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Collective behaviours of light
and matter

Thibaut Flottat, Frédéric Hébert and
George Batrouni

Abstract Coupling of light and matter can lead to the emergence of new col-
lective phenomena, which render a separate description in terms of light or
matter impossible. To understand and describe such cases, new composite
light matter objects need to be introduced. In this chapter, we present theo-
retical studies of two examples of such systems. The first is an assembly of
coupled Rabi cavities that shows coherent behaviour similar to Dicke super-
radiance. The second is a Bose-Einstein condensate coupled to the optical
modes of a cavity, that mediate an effective long range interaction between
the atoms of the condensate and drive it into a supersolid phase.

1 Introduction

In quantum and condensed matter physics, light has always been used as
a tool to manipulate and observe objects and phenomena. For example, in
cold atoms experiments, electromagnetic (EM) fields are used to trap the
atoms, to modify their mutual interaction through Feshbach resonances, and
to impose all kinds of optical lattices upon them [1]. In solid state physics,
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photoemission spectroscopy [2] allows to determine the electron dispersion
relations.

Beyond this, the coupling of light and matter can bring forth new collec-
tive behaviour where the observed phenomena, and the relevant degrees
of freedom used to describe them, intricately mix both. When the light-
matter coupling is strong, a separate description is not relevant, and new
quantum objects emerge. For example, polaritons are quantum superposi-
tions of a photon and a dipolar excitation of a solid medium. They behave
as bosonic quasi-particles and can undergo Bose-Einstein condensation [3].
Similar collective light-matter phases can be observed in cold atoms experi-
ments placed in optical cavities [4], for example Dicke superradiance [5] or
crystallization [6]. In this chapter, we will exemplify such light-matter col-
lective behavior by studying two cases.

First, we will consider the collective behaviour of coupled cavities. Each
cavity is composed of an artificial atom coupled to the electromagnetic (EM)
modes of the cavity. If the coupling is strong enough, the degrees of freedom
of the atom and the EM field cannot be separated and these cavities, once
connected to each others, are then new bricks to study collective behaviour.
Quantum electrodynamic circuits are experimental realisation of such sys-
tems.

Secondly, we study an ensemble of atoms placed in a single cavity. The
coupling with the field mediates an effective long range interaction between
the atoms, that drives them into a supersolid phase, which exhibits simulta-
neous Bose condensed and charge density orders.

Both these studies present theoretical approaches to these problems. We
use exact numerical techniques, quantum Monte Carlo (QMC) simulations
with the SGF algorithm [7], supplemented by mean field techniques. The
SGF method allows the calculation of many physical quantities, including
complex correlation functions, at finite temperature on finite clusters.

2 Coupled cavities

Recently, it became possible to build elementary cavity quantum electrody-
namics systems on solid state chips. For example a Josephson junction can
play the role of an artificial atom and can be coupled to microwave photons
localized in a small wave guide [8,9]. A simple description of such cavi-
ties is based on the Rabi model. In this description, the material system is
described as a two level quantum system, that is a spin 1/2, of excitation
energy ws. We neglect all of the EM modes but one, of energy wj, and in-
troduce a coupling strength between light and matter g (Fig. 1 (a)). Cavities
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Fig. 1 (a) The Rabi model,
where a two level quantum (a)
system (spin) is coupled
to a single EM mode, is wi
the simplest model used .
to describe a cavity. (b) g
Coupling different cavi- (®)
ties by tunnel effect, we
obtain a QED circuit de- I J J I
scribed by the so-called l
Rabi-Hubbard model. l |

i—1 1 i+1

Ws

are coupled to each other by tunnel effect of strength ], which gives a so-
called circuit quantum electrodynamics (QED) system (Fig. 1 (b)). Written in
second quantized form, the Hamiltonian of the model reads

H=) (wsafai_ +wiafa; + g(o; + o) (a; + a;-r))
i

+ Y (aia] 1 + aia]) )
i

i is the index of the cavity, operators a! and a; create and destroy a photon
in cavity i, 0;" and 07 excite or de-excite the atom (spin) in cavity i. This
model was dubbed Rabi-Hubbard model due to the presence of the tun-
nel effect term which is similar to those of Hubbard models in solid state
physics. The tunnel effect term is diagonal in Fourier space. If the photons
were decoupled from the atoms, the eigenstates would be plane waves and
the eigenenergies would form a band, which is similar to what is observed
for massive particles in lattices. The lowest energy state would be the state
with wave vector k = 0. In the following we will concentrate on the resonant
case where wg; = w; = w.

This model has long been studied in the so-called rotating wave approx-
imation (RW) (also known as the Jaynes-Cummings Hamiltonian). In this
case, terms that do not conserve the total number of excitations N (N being
the sum of the number of excited atoms and of the number of photons in the
system) are neglected. Using this RW approximation, it was shown [10, 11]
that a phenomenon similar to a photon blockade occurs, which was later
observed experimentally [12]. In the photon blockade regime, the coupling
between atoms and light is strong enough to stabilize a phase where, in each
cavity, there is exactly one excitation, that is a quantum superposition of the
excited atom and of a photon. The coupling g lowers the energy of such a
state, which forbids other photons to come in the cavity. The different cavi-
ties are then decoupled, as photons are forbidden from tunneling from one
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cavity to the next, which is similar to the Mott insulating phase observed
in condensed matter physics. When the system is driven out of this phase
by varying the parameters, the tunnel effect is once again allowed and light
propagation throughout the system will yield long range phase coherence
where photons and atoms will settle in the same state akin to a Bose-Einstein
condensation.

While the RW approximation is valid for small g, it seems not to be when
g becomes of the order of w, which is the regime that is now reached in cir-
cuit QED systems [9]. A mean-field study by Schiro et al. [13], taking into
account the full Rabi-Hubbard Hamiltonian, showed that there would be
no photon blockade. Taking into account the “counter rotating" (CR) terms
(those which do not conserve the number of excitations) introduces fluctua-
tions that destroy the blockade/Mott-like phase.

In our work [14], we studied the phase diagram of this system using ex-
act SGF QMC simulations. It is challenging to treat exactly such systems
as the number of particles changes and can become rather large. Other nu-
merical techniques have difficulties tackling such problems. We confirmed
the mean field predictions of [13] and derived the complete phase diagram
of the Rabi-Hubbard model. The system adopts two phases (Fig. 2, left),
depending on the Hamiltonian parameters: a phase where there is no co-
herence (but no blockade) dubbed a Rabi insulator and a phase where the
systems becomes coherent, which is essentially the physics of the Dicke su-
perradiant transition. In the incoherent phase, all correlation functions de-
cay exponentially with distance between cavities, as in a photon blockade
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Fig. 2 (left) The QMC phase diagram of the Rabi Hubbard model, compared with mean
field results. We observe two phases: an incoherent Rabi insulator and a coherent super-
radiant phase. There is also a region where the system is unstable for | > w;/2. (right)
Density of photons in the system, as a function of —J. As | approaches the unstable region
(J > w; /4 in this case), the density of photons diverges. As 1; becomes large, it reaches a
mean field regime where n; ~ g2/ (w; — 4])2. See [14] for details.
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regime, but the density of excitations remains small and fluctuates, in other
words the system is not gapped: It is compressible. As g and | are increased,
one passes from the incoherent to the coherent phase. In the coherent phase,
some correlation functions for both atoms and photons remain non zero at
long distances, which means that this is collective phase where both matter
and light become ordered at the same time. The density of photons becomes
macroscopic in the k = 0 Fourier mode, which means that they condense in
one state, the atoms are then “synchronised" by the collective k = 0 mode.
Despite the fact that we have a band of photons mode, only the lowest en-
ergy one is relevant in that case, which is similar to the superradiant physics.

When the density of photons becomes large, the mean field predictions
accurately describe the system (Fig. 2, right). For some parameters, the
number of photons diverge and, beyond this limit, the Hamiltonian is not
bounded (unstable region). We also studied variants of the Rabi Hubbard
model to explore further the effect of the counter rotating terms on the
physics of such systems [14].

In our equilibrium study, we did not find a blockade regime, except for
some extreme parameters. With our Hamiltonian, the density of excitations
grows with ¢ but so do the fluctuations due to the counter rotating terms,
which forbids the establishment of the blockade. On the contrary, in the RW
approximation, the density of excitations is a conserved quantity, set inde-
pendently of g, and we can have a large density with a value of g that is
small to limit fluctuations. In experiments, that are made out of equilibrium,
a similar effect happens as pumps set the density of excitations to the desired
level, independently of g. However, when g is intrinsically large, we have
shown that the RW description is not valid and that the full Rabi model must
be used. This is the case for recent experiments that now reach the so-called
ultrastrong coupling (g ~ w) or deep strong coupling (g > w) regimes [9].

3 Bosons with cavity mediated interactions

The elusive supersolid phase has been proposed almost 60 years ago [15,16]
as a phase that shows both spatial ordering and superfluid (Bose condensed)
properties. This is a priori contradictory as, in a Bose condensed phase, the
particles are delocalized, which generates the long range phase coherence
that is typical for this phase but smears any density pattern.

Recently, one of the first observation of such a phase has been achieved for
condensed bosons in a cavity [17], as a collective light matter phase. The sys-
tem is a two-dimensional condensed gas of cold atoms (Fig. 3, (left)) placed
in an optical cavity. A cavity mode of wave length A is pumped and a laser
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Fig. 3 (left) In the experiment [17], a 2D gas of cold atoms is subjected to two perpendic-
ular modes in a cavity. (right) The two optical modes are coupled if the atoms adopt a
chequerboard pattern that provides the right wave planes to couple modes by scattering.

of the same wave length creates, by reflection on a mirror, a perpendicular
standing wave mode. This creates a square optical lattice for the atoms to
move into. But, if the atoms are placed with a chequerboard arrangement in
this lattice, they scatter one mode into the other, which lowers the energy.
There are two such chequerboard arrangements on odd or even sites of the
square lattice (Fig. 3, (right)).

Integrating out the EM field yields an effective model for the atoms which
reads

2

H=-t)" (bjbj +H.c.) + USZW - % (Zni — Zm) )

(i,7) i ice ico

The bf and b; operators create and destroy bosons on site i of a L x L optical
lattice while #; is the boson number operator on site i. The t term propagates
the particles in the lattice by tunnel effect between neighbouring sites (i, ).
U; is the strength of the on site repulsion between bosons. The U; term is
the interaction mediated by the coupling to the cavity modes that favours
having particles either on the even (e) sites or on the odd (o) sites of the
lattice. This is an infinite range interaction as all the particles are globally
coupled. In this work, we concentrate on the physics of bosons, as the light
degrees of freedom are integrated out in the description, but the observed
phenomenon is in fact a collective phase of matter and light and a complete
description requires to take both into account.

In our work [18], we derive the phase diagram of this model by QMC
techniques, especially concentrating on the case where there is, on average,
a density of one particle per site p = 1. This is the experimental case [17]
although, in cold atom experiments, the density varies depending on the
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Fig. 4 The phase diagram
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position in the system, which yields some differences between experimental
results and our theoretical study. This model was also studied using mean-
field techniques [19, 20].

The superfluid nature of the system is signalled by a finite density of con-
densed bosons n(k = 0) in the k = 0 mode while the chequerboard patterns
give a non zero structure factor (Fourier transform of the density correla-
tions) S(7, 7). The phase diagram (Fig. 4), as a function of Us and U, (f sets
the energy scale), includes four phases, that were observed experimentally:

e A superfluid (SF) Bose condensed phase at low interactions (n(k =0) #0,
S(mt, ) =0)

¢ Anincompressible homogeneous Mott insulator (MI) phase with one par-
ticle per site when Us; dominates (n(k =0) =0, S(7r, 1) =0)

e a charge density wave phase with 2 particles on even sites and 0 on odd
sites (or the reverse), which breaks the translation symmetry (dubbed
CDW(2,0) phase) when U; dominates (n(k =0) =0, S(7, ) # 0)

e a supersolid phase between the SF and CDW(2,0) phases with both an
alternating density between even and odd sites and a phase coherence

(n(k=0) #0, S(7T, ) #0).

The same four phases were found in the experiment but the extent of the
supersolid phase appears to be larger, compared to our data.

Numerically we explored other regimes, especially by varying the den-
sity. We found CDW phases with different patterns depending on the den-
sity : pattern (1,0) for p = 1/2 and patterns (2,1) or (3,0) for p = 3/2. For mod-
erate U (Fig. 5 (a)), varying the density, we observe an alternation of super-
fluid regions, CDW phases for p = 1/2 and p = 3/2 that are surrounded by
supersolid phases, as expected, and a Mott phase for p = 1. On the contrary,
for large U; (Fig. 5 (b)) the cavity mediated interaction always impose the
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Fig.5 Varying density, we find different charge density wave, superfluid and supersolid
phases. (a) For moderate U; we find an alternation of phases with (S(7t, 1) # 0) and with-
out (S(7t, r) = 0) density modulation. (b) For large U, there is always density modulation.

presence of a density modulation and we only observe CDW and supersolid
behaviour (S(7, 77) always # 0).

We also analysed in detail the nature of the phase transitions between
these different phases. In some cases, we observe first order phase transi-
tions, which shows that the system is unstable towards phase separation,
for example for p = 1/2 (see [18] for details).
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