see that i = 11 is enough to prove the
theorem. For the convenience of the reader, each time we will use a preceding
result, we will specify in square brackets for which values of i it is true. By
hypothesis, there is a ϕ ∈ B(G, T, 1.5) and an s in S such that ϕ(s) 6= s. In
particular, s is in B ∩ S.

Case 1 Assume that there are g0, h0 ∈ B∩S such that g0h0 ∈ B. For every g ∈
A ∩ S≤i−2 we have by Lemma 3.9 that g0gg

−1
0 = h0gh

−1
0 = (g0h0)g(g0h0)−1 =

g−1. This implies that g = g−1. In other words, ϕ(g) = g−1 for every g ∈ S≤i−2.
Oberve that if g ∈ S≤i−3 and h ∈ S do not commute, then they generate

Q8 and in particular have order 4. Indeed, since gh ∈ S≤i−2, we have gh =
ϕ(h−1g−1) ∈ {hg−1, hg}. The equality gh = hg is excluded, so we have gh =
hg−1 and g 6= g−1. Similarly exchanging the roles of g, h we have hg = gh−1.
This implies that the 〈g, h〉 is isomorphic to Q8 by Lemma 3.5. We can assume
that G is not abelian, since otherwise there is nothing to prove. Pick a non
commuting pair (g1, h1) ∈ S×S. By the preceding 〈g1, h1〉 is isomorphic to Q8,
and in particular ε := g2

1 = h2
1 has order 2. Then every element a of Z(G)∩S≤3

has order 2. Indeed, (g1a, h1) is also a non commuting pair and by the preceding
[we use i− 3 ≥ 3 + 1] we have (g1a)2 = h2

1 = g2
1 , which implies that a2 = 1.

So elements of S≤3 are of order 1, 2, 4, and the elements of order ≤ 2 are
exactly those that belong to Z(G). Observe that g2

1 = h2
1 has order 2, so belongs

to Z(G).
Denote by G0 the subgroup of Z(G) generated by Z(G)∩S≤3, and by G1 the

group generated by G0, g1 and h1. G0 is an abelian 2-group, so it can be seen
as a vector space over the field with two elements, which contains the non-zero
vector g2

1 = h2
1 = ε. By completing this vector to a basis {g2

1} ∪ {gx : x ∈ X} of
G0, G1 is isomorphic to Q8 × (Z/2Z)(X) for a set X . To conclude, we have to
prove that G = G1.

Pick g ∈ S. We shall prove that g ∈ G1. If g ∈ Z(G), then we have g ∈ G0

and we are done, hence we can suppose that g is not in the center. Assume first
that g commutes with g1, then gg1 commutes with h1. Indeed, if it was not the
case, then by the above [use i − 3 ≥ 2] gg1 and h1 generate Q8. But then we
would have g2

1 = h2
1 = (gg1)2 = g2g2

1 which implies g12 = 1 in contradiction
with the fact that g is not in Z(G). Since g and g1 commute and gg1 commutes
with h1, we have

g(g1h1)g−1 = (gg1)h1g
−1 = h1(gg1)g−1 = h1g1 6= g1h1,

where the inequality is by the fact that g1 and h1 generate Q8. Hence g do not
commute with g1h1, which implies [i− 3 ≥ 2]

g2 = (g1h1)2 = g2
1 ,

where we used once again that g1 and h1 generate Q8. Finally, (gg1)2 = g2g2
1 =

g4
1 = 1 and therefore gg1 belong to Z(G) ∩ S≤2. This implies that g−1 is in
g1G0 ⊆ G1.
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Similarly, if g commutes with h1 we have g ∈ G1. It remains to consider the
case when g commutes neither with g1 nor with h1. Then we have g2 = g2

1 =
h2

1 = ε and

(h−1
1 g−1

1 g)2 = (h−1
1 g−1

1 )(gh−1
1 )(g−1

1 g) = ε3(g−1
1 h−1

1 )(h−1
1 g)(gg−1

1 )

= ε3g−1
1 h−2

1 g1 = 1.

So h−1
1 g−1

1 g belongs to Z(G) ∩ S≤3 and g ∈ G1.

Case 2 Assume now that for every g, h ∈ B∩S, gh ∈ A, but that there exists
g0, h0 ∈ A ∩ S≤2 such that g0h0 ∈ B. By Lemma 3.8 [i ≥ 2 + 2], 〈g0, h0〉 is
isomorphic to Q8. Denote by G0 the centralizer of 〈g0, h0〉 in G, S̃ := G0 ∩S≤5,
and let G′

0 be the subgroup generated by S̃, and G1 be the group generated
by G′

0 and 〈g0, h0〉. By Lemma 3.7 applied to g0, S̃ is contained in A [use
i ≥ 5 + 2]. Since every element g of S̃ commutes with g0h0, it is of order 1
or 2. Otherwise, Lemma 3.7 applied to g would imply that g0h0 is in A [use
i ≥ 5 + 4], a contradiction. Moreover, Lemma 3.10 implies that every elements
of S̃ commute (remember that we have assumed that there exists f ∈ B∩S) [use
i ≥ 1(f) + 5(g) + 5(h)]. So G′

0 is abelian and generated by element of order 2, it
is a elementary 2-group. We obtain that G1 is isomorphic to Q8 × (Z/2Z)(X).
So all we have to do is prove that G1 = G.

Let g ∈ S. Since g0 ∈ A ∩ S≤2, we have that gg0g
−1 ∈ {g0, g

−1
0 } by Lemma

3.9 [i ≥ 2 + 1] and Lemma 3.10 [i ≥ 1 + 2 + 1]. Similarly gh0g
−1 ∈ {h0, h

−1
0 }.

We consider all four cases.

1. (gg0g
−1, gh0g

−1) = (g0, h0). Then g belongs to G′
0 and in particular to

G1.

2. (gg0g
−1, gh0g

−1) = (g0, h
−1
0 ). Then

(g0g)h0(g0g)−1 = g0h
−1
0 g0 = h0.

The last equality is because 〈g0, h0〉 is isomorphic to Q8. So g0g ∈ S≤3

commutes with both g0 and h0 and therefore belongs to G′
0. In particular

g = g−1
0 (g0g) belongs to G1.

3. (gg0g
−1, gh0g

−1) = (g−1
0 , h0). Exchanging g0 and h0 we deduce from the

previous case that g ∈ h−1
0 G′

0 ⊆ G1.

4. (gg0g
−1, gh0g

−1) = (g−1
0 , h−1

0 ). Then

g(g0h0)g−1 = (gg0g
−1)(gh0g

−1) = g−1
0 h−1

0 = g0h0,

where the last equality is because g0 and h0 generate Q8. So g commutes
with g0h0 but not with h0, so from the second case (replacing (g0, h0) by
(g0h0, h0) which still generates Q8), we obtain that g0h0g ∈ S≤5 is in G0

and thus in G′
0. We then have g ∈ h−1

0 g−1
0 G′

0 ⊆ G1.

So in each case we have g ∈ G1. This proves that G coincides with G1 and
completes the proof of this case.
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Case 3 Consider the remaining case: for every g, h ∈ B ∩ S, gh ∈ A, and
for every g, h ∈ A ∩ S≤2, gh ∈ A. Pick g0 ∈ B ∩ S. By Lemma 3.9 [with
i ≥ 1 + 2 + 2], we have for every g, h ∈ A ∩ S≤2,

h−1g−1 = g0(gh)g−1
0 = (g0gg

−1
0 )(g0hg

−1
0 ) = g−1h−1

Therefore the subgroup G0 of G generated by A∩S≤2 is abelian, and for every
element f of B ∩ S, the action of f by conjugation on G0 is the inverse map.
In particular G0 is normal; denote by q : G → G/G0 the quotient map. By
definition, q(g) = 1 for every g ∈ A ∩ S. Moreover, since g2

0 ∈ A ∩ S≤2, the
image q(g0) has order 2. Finally, every other element g ∈ B ∩ S satisfies that
g−1

0 g ∈ A ∩ S≤2, so q(g) = q(g0). To summarize, q(S) is equal to the group of
order 2 {e, q(g0)}. Since S is generating, we deduce that q(G) has cardinality 2,
i.e. that G0 has index 2 in G. We conclude that G is generalized dicyclic.

We have proven that if G is a generalized dicyclic or abelian with an element
of order greater than 2 group, then it is not prerigid (Proposition 3.1). This
implies that for every symmetric generating S, (G,S≤11) is not a prerigid pair,
hence (G,S, S≤11) is not a 1.5-strong prerigid triple. On the other hand, the
existence of a symmetric generating set S such that (G,S, S≤11) is not 1.5-
strongly prerigid implies that G is generalized dicyclic or abelian with an element
of order greater than 2, hence proving Theorem 2.4.

4 More on prerigidity

In the last section, we have shown that if G is not a generalized dicyclic group
nor an abelian with an element of order greater than 2 group, then for every
symmetric generating set S, the triple (G,S, T ) is 1.5-strongly prerigid for T =
S≤11. The main caveat of this general method is that the size of S≤11 is really
big when compared to the size of S. This is important as in the hypothesis of
Theorem 2.8 and Proposition 2.11 we suppose that G has an element of order at
least F (2|T |2 +28|T |−4). In this section, we provide criterions on (G,S) which
ensures that (G, S̃, T ) is 1.5-strongly prerigid for some S̃ ⊂ T with |S̃| = |S|
and |T | ≤ 3|S|.

4.1 General results on prerigidity

By Lemma 3.2, if G is abelian of exponent at most 2, then for every S ⊆ T
generating, (G,S, T ) is 1-strongly prerigid. On the other hand, generalized
dicyclic or abelian with an element of order greater than 2 groups are never
prerigid. Therefore, we will assume in this section that G is neither abelian nor
generylized dicyclic.

Proposition 4.1. Let G be a group and S a generating set such that

∀s ∈ S,

{
s2 = 1 or

∃g := gs ∈ G : s2 6= g2 and sgs−1 /∈ {g, g−1}.
(*)

Let p denotes the cardinality of elements of S of order 2 and q the cardinality
of elements of S of order at least 3. Then there exists S ⊆ T with |T±| ≤ p+ 6q
such that (G,S, T ) is 1.5-strongly prerigid.
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Figure 1: The action of ϕ on the triangle (1, s, gs).

Proof. Let T be the union of S, {gs | s ∈ S of order at least 3} and {hs :=
s−1gs | s ∈ S of order at least 3}. Then T± contains at most p+ 6q elements.

Suppose by contradiction that we have ϕ an edge-labeling preserving rooted
automorphism of the ball of radius 1.5 in Cay(G, T±) that does not fix pointwise
elements of S. Then we have some s ∈ S with ϕ(s) = s−1 6= s. In particular,
s is not of order 2 and the action of ϕ on the triangle (1, s, gs) is depicted in
Figure 1. Since we are looking at balls in a Cayley graph of G, the label of every
cycle in it corresponds to a relation in G. Therefore, depending on ϕ, one of
the following relations is true in G:





s−1hsg
−1
s = 1

s−1h−1
s gs = 1

s−1hsgs = 1

s−1h−1
s g−1

s = 1

which correspond respectively to





s2 = 1

s2 = g2
s

sgs = gss

sgss
−1 = g−1

s

which contradicts our hypothesis.

In the rest of this section, we investigate some properties of the group G or
of the pair (G,S) that imply Condition (*) on S. In this context, elements of
order 4 as well as squares play an important role.

Lemma 4.2. Let G be a group and S a generating set such that
{

all elements of S ∩ Z(G) have order 2;

S does not contain elements of order 4.
(†)

Then S satisfies Condition (*). Moreover, if hs 6= sh, then it is possible to
choose gs in {sh, sh−1, hs−1, h−1s−1}.

Proof. Let s ∈ S. If s2 = 1, then there is nothing to do. If s2 6= 1, then by
assumption s4 6= 1 and there exists h ∈ G such that hs 6= sh, this implies that
h−1s 6= sh−1. On the other hand, for every k ∈ G, we cannot have k2 = s2
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and (k−1)2 = s2 together, otherwise we would have s4 = 1. Suppose that
h2 6= s2 (the proof is similar for h−1) and take gs = sh−1. By assumption on
h, we have sgs = s · sh−1 6= sh−1 · s = gss. Now, if sgss

−1 = g−1
s , we have

s · sh−1 · s−1 = (sh−1)−1 and then s2 = h2 which contradicts our hypothesis.
Similarly, sg−1

s s−1 6= gs. As noted before, at least one of the square of gs and
g−1

s is not equal to s2. We thus have proved that if sh 6= hs and s4 6= 1, at least
one of {sh−1, hs−1, sh, h−1s−1} may be taken for gs in order to verify Condition
(*).

Corollary 4.3. If G is such that

G = 〈G \ (Z(G) ∪ {g ∈ G | g4 = 1}) ∪ {g ∈ G | g2 = 1}〉

then it admits a generating set S satisfying Condition (*). If moreover G is
finitely generated, then there exists a finite generating set S satisfying Condition
(*).

As an important corollary of Lemma 4.2, we have

Proposition 4.4. Suppose that G is not abelian and has no elements of order
4. Then for every generating set S, there exists T of the same cardinality as S
and that satisfies Condition (*).

Proof. Since G is not abelian, every generating set S contains at least an element
t outside the center and T :=

(
S \ Z(G)

)
∪ {st | s ∈ S ∩ Z(G)} works.

Another way to look at Condition (*) is to forget elements of order 4 and
turn our attention to squares of elements in G. The proof of the following lemma
is straightforward and left to the reader.

Lemma 4.5. Let s, g be any two elements in G such that [s2, g2] 6= 1. Then,
s2 6= 1, sg 6= gs, s2 6= g2 and sgs−1 6= g−1.

Let Sq(G) be the subgroup of G generated by {g2 | g ∈ G}. This is a fully
characteristic subgroup of G (invariant under all endomorphisms of G). As a
corollary of the last lemma, we have

Corollary 4.6. Let G be a group and S a generating set. If

S2 ∩ Z(Sq(G)) ⊆ {1}. (‡)

then S satisfies Condition (*).

Since the center of a group is characteristic, we have that Z(Sq(G)) is an
abelian and characteristic subgroup of G. This implies the followings

Proposition 4.7. Let G be a group without non-trivial abelian characteris-
tic subgroup (for example a non-abelian characteristically simple group). Then
every generating set S satisfy Condition (*).

We now compare the relative strength of our various prerigidity criterions,
with a special attention to the 13 exceptional finite groups that are in Class II
but not generalized dicyclic nor abelian with an element of order greater than
2.
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1. (Z/2Z)2, (Z/2Z)3 and (Z/2Z)4 (abelian groups of exponent 2), [10];

2. D2·3, D2·4 and D2·5 (dihedral groups of order 6, 8 and 10), [21];

3. A4 (the alternating group on 4 elements), [23];

4. H1 = 〈a, b, c | a2 = b2 = c2 = 1, abc = bca = cab〉 = SD16 (the semi-
dihedral group of order 16), [23];

5. H2 = Z/8Z ⋊ Z/2Z, [17];

6. H3 = (Z/3Z × Z/3Z) ⋊ Z/2Z, [23];

7. H4 = UT(3, 3) =









1 x y
0 1 z
0 0 1




∣∣∣∣∣∣
x, y, z ∈ Z/3Z




, [17];

8. Q8 × Z/3Z and Q8 × Z/4Z, [22].

Table 1: The 13 exceptional finite groups. All of them are neither generalized
dicyclic group nor abelian of exponent greater than 2, but still do not admit
any GRR.

By Lemma 4.2 and Corollary 4.6, if S satisfies (†) or (‡) it automatically
satisfies Condition (*), while by Proposition 4.1, if S satisfies (*), there exists
T such that (G,S, T ) is a 1.5-strongly GRR triple. On the other hand, the
study (see Subsection 4.2) of finite exceptional groups tell us that the converse
of these statements are not always true. Indeed, Q8 × Z/4Z has no generating
set satisfying Condition (*) (Lemma 4.8) despite being prerigid (Theorem 2.4).
On the other hand, Q8 ×Z/3Z has no generating set satisfying (‡) (Lemma 4.9),
while {(i, 1), (j, 1)} satisfies (†). Finally, if S satisfies (‡) and G has at most 1
element of order 2, then S also satisfies (†). The proof is straightforward and
let to the reader.

4.2 A special look at the 13 exceptional finite groups

Recall that for finite groups, there is 13 exceptional groups that are in Class
II, but are not generalized dicyclic nor abelian with an element of order greater
than 2. All of them have order at most 32. The study of these exceptional
finite groups allows us to better understand the link between all the prerigidity
criterions. These exceptional groups, as well as the corresponding references,
are listed in Table 1.

Lemma 4.8. No generating set of Q8 × Z/4Z satisfies Condition (*). On the
other hand, all the 12 other exceptional groups have a generating set satisfying
Condition (†) and therefore Condition (*).

Proof. We begin by showing that all exceptional groups that aren’t Q8 × Z/4Z

satisfy condition (†). The 3 abelian groups in the list, the dihedral groups, H1

and H3 are all generated by elements of order 2. On the other hand, A4, H3

and H4 are not abelian and do not have elements of order 4. Finally, for H2 we

18



can take {(1, 0), (0, 1)} for our generating set, while for Q8 × Z/3Z we can take
{(i, 1), (j, 1)}.

Now we turn our attention on G = Q8 × Z/4Z and suppose that we have a
generating set S satisfying Condition (*). Every generating set of G contains
an element of the form s = (x,±1). Since s is not of order 2 and S satisfies
Condition (*), we have some g = gs = (y, n) ∈ G. Such a g does not commute
with s and therefore, x 6= ±1, y 6= ±1 and xy = −yx = y−1x. But in this case,
y2 = x2 = −1. Since we also have g2 6= s2, this forces n to be either 0 or 2. But
then, sgs−1 = (xyx−1, n) = (y−1,−n) = g−1 which contradicts our assumption
on g.

Lemma 4.9. Among the 12 finite groups that don’t have a GRR but admits a
generating set satisfying Condition (*), H2 and Q8 × Z/3Z are the only ones
that don’t admit a generating set satisfying condition (‡).

Proof. As said in the last lemma, 8 of these 12 groups are generated by elements
of order 2 and hence automatically satisfy (‡), while direct computations give
us Z(Sq(A4)) = {1}. For H4 we have that Z(Sq(H4)) = 〈E1,3〉, where E1,3 is
the elementary matrix with 1 on the diagonal and one 1 in position (1, 3). It is
thus possible to take S = {E1,2, E2,1, E1,2E1,3E2,1} as a generating set of H4.

On the other hand, the groups H2, and Q8 × Z/3Z both have {1} 6= Sq(G)
abelian and cannot be generated by elements of order 2.

Finally, Theorem 2.8 and its proof give us a sufficient condition on the order
of elements of a prerigid group G to ensure that G has a GRR. This condition
is given in term of F̃ (|S|), where F̃ is an explicit function and S a prerigid
generating set. On the other hand, Theorem 2.4 and the existence of the finite
exceptional groups show that prerigidity alone does not implies the existence of
a GRR. Moreover, this can be used to give some necessary conditions on the
order of elements of G to insure the existence of a GRR. In particular, we have
F̃ (2) > 5 (given by D2·5), F̃ (3) > 8 (given by H1) and F̃ (6) > 12 (given by
Q8 × Z/3Z).

5 Strongly rigid triples

The aim of this section is to give a proof of Theorem 2.8, as well as of Proposition
2.11 and Theorem 2.12. We begin by proving two lemmas on triangles in Cayley
graphs. These lemmas are strongly inspired by Lemmas 9.2 and 9.3 of [20]. The
main difference is that we only require the group G to have an element of large
enough order, and not necessarily of infinite order. Observe that an imprecise
form of this result was already announced in [20], but without an actual proof.

Contrary to the two preceding sections, all groups in this section are finitely
generated and all generating sets under considerations are finite.

5.1 The key lemmas

Lemma 5.1. Let S ⊆ G \ 1 be a finite symmetric generating set. Suppose that
G has an element of order o, with

{
o ≥ 2(2|S|2 + 3|S| − 2)2(2|S|2 + 2|S|) if o is odd

o ≥ F (|S|) = 2(2|S|2 + 3|S| − 2)2(2|S|2 + 4|S| − 1) otherwise.
(1)
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Then, for each s0 in S, there exists S ⊆ S′ ⊆ G a finite symmetric generating
set such that

[(a)]

1. ∆ := S′ \ S has at most 4 elements;

2. ∆ ∩ {s2 | s ∈ S} = ∅;

3. N3(s, S′) ≤ 6 for all s ∈ ∆;

4. N3(s, S′) = N3(s, S) for all s ∈ S \ {s0, s
−1
0 , s2

0, s
−2
0 };

5. the pair
(
N3(s0, S

′) − N3(s0, S),N3(s2
0, S

′) − N3(s2
0, S)

)
belongs to





{(2, 0), (4, 0)} if s0 has order 2

{(1, 1), (2, 2), (3, 3)} if s0 has order 3

{(1, 0), (2, 0), (2, 2)} if s0 has order 4

{(1, 0), (2, 0), (2, 1)} if s0 has order ≥ 5.

Moreover, the value of
(
N3(s0, S

′)−N3(s0, S),N3(s2
0, S

′)−N3(s2
0, S)

)
is the same

for all finite generating sets S containing s0 and s2
0 and satisfying (1).

If s0 is not of order 2 and G has an element of order o, with
{
o ≥ 2(2|S|2 + 3|S| − 2)2(2|S|2 + 2|S|) if o is odd

o ≥ F̌ (|S|) = 4(2|S|2 + 3|S| − 2)2|S|(|S| + 2) otherwise.
(2)

then it is even possible to find S′ as above and such that S′ \ S contains no
involution.

Proof. Let γ be the element of large order given in the hypothesis and ∆n :=
{γn, γ−n, s−1

0 γn, γ−ns0}. We will show that there exists an n such that S′ =
S′

n := S ∪ ∆n works. Observe that for all n, the set S′
n satisfies Condition 1 of

the lemma.
Suppose that n is such that

|γn|S ≥ 3 (3)

|s−1
0 γn|S ≥ 3 (4)

γ2n /∈ S ∪ s0S (5)

where |g|S is the word length of g relative to the generating set S.
Before going further in our analysis, we record that the number of 1 ≤

n < order(γ) such that one of the conditions (3)–(5) does not hold is as most

2(|S|2 + |S| − 1). Moreover, if order(γ) is odd or if n ≤ 1
2 order(γ), then there

are at most 2|S|2 − 1 such n. Indeed, Condition (3) means that γn (which is

different from 1) avoids elements of length 1 or 2 and there are at most |S|2 such
elements. If Condition (3) holds, it implies that s−1

0 γn is of S-length at least 2,
therefore it is enough to avoid (|S| − 1)2 new elements (the number of reduced
S-words s1s2 of length 2 such that s0s1s2 has length 3) to ensure that Condition
(4) also holds. Finally, there are at most 2(2|S| − 1) values of n < order(γ) such
that Condition (5) fails. In fact, if order(γ) is odd, or if n ≤ 1

2 order(γ), there is
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Possible elements of ∆n ∩ s∆n Occurs if

γn = ss−1
0 γn s = s0

s−1
0 γn = sγn s = s−1

0

γ−ns0 = sγ−n s = αn(s0)

γ−n = sγ−ns0 s = αn(s0)−1

γ−ns0 = sγn s = βn(s0)

γn = sγ−ns0 s = βn(s0)−1

γ−ns0 = ss−1
0 γn s = βn(s0)s0

s−1
0 γn = sγ−ns0 s = (βn(s0)s0)−1

Table 2: Possible elements of ∆n ∩ s∆n.

only 2|S| − 1 values of n < order(γ) such that Condition (5) fails. This almost

gives the claim, as |S|2 + (|S| − 1)2 + 2(2|S| − 1) = 2|S|2 + 2|S| − 1. One gains
1 by noticing that the (possible) n such that γn = s0 was counted twice: once
to ensure Condition (3) and once to ensure Condition (5).

Also, for an n satisfying Conditions (3) to (5), S′
n automatically satisfies

Condition 2. Moreover, in the Cayley graph of G relative to S′
n, a triangle with

a side labelled by s ∈ ∆n has at least another side in ∆n, otherwise s would
have S-length at most 2. This implies that any s ∈ ∆n belongs to at most 6
triangles in Cay(G,S′±), which is Condition 3. Indeed, since the Cayley graph
is simple, any triangles is uniquely determined by two edges. If one edge e is
labeled by s ∈ ∆n, there is at most three possibilities to put an edge labeled
by s−1 6= t ∈ ∆n at each extremities of e, thus giving a maximum number of
2 · 3 = 6 triangles containing e. This also shows that for any s ∈ S we have

N3(s, S′
n) − N3(s, S) = |{t ∈ ∆n | s−1t ∈ ∆n}| = |∆n ∩ s∆n|

We now turn our attention on the set ∆n ∩ s∆n. Its cardinality is equal
to the number of pairs (u, v) ∈ ∆n such that u = sv. By replacing u and
v by the words γn, γ−n, s−1

0 γn and γ−ns0, this gives us 16 equations in the
group. Among these 16 equations, 4 imply that s = 1 and 4 that γ2n belongs
to S ∪ s0S, which is impossible if n satisfies Conditions (3) to (5). The 8
remaining equations for elements of ∆n ∩ s∆n are shown in Table 2, where
αn(g) := γ−ngγn and βn(g) := γ−ngγ−n. Observe that α and β give two
actions of Z/ order(γ)Z on G (viewed as a set) and that γ−ns0 (and s−1

0 γn) is
an involution if and only if βn(s0) = s−1

0 . Let A, respectively B, denotes the

size of the orbit of s0 under α, respectively β and let M <

√
order(γ)

2
be an

integer to be specified later. If A · B ≤ order(γ)
2 , there exists n ≤ A · B such

that γ−ns0γ
n = s0 = γ−ns0γ

−n which implies that γ2n = 1. But in this case
we would have 2n ≥ order(γ) ≥ 2AB > 2n which is absurd. This implies in
particular that at least one of A or B is (strictly) greater than M , leaving us
with 3 cases.

Case 1 Both A and B are greater than M . If n is such that αn(s0), βn(s0) and
βn(s0)s0 all do not belong to S, then ∆n ∩ s∆n contains at most 2 elements:
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γn if s = s0 and s−1
0 γn if s = s−1

0 . This implies Condition 4 and that the
pair

(
N3(s0, S

′) − N3(s0, S),N3(s2
0, S

′) − N3(s2
0, S)

)
is equal to (2, 0) if s0 has

order 2, (1, 1) if s0 has order 3 and (1, 0) otherwise. Moreover, neither γn nor
γ−ns0 are not involutions since 2n ≤ 2M < order(γ) and βn(s0) is not in S.
We now prove that an n satisfying the above conditions as well as Conditions
(3) to (5) always exists if M and the order of γ are large enough. Conditions
(3) to (5) and the above forbid some 1 ≤ n ≤ M . As already explained, since

n ≤ M ≤ 1
2 order(γ), Conditions (3) to (5) forbids at most 2|S|2 − 1 values of

n. On the other hand, all the (αn(s0))M
n=1 are distinct and distinct from s0,

so the condition αn(s0) /∈ S forbids at most |S| − 1 values. The same is true
for (βn(s0))M

n=1, and the condition for (βn(s0)s0)M
n=1 forbids at most |S| values.

Therefore, if both A and B are greater than M , then the number of n ≤ M such
that S′

n does not work is at most 2|S|2 + 3|S| − 3. This implies that there exists

n such that the conclusion of the lemma holds as soon as M ≥ 2|S|2 + 3|S| − 2.

Case 2 If A ≤ M and B > M . This time we shall take n ≤ B such that
n is a multiple of A, it satisfies Conditions (3) to (5) and both βn(s0) and
βn(s0)s0 do not belongs to S, in particular γ−ns0 is not an involution. For
such an n, the set ∆n ∩ s∆n contains at most 4 elements: γn and sγ−n if
s = s0 and γ−n and sγn if s = s−1

0 . This implies Condition 4 and that the
pair

(
N3(s0, S

′) − N3(s0, S),N3(s2
0, S

′) − N3(s2
0, S)

)
is equal to (4, 0) if s0 is of

order 2, (2, 2) if s0 is of order 3 and (2, 0) otherwise. So we are left to justify
that such an n exists. As noted above, Conditions (3) to (5) forbid at most

2(|S|2 + |S| − 1) values (2|S|2 − 1 if order(γ) is odd) of 1 ≤ n < B. Similarly,
the conditions βn(s0) /∈ S and βn(s0)s0 /∈ S forbid respectively at most |S| − 1
and |S| values, so we are done if

⌊
B − 1

A
⌋ > 2|S|2 + 4|S| − 3,

for example if B
A

≥ 2|S|2 + 4|S| − 1. If we want to ensure that γn is not an

involution, we may need to forbid one more value of n and take B
A

≥ 2|S|2 +4|S|.

Since AB ≥ order(γ)
2 , we have

B

A
≥

order(γ)

2A2
≥

order(γ)

2M2

Therefore, there exists a n such that the conclusion of the lemma holds if
order(γ) ≥ 2M2(2|S|2 + 4|S| − 1). If we want to ensure that ∆ contains no in-
volution, we need to take order(γ) ≥ 4M2|S|(|S| + 2). If we know that order(γ)
is odd, then it is enough to have order(γ) ≥ 4M2|S|(|S| + 1).

Case 3 If A ≥ M and B < M . Similarly to Case 2, we take n < A a
multiple of B satisfying Conditions (3) to (5) and that αn(s0) /∈ S. Since
βn(s0) = s0, γ−ns0 is an involution if and only if s0 is an involution. Such an n

exists as soon as order(γ) ≥ 2M2(2|S|2 + 3|S| − 1) and if moreover order(γ) ≥
2M2|S|(2|S|+3) and s0 is not of order 2 it is possible to ensure that ∆ contains
no involution (it is enough to have order(γ) ≥ 4M2|S|(|S| + 1

2 ) if order(γ)
is odd). In this case ∆n ∩ s∆n contains at most 4 elements: γn and sγn if
s ∈ {s0, s

−1
0 }, γ−ns0 if s = s2

0 and s−1
0 γn if s = s−2

0 . This implies Condition
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4 and that
(
N3(s0, S

′) − N3(s0, S),N3(s2
0, S

′) − N3(s2
0, S)

)
is equal to (2, 0) if

s0 is of order 2, (3, 3) if s0 is of order 3, (2, 2) if s0 is of order 4 and (2, 1)
otherwise. The only case that need explication is when s0 is of order 4. In
this case,

(
N3(s0, S

′) − N3(s0, S),N3(s2
0, S

′) − N3(s2
0, S)

)
is equal to (2, 1) if

s−1
0 γn = γ−ns0 and (2, 2) otherwise. But since we took n as a multiple of B,

we have s0 = βn(s0) = γ−ns0γ
−n which forbids the case (2, 1).

In all of the 3 cases, we can always find an n such that the conclusion of the
lemma holds as soon as M ≥ 2|S|2+3|S|−2 and order(γ) ≥ 2M2(2|S|2+4|S|−1)
(order(γ) ≥ 4M2|S|(|S|+2) if we want no involutions in ∆). It is thus sufficient

to have order(γ) ≥ 2(2|S|2 + 3|S| − 2)2(2|S|2 + 4|S| − 1) (4|S|(|S| + 2)(2|S|2 +

3|S| − 2)2 if we want no involutions in ∆)), or even order(γ) ≥ 4(2|S|2 + 3|S| −

2)2(|S|2 + |S|) if order(γ) is odd.
Moreover, by construction the value of

(
N3(s0, S

′) − N3(s0, S),N3(s2
0, S

′) −

N3(s2
0, S)

)
only depends on A and B, which in turn depend on s0 and γ only.

Recall that for S ⊂ G \ {1} a finite symmetric set, we have

|S∗| =
1

2
|{s ∈ S | s2 6= 1}| + |{s ∈ S | s2 = 1}|

the number of equivalence classes in S for the equivalence relation s ∼ t if
t ∈ {s, s−1}. In particular, |S∗| is the size of the minimal T such that T± = S.

Lemma 5.2. Recall that F (n) = 2(2n2 + 3n− 2)2(2n2 + 4n− 1) and F̌ (n) =
4(2n2 + 3n− 2)2(n+ 2)n. Let S ⊆ G \ 1 be a finite generating set. Suppose that
G has an element of order at least F (15p+ 28q + 2p2 + 4pq + 2q2 − 4) where p
is the number of elements of order 2 of S and q is half the number of elements
of order at least 3 of S±. Then there exists a finite symmetric generating set
S ⊆ S̃ ⊆ G \ 1 of size bounded by 15p+ 28q + 2p2 + 4pq + 2q2 such that for all
s ∈ S and t ∈ S̃, if N3(s, S̃) = N3(t, S̃) then t = s or t = s−1.

If S has no elements of order 2 and G has an element of order a least
F̌ (2|S∗|2 + 28|S∗| − 4) = F̌ (1

2 |S±|2 + 14|S±| − 4), then there exists a finite
symmetric generating set S ⊆ S̃ ⊆ G \ 1 with no elements of order 2, of size
bounded by 1

2 |S|2 +14|S| such that for all s ∈ S and t ∈ S̃, if N3(s, S̃) = N3(t, S̃)
then t = s or t = s−1.

Before proving the lemma, we attire the attention of the reader that for
a general S we have 15p + 28q + 2p2 + 4pq + 2q2 = 2|S∗|2 + 28|S∗| − 13p =

2|S∗|2 + 14|S±| − 2q. Depending on what is known on S, one bound may be
better than the other.

Proof. To prove the first assertion, it is enough that all elements of S belong to
at least 7 S̃-triangles (to distinguish them from the newly added elements which
will belong to at most 6 S̃-triangles) and that the numbers N3(s±1, S̃) for s in S
are all distincts. In order to do that, we will apply several times Lemma 5.1 to
elements of S in order to augment the number of triangles to which they belong.
This will give us a sequence of generating sets S± = S0 ⊆ S1 ⊆ · · · ⊆ Sk = S̃
where Si+1 = S′

i and k is the total number of times we apply Lemma 5.1.
Therefore, we need an element of order at least F (|Sk−1|). On the other hand,
since each application of Lemma 5.1 adds at most 4 elements, we also have
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|Sk−1| ≤ |S±| + 4(k − 1). It it thus enough to determine k to finish the proof.
Finally, we use the fact that p+ q = |S∗| while p+ 2q = |S±|.

The proof of the second assertion is similar except for the fact that |S±| = 2q
while |S∗| = q and that we need to use the function F̌ instead of the function
F in Lemma 5.1 to ensures that we do not add elements of order 2 to S.

Lemma 5.1 tells us that we can augment the number of triangles to which
s ∈ S± and s−1 belong, without changing the number of triangles for other
t ∈ S±, except maybe for t ∈ {s2, s−2}. Moreover, in doing that, the new
elements we add to S± belong to at most 6 triangles at the moment they are
added, and they cannot belong to more than 6 later in process as they are never
of the form s±2 for s ∈ S.

To be more precise, we define a directed graph (V, ~E) as follows. The vertices
are the equivalence classes of elements of S± modulo the equivalence s ∼ t if
t = s or t = s−1, so |V | = |S∗| = p+ q. There is a directed edge ([s] → [t]) from
the class of s to the class of t if [t] 6= [s] and if, when applied to s0 = s, the
generating set S′ given by Lemma 5.1 satisfies N3(t, S′) − N3(t, S±) > 0. Note
that this implies that [t] = [s2]. Moreover, by the last statement in Lemma 5.1,
each time we use Lemma 5.1 with s, to go from Si to Si+1, for t ∈ Si we have
N3(t, Si+1) − N3(t, Si) = N3(t, S′) − N3(t, S±), which is positive if and only if

[t] = [s] or ([s] → [t]) ∈ ~E.
An important observation at this point is that (as in every directed graph

with out-degree bounded by 1) the vertex set V can be partitionned as V =
{[s1], . . . , [sr]} ⊔ C1 ⊔ · · · ⊔ Cm where the Ci are cycles and F = {[s1], . . . , [sr]}
is a forest: there is no edge from [si] to [sj ] for j < i. In particular if we apply
Lemma 5.1 to si, this will not change we value of N3(sj , ·) for j < i.

Initialization We first need to ensure that every s ∈ S± belongs to at least
7 triangles. This can be done by applying at most 4p + 7q times Lemma 5.1.
Indeed for every s ∈ S±, each application of Lemma 5.1 adds at least 1 triangle
to both s and s−1 if s is of order at least 3 and at least 2 triangles if s is of
order 2.

The forest We then deal with the elements s1, . . . , sr ∈ S. Assume that, for
some 1 ≤ j < r, we have constructed a finite generating set S̃j containing S
with the following two properties:

• every s ∈ S belongs to at least 7 triangles,

• N3(si, S̃j) 6= N3(si′ , S̃j) for every i 6= i′ ≤ j.

If N3(sj+1, S̃j) /∈ {N3(si, S̃j) : i ≤ j} we can put S̃j+1 = S̃j and we are done
for j + 1. Otherwise, we apply Lemma 5.1 several times with sj+1, until the
number of triangles for sj+1 is different than for all si with i ≤ j. The number
of applications of the Lemma is necessarily bounded by j, as each application
increases the number of triangles for sj+1, but not for si with i ≤ j. On the

other hand, for j = 1 we have just proved the existence of such S̃1 obtained from
S after at most 4p+ 7q applications of the lemma. So at the end, we obtain a
generating set S̃r satisfying the above property after applying in total less than
kf := 4p+ 7q +

∑r−1
j=0 j times Lemma 5.1.
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The cycles Finally, we have to treat the cycles separately. Assume that, for
some 0 ≤ j < m, we have obtained a generating set S̃r+j containing S̃r such

that N3(·, S̃r+j) is injective on F ⊔ C1 ⊔ . . . Cj .
Denote by Mj the cardinality of F ⊔ C1 ⊔ . . . Cj , and let cj+1 = |Cj+1| =

Mj+1 − Mj . Without loss of generality, we may suppose that c1 ≤ · · · ≤
cm. Let s ∈ S such that [s] ∈ Cj+1. Its order is at least 5, and Cj+1 =

{[s], [s2], . . . , [s2cj+1−1

]}, with s2cj+1
= s±1. By inspecting the conclusion 5 of

Lemma 5.1 and recalling the definition of the graph (V, ~E), we observe that each
application of the lemma for s increases the number of triangles for s by 2 and
for s2 by 1.

If cj+1 = 2, we apply the lemma for s until the number of triangle to which
s belongs is different from the number for s2, and both are different from the
number for each [t] ∈ F ⊔C1 ⊔ . . . Cj . This requires at most 1+2Mj applications
of the Lemma, because each application of the lemma increases by 2 the number
of triangles for s, by 1 the number of triangles for s2 and leaves unchanged the
number for each [t] ∈ F ⊔C1 ⊔ . . . Cj .

If cj+1 > 2, we first apply the lemma for s2cj+1−2

until the number of tri-

angle to which s2cj+1−1

belongs is different from the number for each [t] ∈

F ⊔ C1 ⊔ . . . Cj (and we do not care yet of s2cj+1−2

). This requires at most
Mj applications. If cj > 3, we then apply the lemma at most Mj + 1 times

to s2cj+1−3

to ensure that the number of triangles for s2cj+1−2

, s2cj+1−1

and
[t] ∈ F ⊔C1 ⊔. . . Cj are all different. We go on, until we apply the lemma at most

Mj +cj+1−3 times to s2 so that that the number of triangles for s22

, . . . , s2cj+1−1

and [t] ∈ F⊔C1⊔. . . Cj are all different. We then, as in the case cj = 2, apply the
lemma at most 1+2(Mj +cj+1 −2) = (Mj +cj+1 −2)+(Mj +cj+1 −1) times and

ensure that the number of triangles for s, s2, . . . , s2cj+1−1

and [t] ∈ F ⊔C1⊔. . . Cj

are all different. To summarize: given S̃r+j we can construct the desired S̃r+j+1

by applying Lemma 5.1 at most

Mj +Mj + 1 + · · · +Mj + cj − 2 +Mj + cj − 1 =

Mj +cj−1∑

k=1

k −

Mj −1∑

k=1

k

≤

Mj+1−1∑

k=1

k −

Mj−1∑

k=1

k.

For j = m, the generating set S̃r+m satisfies that N3(·, S̃r+m) is greater than
6 and injective on V , as requested. The total number of applications of Lemma
5.1 is bounded above by

4p+ 7q +

|V |−1∑

k=1

k = 4p+ 7q +
1

2
|V |(|V | − 1).

5.2 The general case

We now deduce Theorem 2.8 from Lemma 5.2, and from Theorem 2.4 for the
undirected case. We firstly treat the directed case. We start with a generating
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set S with p elements of order 2 and q of order at least 3. Then its symmetriza-
tion S± has p elements of order 2 and at most 2q of order at least 3. We apply
Lemma 5.2 to S± and find a symmetric generating set S̃ containing S± such
that for all s ∈ S and t ∈ S̃, if N3(s, S̃) = N3(t, S̃) then t = s or t = s−1.
Moreover, we have a bound on the size of S̃. Finally, let T be S̃∗, in partic-
ular T is minimal such that T± = S̃. Observe that if S was "antisymmetric"
(S∗ = S), then it is possible to choose T containing S. Moreover, if S contained
no elements of order 2 and G has an element of order sufficiently large, it is
possible to take T with no elements of order 2. Now, we argue that (G,S∗, T ) is

a 1.5-strong DRR. If e is an arc labeled by s in ~Cay(G, T ), then all the triangles
to which e belongs are already in the ball of radius 1.5. The condition on the
number of triangles together with the antisymmetricity of S∗ imply that every
automorphism of the ball of radius 1.5 fixes edges labeled by elements of S∗. If
T has no elements of order 2 we have T ∩T−1 = ∅ which implies that ~Cay(G, T )
is an oriented regular representation.

For the undirected case, the triangles condition gives us, for T± = S̃ as
in the directed case, that the group Aut(Ball(Cay(G, T±), 2)) is a subgroup of
AutE lab(Ball(Cay(G,S±), 1.5)), which fixes S0 by the prerigidity assumption.
Observe that the radius 2 in Cay(G, T±) is both sufficient and necessary to dis-
tinguish elements of Ball(Cay(G,S±), 1.5) by the aim of triangles. This finishes
the proof of Theorem 2.8.

For the bounds of Corollary 2.10, we start with a generating set S of size
rank(G). Then |S≤11| is bounded by 2 · 11 if G is cyclic and otherwise by

2|S|
10∑

i=0

(2|S| − 1)i = 2|S|
(2|S| − 1)11 − 1

2|S| − 2

≤ 2 · 211 rank(G)11.

If G has no elements of order 4 or no non-trivial abelian characteristic subgroup,
then every generating set S satisfies condition (*) of Proposition 4.1. If we start
with a S∗ containing pS elements of order 2 and qS of order at least 3, the proof
of Proposition 4.1 gives us T ∗ with pS ≤ pT ≤ pS + 2qS elements of order 2 and
qS ≤ qT ≤ 3qS elements of order at least 3 such that pT + qT = pS + 3qS and
pT + 2qT ≤ pS + 6qS. In order to use Lemma 5.2 we need an element of order
at least F (15pT + 28qT + 2p2

T + 4pT qT + 2q2
T − 4). By the above, we have

2(pT + qT )2 + 15pT + 28qT = 2(pS + 3qS)2 + 15(pS + 3qS) + 13qT

≤ 2(pS + 3qS)2 + 15(pS + 3qS) + 39qS

= 2p2
S + 12pSqS + 18q2

S + 15pS + 84qS

≤ 18(pS + qS)2 + 84(ps + qS)

We now prove Proposition 2.11. So, let (G,S0, S) be a 1.5-strong prerigid
triple, T as above and ψ : Cay(G, T±) → ∆ be a covering that is bijective on
balls of radius 1.5. Such a covering induces an automorphism of the ball of
radius 1.5: η = ψ−1 ◦ ψ|BallCay(G,T ±)(1G,1.5). Since ψ preserves the triangles and

is defined everywhere, η is in AutE lab(BallCay(G,S±)(1G, 1.5)) and hence fixes
pointwise S0. In particular, for two arcs e and f in Cay(G, T±), if ψ(e) = ψ(f)
and e is labeled by an element of S±

0 , then e and f have same label. Therefore,
the restriction of ψ to Cay(G,S±

0 ) is well-defined and a arc-labeling preserving
covering on its image.
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5.3 Tarski’s monsters

Recall that a Tarski’s monster, Tp, of exponent p, is an infinite group such that
every non-trivial proper subgroup is isomorphic to the cyclic group of order p.
It follows easily from the definition that such a group is necessary of rank 2 and
simple. On the other hand, the existence of such groups is a difficult problem.
It was first solved by Ol’shanskĭı in 1980, [18], showing that for every p > 1075

there exist uncountably many non-isomorphic Tarski’s monsters of exponent p.
This bound was then lowered to p ≥ 1003 by Adian and Lysënok, [1].

Let Tp be a Tarski monster and S = {a, b} be any generating set of size 2.
Then the order of a and b is p. Moreover, the normalizer of a in Tp is 〈a〉, the
normalizer of b is 〈b〉 and 〈b〉 ∩ 〈a〉 = {1}. In particular, (Tp, S) satisfies the
hypothesis of 2.12, except maybe for the existence of an element of order large
enough. For p really big, it is possible to directly apply our general results, but
it is possible to obtain a better bound than the general one. Indeed, a2 6= b2

and aba−1 /∈ {b, b−1}, thus we can take {a, b, a−1b}±1 for the set T used in
the proof of Proposition 4.1. That is, (Tp, S, T ) is 1.5-strongly prerigid. We
now need to apply Lemma 5.2 to T = {a, b, a−1b}±. All elements of this set
are of order p ≥ 5. Since all elements of T belong to at least 1 triangle and
we do not have any elements of order 2, we need to apply Lemma 5.1 at most
k = 6 + (6 + 1) + (6 + 2) = 21 times. In order to do that, and since Tarski’s
monsters contain only elements of odd order, we need an element of order at
least F ′(6 + 4(k− 1)) = F ′(86) = 6 776 965 274 112, where F ′(n) = 2(2n2 + 3n−
2)2(2n2 + 2n) is the bound given in Lemma 5.1 when we know that order(γ)
is odd. At the end, we obtain a symmetric generating set X of size at most
6 + 4k = 90 such that (Tp, {a, b}±, X±) satisfies the conclusion of Proposition
2.11.

Now, any covering ψ : Cay(G,X±) → ∆ bijective on balls of radius 1.5
restricts to a arc-labeling preserving covering from Cay(G,S±) to some ∆̃.
By [13], there is only three possibilities for such a covering. Either it is the
identity, or ∆̃ is a rose, or ∆̃ is infinite with finite orbits. Since ∆̃ is ob-
tained from ∆ by erasing all edges e such that N3(e,X) does not belongs to
N3({f | f is labelled by an element of S±}, X), every automorphism of ∆ re-
strict to an automorphism of ∆̃. In particular, either ψ is the identity, or ∆ is
infinite with finite orbits, or ∆ is rose. The last possibility is exclude by the
fact that ψ is bijective on balls of radius 1.5.
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