N
N

N

HAL

open science

Prediction of Rain Attenuation Series with Discretized
Spectral Model

Jie Chen, Cédric Richard, Paul Honeine, Jean-Yves Tourneret

» To cite this version:

Jie Chen, Cédric Richard, Paul Honeine, Jean-Yves Tourneret. Prediction of Rain Attenuation Series
with Discretized Spectral Model. Proc. IEEE International Geoscience and Remote Sensing Sym-
posium (IGARSS), 2012, Munich, Germany.

01966022

pp.2407-2410, 10.1109/IGARSS.2012.6351006 .

HAL Id: hal-01966022
https://hal.science/hal-01966022
Submitted on 27 Dec 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-01966022
https://hal.archives-ouvertes.fr

PREDICTION OF RAIN ATTENUATION SERIESWITH DISCRETIZED SPECTRAL MODEL
Jie Chent', Cédric Richard*, Paul Honeiné& Jean-Yves Tournefet

* Université de Nice Sophia-Antipolis, France
fUniversité de Technologie de Troyes, France
! Université de Toulouse, France
{jie.chen, paul.honeif@utt.fr, cedric.richard@unice.fr, jean-yves.tourn@enseeiht.fr

1. INTRODUCTION

The rain attenuation plays a major role in the design of ki@ieb-earth links operating at high frequencies such asknd
and Ku band. The signal suffers from a strong attenuatiomduhe propagation path as raindrops absorb and scatter rad
waves, which results in an increase of transmission ermreguction of the system availability [1]. Predicting raitenuation

is one of the vital steps to be considered when analyzingedlisstommunication link. Adaptive code mechanism or diap
power control can be used to increase the transmissionegftigiand to reduce the transmission power, on conditiorttieat
attenuation is predicted in some way.

Several models of the rain attenuation were introduced]in gbectral (SPL) model, two-sample model (TSM), second-
order Markov chain (2MC) model, N-states Markov chain mptBALSAT data-based model and synthetic storm technique
(SST). Among these models the spectral model has a goodsporrdence with known properties of rain and its simplicity
allows simulations of communication link performance urttie influence of rain attenuation. In [3], the conditionadipability
distribution of the predicted attenuation based on theagnalodel was given, which allows an optimal prediction in the
statistical sense. However, simulators often operate thighdiscretized model during the analysis of communicagisiem.
Predictions based on the discretized model were also stirligerature based on the filter design method [4] or on thihe
prediction method [5]. In this paper, we derive the condisibdistribution of the predicted attenuation and give tpénoal
estimation bound based on the discretized model. The sasaftalso be used for other systems with the similar model.

2. PREDICTION BASED ON THE DISCRETIZED SPECTRAL MODEL

2.1. Discretized spectral model

Relying on [3, 6], this spectral model partly aims at synihiag rain attenuation series as well as scintillation tigegies.
Fig. 1 shows the relationship between a white Gaussian e w(n) and the instantaneous rain attenuatign) in dB
synthesized by the discrete SPL model. The digital filfér) is a first-order system characterized by

wi(n) Digi X(n) . x(n) a(n)
gital Normalized to + L,
filter H(z) unit-variance exp(m+ax(m)

Fig. 1. discretized spectral model of rain attenuation
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where filter coefficienta andd depend on the parameters of prototype analog systems. Tpeta(n) can be expressed by
the difference equation

Z(n) = aw(n) + aw(n — 1) + dax(n — 1) 1)



with variances? = %. The relation between the normalized variab(e) and the input process(n) is then written as

z(n) = i(aw(n) +aw(n —1)) +dx(n—1) 2
03
Due to the centered input(n), the output of the difference equatia() is also centered and has unit variance, Eg:(n)] =
0 ando? = 1. The final outputi(n) is obtained by passing(n) through the nonlinear module
a(n) = exp(m + oz (n)) 3)

wherem ando are the parameters of this module.

2.2. Theconditional pdf of a(n + M)

In this paper we shall determine the distribution of therattgion at) instant later, conditioned by the observed values at
instantsn, n — 1, - - -, namelyP(a(n + M)|a(n),a(n — 1),---). The optimal predicted value can then be estimated by taking
the expectation of this distribution. According to (1), titeenuation value to estimate at instant M can be expressed by

a(n+ M) = exp(m + cx(n + M))

= exp (erJ(%w(nqLM)jL—w(nqLM1)+dz(n+M1))>

z

If z(n 4+ M — 1) is expanded until the present instanthe attenuation(n + m) can be rewritten as

x

a(n+ M) = exp (m + —aw(n + M) —a Z A1+ dyw(n + M — i) + —ad™rw(n) + Jsz(n)> 4)

Considering the model (3), the intermediate varialile) can be considered as knownifn) is known. Letl’ = Zaw(n +
+ Za ZM Y di=1(1 + d)w(n + M — i). The expansion of(n + M) is expressed by the product of the following three

terms
aln+ M) =Tuv 1 ()

where
I = exp(F) (6)
v1 = exp(m + d (log(a(n)) — m)) (7)
Vo = exp (%adle(n)> (8)

First, it should be noticed thatis a linear combination of white Gaussian variablés,+ M), w(n+M —1), ..., w(n+1),
hencel follows a Gaussian distribution, with the mean = 0 and the varlance2 = "2‘1 (1 + ZM La2im2(1 4 d)z). With
the exponential functioaxp(-), the random variabl€ follows a log-normal dlstrlbutlon

1 ~ (logy — pp)?
exp | ————F5——
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with the meanur = exp(up + 02/2) and the variancef. = exp(2up + 202) — exp(2pp + 02)).

Secondly, at any instamt, all components in the expression:af, includinga(n), are known variables. Thus this item is
deterministic and it only has influence on the amplitude(@f + 1).

In the itemws, the white noise process(n) is not directly known. However, as(n) is generated by stimulating (z)
with w(n), the value ofw(n) can be estimated by passing it through the inverse sysier(z) = Ldz " The unique pole

ataz—1

z = —1 on the unit circle indicates that this inverse system islsthbt sensitive to the initial condition. Therefore a reltian

Pr(y) = )




parametef) very close tal is introduced to improve the stability of the inverse filddfe then have

w(n) = 2 (ozx(n) — ozdx(n — 1) — amiv(n — 1)) (10)

Considering the relationship betweef) anda(n), the above expression can be rewritten as

Oz

(log(a(n)) — dlog(a(n — 1)) — (1 —d)m) — mi(n — 1) (11)

w(n) e

With the value ofw(n), the itemw, can now be considered as a deterministic term. With the tiereesT’, 1, andv,, we can
finally express the probability af(n + M) conditioned byu(n), a(n — 1), ..., (i.e bya(n) andw(n)) as

2
a(n+M
) (log (srrateiataen) — #r)
Pla(n+ M)la(n),a(n —1),...) = \/%W‘W“LM) U o -
- r

where we write; asv; (a(n)) andvy asve(w(n)) just to emphasize that the known tera{s) andw(n) are included in them.

2.3. Prediction with the conditional probability

The predicted value af(n + M) can be estimated by taking the expectation of the conditjomuépability (12)

2,2 M-1
a(n+ M) = 119 exp <% <1 + Z d2i72(1 + d)2>> (23)

i=1

with the standard deviation, ,, 4 1) = v112 \/exp(QUI%) — exp(02).

3. EXPERIMENT RESULTS

In this section, we illustrate the validity of our theoretianalysis. The filter coefficients &f () were set tar = 3.141 x 10~*
andd = 0.9994. The parameters of the exponential module were set te —0.3 ando = 1.7. These values correspond to
typical analog prototypes obtained from several obseraatites [4].

Firstly, we tested the consistency between the theorgtif4lL2) and that obtained by Monte-Carlo simulations. Sigipg
thata(n) = 0.0521, w(n) = 0.5, the values ofi(n + M) were independently generated 10000 times With= 1, 4, 10, and
40 respectively. Histograms associated to these predictepssare shown in Fig. 2. Theoretical distributions caf@day
(12) are also depicted in the same figures. It can be cleadgrobd the theoretical results match the simulated dataqiigr

Secondly, the performance of the proposed algorithm wageosd with other online prediction methods: (1) LMS algo-
rithm: the LMS algorithm is a online implementation of thetiogal linear filter with sequential input. However, LMS afigom
always suffers from an excess error due to its misadjustfiignt2) Log-LMS algorithm: it can be noticed that if the lagtAm
operation is applied on the model defined by (3), it becoméeal prediction problem with respecti¢n). Thus LMS algo-
rithm can be used on this series and predieted+ M) can be obtained by applying the reverse operatiof(@ M). The
simulations were executed over fiftp®- sample independent sequences.The results are shownFigthd. The prediction
with the mean of conditional pdf af(n + M) achieves the lowest mean square error and gives a perfoenbaoad for the
other algorithms
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