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Abstract 

This work deals with the stabilization of recycling systems with unstable 
dynamics at both, the direct path and the recycling paths as well as different time-
delays for each path. The main contribution of this work is to provide a stabilizing 
strategy to the mentioned class of systems using an observer based control 
approach. Stability results concerning stable recycling systems or partially 
unstable recycling system can be found in literature. However, to the best of our 
knowledge, there is not stability results when unstable dynamics are considered 
in both paths of the recycling process. The provided necessary and sufficient 
stability conditions of the proposed stabilizing controllers are obtained from a 
frequency domain analysis. 
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1 Introduction 
Recycling systems are commonly found in chemical industry, for instance, in a typical plant formed 
by reactor/separator process, where reactants are recycled back to the reactor [1]. This kind of systems 
reuses the energy and the partially processed matter increasing the efficiency of the overall process. In 
recycling systems, a partial feedback of the process output to the input yields a model with positive 
feedback, which can give rise to some undesirable effects. In [2] the effects of recycle path on 
dynamics process and their implications to plant-wide control were studied. In [3], robust control for 
recycling plants was discussed and a scheme of recycle compensation to eliminate the effects of the 
recycle was proposed. Similar approaches were employed in [4–6]. 

When in addition to the recycle path a time-delay is present, exponential terms appear in the 
direct and the recycling paths. In a state space representation, recycling systems with time-delay can 
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be related to systems with delays in the input and the state variables. In [7], an approximated model to 
represent recycling systems by using discrete-time approach was proposed. Such approximated 
models can be used for stability analysis or control design [4, 8–10]. 

In general, unstable delayed systems are more difficult to control than stable delayed systems. For 
instance, the original Smith Predictor cannot be used in the case of delayed unstable processes. 
However, many works have proposed modifications to the original Smith Predictor in order to deal 
with unstable systems, see for instance [11]. If a recycle is added in such unstable delayed system 
would lead to a more difficult (although interesting) problem. Existing Smith Predictor based schemes 
cannot directly be applied to this kind of systems. This is, because the open-loop recycling system is 
not just a system with one time-delay in the direct path but it is a system with an internal delay term, 
i.e., an open-loop infinite dimensional system. To tackle this problem, we consider here recycling 
systems composed of a plant with one unstable pole, several stable poles and a delay term in the direct 
path and the same type of delayed unstable subsystem (with possibly different delay magnitude) in the 
recycling path. 

The present work extends the results presented in [12, 13] where recycling systems are restricted 
to be unstable first order plants in the direct path. A first attempt to extend these results was 
presented in [14], dealing with a high order plant in the direct path with one unstable pole and a 
stable recycling subsystem. Results developed in [14] do not achieve step tracking or step disturbance 
rejection. 

There are stability results to stable recycling systems or partially unstable recycling system. 
However, to the best of our knowledge there is not stability results when unstable dynamics are 
considered in both paths of the recycling process. In this work, a control scheme is proposed in order 
to stabilize and control the delayed recycling processes previously depicted. The proposed controller 
allows to achieve the closed-loop stability. Then, necessary and sufficient conditions are given for the 
existence of the proposed stabilizing scheme, which are obtained from a frequency domain approach. 
It is important to note that, the problem of the stabilization and control of delayed unstable plants even 
without recycle path is not completely solved, at least from the classical controllers P, PI, PD and 
PID viewpoint. For instance, recent works deal with the stabilization and control of delayed systems 
with one [15–17] and two [18] unstable pole(s). 

The main contribution of the work is that the stability step into the proposed observer based 
scheme considers the existence of the recycling path, this feature is not considered in some 
works, see for instance [2]-[6],[12]-[15],[19]. These mentioned works intend to eliminate the 
recycling dynamic in order to design a controller considering only to the direct path. Thus, 
when modelling uncertainties appears into the recycling path, the removal stage preserves the 
characteristic of the nominal system and some troubles may arises with respect to closed-loop 
stability/robustness. The proposed methodology in this manuscript does not intend to cancel 
recycling dynamics. Instead, under the knowledge of a special internal variable system, a 
control strategy is designed taking into account the whole system consisting in direct and 
recycling paths. This property allows to improve robustness issues considerably and this feature 
is precisely the key point to consider unstable dynamics at recycling path. However, the use of 
the proposed control scheme is not limited to unstable dynamics at recycling, i.e., the proposed 
result can also be used in stable recycling systems. 

The outline of the paper is as follows. In Section 2 the problem is formulated and the class of 
systems considered is stated. The general idea of the solution is also outlined in this section, namely 
the need of an observer strategy. In Section 3 some preliminary results are presented. The Section 4 
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presents the main results. Some numerical examples are described in Section 5. Finally Section 6 
presents some conclusions. 

 
2 Problem formulation 
Consider the class of recycling system (see Figure 1) described 
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where D1(s) = (s − a)(s + b1)...(s + bm) and D2(s) = (s − c)(s + d1)...(s + dn). Gd(s) and Gr(s) 
are transfer functions of the direct and the recycling paths, respectively; τ1, τ2 ≥ 0 are the time-
delays associated to Gd(s) and Gr(s). a, bi, c, dj ∈ ℝ+ with i = 1, 2, ..., m and j = 1, 2, ..., n, i.e., 
Gd(s) and Gr(s) are unstable. U (s) and Y (s) are the input and the output signals, respectively. 
 

 
Figure 1: A process with recycle 

 
The transfer function of the recycling system (1) is given by, 
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Note that exponential terms appear explicitly in the numerator and the denominator of (3). Stability of 
(3) is determined by the roots of its characteristic quasi-polynomial, 

sesDsDsQ )(
21

21)()()( τταβ +−−= .      (4)                                                                                                                                       

The transcendental term in Q(s) causes an infinite number of roots. For this kind of plants it is not 
an easy task to conclude something about the dynamical behaviour (stability for instance) even in the 
case of uncontrolled plant. Obviously, the related transfer function when the system is controlled with 
an output feedback becomes more complicated involving more than one transcendental term. 

Let us to describe some initial ideas. With reference to Figure 1, if the signal ω1(s) were measured, 
then we could set, 
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obtaining the system shown in Figure 2, where R(s) is the input reference and C(s) is the controller. 
Then, it would be possible to design the controller, C(s), such that the closed-loop system is stable. In 
fact, the main aims of this work can be summarized as follows: 
i) Finding the stability conditions of the proposed feedback shown in Figure 2. 
ii) Since ω1(s) is assumed as an unmeasured internal system signal, an observer scheme to estimate 
this variable is developed in the Section 4. 
In the next section some preliminary stability results are presented. 
 

 
Figure 2: Recycling delayed process with the proposed control law (5) 

 

3 Preliminary stability results 
Consider the system, 
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011 and the static control law, 
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with R(s) as the input reference. The following result provides a stability condition when a 
proportional controller is used for unstable delayed systems including one unstable pole, p stable poles 
and a time-delay. 

Lemma 1 [16,20] There exists a gain k such that the closed-loop system, 
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is stable if and only if 
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From condition (9), the size of the delay to achieve the closed-loop stability is restricted by the 
position of the open-loop unstable pole and the stable poles in the real axis of the plane s. 

Let us now find the set of stabilizing gains k related to Lemma 1 is obtained. The phase crossover 
frequency ωc is given by, 
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where ωc > 0. Then, the stabilizing gain k is within the interval of, 
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In what follows the stability condition of a particular output injection schema is provided. This 
proposed schema will be used later to design the proposed observer strategy. 

Consider the recycling system given by (1)-(2). A state space representation of G1(s) as (Ad, 
Bd, Cd) 

is given by, 
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A state space representation of G2(s) as (Ar, Br, Cr) with, 
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and the injection vectors defined by [ ])1(1)2(1)1(11 +−−−= mlllL  , [ ]TlL 00)1(22 −= . 

Therefore, a state space representation of the closed-loop system 
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Lemma 2. Consider the recycling system given by (1)-(2), and the output injection strategy shown 

in Figure 3. There exists a vector [ ]TLLL 21=  such that the closed-loop transfer function, 
)(
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with 21 ττθ +=  . 

 
Figure 3: Output injection schema. 

 
Proof. Consider the state space representation of )(1 sG  given by (12) and the partial output 
injection through 1L . Then, 1L  should be computed such that, 
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where )(∗σ  represents the eigenvalues of ∗ , and −z1, −z2, ..., −zm+1 are the relocated stable poles of 
G1(s). i.e., Az = Ad − L1Cd and it can be written as, 
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Consider also that the state space representation of  )(2 sG  given by (13) yielding to the closed- 
loop representation given by (14)-(15).   

Notice that the term dr CBL )( 2 −  in equation (14) is a free term due to the gain 2L  is the control 

parameter. From (14)-(15), it is possible to obtain the closed-loop transfer function 
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results, 

6  



 

 

ss eBeAAsIC
sR
sY

11
1 )(

)(
)( τθ −−−−−= ,      (18)                                                                                                                                                        

 where I is the identity matrix. The closed-loop stability depends on the characteristic equation 
associated to the the transfer function (18), which is given by, 
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where )1(21 −−= lK , and )1(2−l  is a  free  static  gain.   From (19), the closed-loop stability of  the proposed 
output injection is reduced to a system of the form (8), where its stability properties are analyzed in 
Lemma 1. In this way the associated stability condition is obtained as, 
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However, the stability condition (20) can be improved by choosing 1L  such that the relocated poles of 
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Lemma 3. [21, 22] Given the open-loop transfer function )(sG  defined by: 
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has  all  its   zeros  in  the  open  left  half  plane, where  m  is  the  degree  of   )(sN  and v  is  the  system type, defined by 
the order of the integer in the open-loop transfer function. 
 
4 Main Results 

4.1 Observer strategy 
In order to estimate the signal )(1 sω , in Figure 1, we propose the observer-predictor depicted in 
Figure 4. The convergence properties are established in the following result. 

 

Theorem 1 Consider the observer scheme shown in Figure 4, assuming Gr(s) and Gd(s) defined by (2).  
There exists a vector [ ]TLLL 21= such that 

[ ] 0)(ˆ)(lim 11 =−
∞→

tt
t

ωω        (23)                                                                                                                                                                     

if   and only  if 

7  



∑
=

−<
n

i idc 1

11θ        (24) 

 for 21 ττθ += . 

 

 
Figure 4: Proposed observer-predictor schema. 

 
Proof. A state space representation of the observer-predictor scheme shown in Figure 4 is, 
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where 2)( ++∈ nmRtx  is the state vector, Rtu ∈)(  is the input, 2)( Rty ∈  is the output, 01 ≥τ  and 
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corresponds to the recycling path in the process, )(2 sG  is represented by, 
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errors )()(ˆ)( txtxte ddxd −=  and )()(ˆ)( txtxte rrxr −= , it is possible to describe the behavior of the 
error signals as, 
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with, [ ])()()( tetete xrxd= . Notice that the term dr CBL )( 2 −  in (28) is a free term due to the gain 

2L  is the control parameter. 
On the other hand, consider the closed-loop system analyzed in Lemma 2, given by (14)-(15). In this 
way, comparing (28) and (14) it is clear that Lemma 2 can be applied to system (28). Hence the result 
of the theorem follows.■ 
 

To find the observer parameters, the following procedure is suggested. 
 
Procedure  1  
1. Verify the necessary and sufficient condition in Theorem 1  expressed in (24) is satisfied. 

 
2. To compute the observer  parameter 1L . Consider a traditional output injection to the transfer function )(1 sG  

and propose the relocated poles of the )(1 sG  such that ∞→+121 ,...,, mzzz . In this way, the following 
expression should be solved to 1L , 
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with dA , dC  as given in (27). Also the observer parameter 1L  can be obtained using the Ackerman 
formulation. 

9  



3. By applying the  results  of  Lemma 1  to  the  case of  our interest,  the  parameter )1(2−l  can be obtained from 
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and ωc is obtained by solving, where ωc > 0. 
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where ωc > 0. 

4.2 Proposed Control Strategy 
In order to implement the ideas developed in Section 2 let us asume that an estimation of the signal 
ω1(t) is taken from the observer designed in Subsection 4.1. In this way, in the following 
developments the stability properties of the closed-loop system shown in Figure 2 are analyzed. The 
following result presents the stability properties for the closed-loop system shown in Figure 2 when a 
Proportional-Derivative (PD) controller is considered. A frequency domain analysis is employed. 
Later, a Proportional-Integral-Derivative (PID) control is also considered to stabilize the closed-loop 
system. 

 
Theorem 2  Consider  the  feedback  control  shown in Figure 2. Then, the delayed  recycling   system given by 
(1) can be stabilized with a PD controller given by, 

 
C(s) = KP + KDs, (32) 

 
or 

C(s) = kp(kds − 1) + 1, (33) 
 
with kp, kd > 0, if and only if, 
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with θ = τ1 + τ2. 

 
Proof. Sufficiency The closed-loop transfer function of the system shown in Figure 2 is given by, 
 

( ) .
)()()(11

)()(
)(
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sGsGsC
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sR
sY
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d

−−
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and the associated closed-loop characteristic equation is, 
 

1 + C̄(s)Gd(s)Gr (s) = 0 (36) 
 

with C̄(s)=C(s)-1. The characteristic equation (36) can also be obtained from the auxiliary 
closed-loop system consisting in an open-loop transfer function )()()()( sGsGsCsQ rd= ,  with an 
unitary feedback. In this way, the stability conditions of the proposed auxiliary closed-loop 
system are equivalent to the required stability conditions for the characteristic equation (36). 

The Nyquist stability criterion states that for a given open-loop system )(sQ , there is a stabilizing 
proportional control k such that the closed-loop system is stable if and only if 0 = N +P , where P is 
the number of unstable roots in )(sQ  and N  is the number of clockwise round trips to the point (−1, 
0j) in the open-loop ( ))(sQ  Nyquist diagram.  It can be seen that for our particular case 

)()()()( sGsGsCsQ rd= , 

P = 2 and therefore N should satisfy N = −2, i.e., in order to achieve closed-loop stability the 
Nyquist plot should encircle twice the critical point (−1, 0j) in counter-clockwise direction. Therefore, 
the selection of  the derivative should be proposed to obtain a Nyquist trajectory such that the closed- 
loop system is stable, in this way a desirable behaviour of the trajectory should be as it is shown in 
Figure 5 or Figure 6. 

For the sake of simplicity on the frequency domain analysis, let use an alternative representation 
of the PD controller given by, 

C̄(s) = kp(kds − 1), (37) 
with kp, kd > 0. Notice that (37) is a non-minimum phase controller. The selection of this controller 
structure allows to us to find the best stability conditions in terms of the delay value. 

Let us assume that the condition (34) holds, it could be selected a kd gain for the PD controller 
such that, 
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with ε  being a sufficient small positive constant. 
 

In order to satisfy the Nyquist stability criteria a frequency domain analysis of the system 
)()()()( ωωωω jGjGjCjQ rd= is  required  and  performed  in  what  follows. Thus,  the  phase equation  

of  the system is, 
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Figure 5: Desired stable Nyquist trajectory of the system with two open-loop unstable poles. 

 
 
 
 
 
 
 
 
 

 

 

 

 

Figure 6: Desired stable Nyquist trajectory of the system with two open-loop unstable poles. 
                                                                                                                                               

It can be seen that the phase begins in ΦQ(0) = −π and its trajectory follows a negative direction, 
 this could be demonstrated considering the derivative of the phase,  
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for frequencies in the neighborhood of ω ≈ 0, 
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From (41), the starting angle of the system depends on the value of ϵ. It can be seen that for an  
0→ε , the initial direction of the phase is slightly negative, which yields a crossover frequency      

ωc1→ 0, where ωc1 is the first frequency ωc1 > 0 such that ΦQ(ωc1 ) = −π. Moreover, there is a 
frequency acs =ω  such that ΦQ(ωs) > −π, this can be found numerically. 

Additionally, analyzing the phase derivative for high frequencies, namely ω ≈ ∞, we can see that 
its trajectory is decreasing for high frequencies. In order to complete the analysis let us consider the 
magnitude equation given by, 
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For small frequencies, the magnitude has a positive direction, which is easily concluded from: 
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Since the open-loop system Q(jω) is strictly proper, there is a decreasing magnitude for large 

frequencies.  As it can be observed, the selection of k̄d results in a system with a positive gain margin, 
for a positive crossover frequency ωc1 → 0, and a positive phase margin occurring at ωm > 0. Then, 
it can be concluded that the system Gd(s)Gr(s) can be stabilized with a PD controller (37) choosing a 
derivative gain according to (38); and equivalently the recycling system (1) can be stabilized with a 
PD controller (32) in the control loop shown in Figure 2. 

Necessity. Taking into account Lemma 3, the stability of the closed-loop system with a PD 
controller requires that the polynomial: 

HQ(s) = 0 +  1s +  2s2 + · · ·+  n+1sn+1 +  n+2sn 

has all its zeros in the open left half plane, since the higher order coefficient: 
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is a positive constant, a necessary condition for the stabilizability is that the independent term 
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is positive. Solving for the delay term we have: 
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Remark 1 An adequate choice of the derivative gain kd assures a Nyquist path with two encirclements in 
counter-clockwise direction, namely the system can be stabilized. In order to obtain a closed-loop stable system, the 
proportional gain kp should be selected such that: 
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where q = 0 for F (ωc2) < F (ωc0) < F (ωc1), q = 2 for F (ωc0) < F (ωc2) < F (ωc1), 
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ωc0 = 0, ωc1 and ωc2 are denominated the first and second positive crossover frequency such that 
ΦQ(ωc1 ) = −π, respectively. 

The frequency domain analysis used in the proof of Theorem 2 can be applied to the case of the 
PID controller obtaining the same stability condition. In this way, the following result is stated. 

 
Corollary 1 Consider the feedback control shown in Figure 2. Then, the delayed recycling system given by (1) 
can be stabilized with a PID controller given by, 
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or 
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dp , (46) 

 
(with kp, ki, kd > 0) if and only if the condition (34) is satisfied. 

 
Remark 2 An adequate selection of the derivative gain kd and the integral term ki in the PID controller  
given by (46) assures a Nyquist path with two counter-clockwise direction, i.e., the closed- loop stability warranty.  
In order to obtain  a closed-loop stable system, the proportional gain kp should be selected such that, 
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where r = 2 for γ(ωc3) < γ(ωc1) < γ(ωc2), r = 3 for γ(ωc1) < γ(ωc3) < γ(ωc2), 
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where ωc1,ωc2,ωc3> 0 are denominated the first and second, third crossover frequencies respectively, such 
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 that Φ(ω) = −π, where 
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A simple procedure to determine the PD/PID controller parameters is proposed. 

 
Procedure 2  

 
 1.  Identify the plant parameters a, c, bi, di, ᾱ, θ. 
 
2.  If the stability condition (34) holds, continue with step 3; otherwise, a PD or PID controller can not 
stabilize the recycling delayed process (1) in the control scheme shown in Figure 2. 
 

3. Compute the minimum stabilizing derivative gain kd for the PD/PID controller (given by (33)/(46)) 
according to (38). 

 
4. For the controller (33)/(46), search for a maximum kd such that the phase equation ΦQ(ωc1 ) =−π  (given 
by (39)), for some ωc1 > 0 ωc1 > 0 where ωm > ωc1 > 0 and ωm is the frequency such that M(ωm) = 1. 
 
5. If a PD controller is required, select a stabilizing kd from the obtained interval in Steps 3-4 and  compute 
the stabilizing kp interval using (43). 

 
6. If a PID controller is required, select a stabilizing kd from the obtained interval in Steps 3-4  and obtain 
the maximal ki (kimax ), starting from ki = 0  such that Φ(ω) > −π (Φ(ω) given by (49)) for some ω > 0. 
Then, select a ki into the interval 0 < ki < kimax and with the selected kd and ki compute the stabilizing kp 
interval using (47).  
 
Remark 3 Notice   that   a  particular  case  of  the  condition (34)  in  Theorem  2  can  be  obtained  for  the  
case of two unstable poles, i.e. 

                .1111
22 caca

+−+<θ                                                            (50)                                                                                                                                     

In this way, since it is assumed θ > 0 implies 01111
22 >+−+

caca
 which from a graphical 

viewpoint satisfies the properties of a right triangle as well as the inequality triangle 
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, see Figure 7. 

 
 
 
 
 
 

 
 

 

 
Figure 7: Graphical interpretation of condition (50). 

 

15  



4.3 Proposed observer based control 
To implement the results presented in Sections 4.1 and 4.2 through an observer based controller, 
Figure 8 shows the complete scheme and the following result is presented in order to assure the 
stability condition of the whole proposed strategy. 

 
Corollary 2 Consider the observer-based control depicted in Figure 8. Then, there exists a controller, C(s), 
PD/PID such that the closed-loop system is stable if and only if, 
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with θ = τ1 + τ2. 

 

 
Figure 8: Proposed observer based control schema. 

 

Proof. Consider the observer scheme shown in Figure 8. From Theorem 1, an adequate 
estimation 
ω̂1(s), of the signal ω1(s) is assured if and only if 
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for θ = τ1 + τ2. On the other hand, by Theorem 1 and Corollary 1 it is possible to find a controller 
PD/PID such that the closed-loop system is stable if and only if, 
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with θ = τ1 + τ2. Then we can conclude that the closed-loop system of Figure 8 is stable if and only 
if the most restrictive condition between the conditions (52) and (53) is satisfied, i.e., the condition 
(53).■ 

The proposed control strategy can be also extended to a class of systems that considers  
unstable dynamic at direct path but only stable dynamics at the recycling path. The 
following result establish how to apply the corresponding extension. 

 
Corollary 3. Consider the observer-based control depicted in Figure 8 with 
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where )2)()...()(()( 22
11 nnm sbsbsassD ωξω ++++−=  and ))...()(()( 212 ndsdsdssD +++= , where stable 

poles could be complex conjugate. Then, there exists a controller, C(s), PD/PID such that the closed-loop 
system is stable if and only if, 
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Proof. Consider the observer scheme shown in Figure 8. An adequate estimation ω̂1(s), of the 
signal ω1(s) is always assured since the parameter 2L  can be performed via a Nyquist plot. 
On the other hand, by Theorem 2 in [17] it is possible to find a controller PD/PID such that the 
closed-loop system is stable if and only if, 
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with θ = τ1 + τ2. Then we can conclude that the closed-loop system of Figure 8 is stable if and only 
if the most restrictive condition between the convergence condition and controller condition (55) is 
satisfied. In such case, we have (55).■ 

 
 

17  



5 Numerical Results 

Let us start with a theoretical and academic example that illustrstes all the potentiallity of the results 
here exposed. Later, a more realistic example borrowed from the literature is presented. 

Example 1. Consider a recycling process with the transfer function 
s

d e
sss

sG 2.0

)20)(12)(4.0(
5.0)( −

++−
= ,       (56a) 

s
r e

sss
sG 1.0

)11)(9)(8.0(
5.0)( −

++−
= ,          (56b) 

First, the observer design is regarded, hence the Procedure 1 is followed. The existence of the observer strategy is 
assured due to the condition (24) in Theorem 1 is satisfied, namely θ < 1.0480. The relocated poles of G1 are 
proposed at {−8 − 9 − 10} i.e., z1 = 8, z2= 9 and z3= 10. Taking into account the desired relocated poles previously 
proposed, (29) is solved to L1, obtaining [ ]TL 6.496.10418.8211 −= . Using the Step 3 of Procedure 1 the 
interval of the observer parameter )1(2−l  is 10415057025 )1(2 << −l . Secondly, the design of the controller C(s) is 
derived. To this end, Procedure 2 is considered to design a PD controller. Figure 9 shows the complete stabilizing 
region kp−kd for the controller given by (33). In order to illustrate the behaviour of the proposed control strategy, 
some simulations are performed, Figure 10 shows the output estimation error defined as )()(ˆ)( tytytey −=   when 
initial conditions different from zero are considered in the states of the plant, i.e., [0.01,0.01,0.01]. The output 
performance is presented in Figure 11 under different scenarios: initial conditions are equal to zero, initial conditions 
are [0.1,0.1,0.1] and an uncertainty in the time-delay τ2 of +20% is present in the plant. For the simulation experiment   

7000,63025)1(2 ==− pkl   and 4=dk are used.  

 

 

 

 

 

 

 

 

 

 

Figure 9: Stabilizing kp − kd region for the PD controller (33) for Example 1. 
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Figure 10:  Output estimation error, ey (t) = ŷ(t) − y(t), for Example 1. 
 

 
 

Figure 11: Output response for Example 1 using a PD controller. 
Figure 11 shows the closed-loop of the controlled system. It can be seen that the transitory 
behaviour of the output presents an initial undershoot and oscillations in the opposite direction with 
respect to the final stationary response. It is important to recall that we are dealing with a very 
complex delayed system with two unstable poles. The interconnection among the plant, the observer 
as well as the controller induces such characteristic response. In a practical situation, the inverse 
response could be bounded to zero, it depends on the nature of the variable. It can also be seen that 
if the delay size is not well characterized (for instance +20% of error), the stability is preserved but 
oscillations are present in the output signal. 
Now, if a PID controller is considered to stabilize the plant given by (54), the stabilizing parameters 
 plane kd−ki is shown in Figure 12, which is obtained using Step 6 from Procedure 1. Notice that 
 for each point kd−ki into the stabilizing region, a kp interval should be computed using (47). In this  
way some stabilizing triplet kp −ki –kd are presented in Figure 13. 
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Figure 12: Stabilizing kd − ki region for the PID controller (33) for Example 1. 
 
 
 
 
 
 
 
 

 
 

Figure 13: Stabilizing kp − kd − ki region for the PID controller (33) for Example 1. 
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Example 2. Consider the reactor-separator recycle plant presented in [21], time delays at direct and 
recycling paths are included. Thus an open-loop state space representation is, 

)()()()()( 2211 tuBtxAtxAtxAtx +−+−+= ττ ,       (57a) 

)()( 11 τ−= txCty ,          (57b) 
where, 
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Operating volumen (V )  3500 ft  
Operating flowrate ( F ) hrft /2000 3  
Reactor diameter ( rD ) ft5.7  
Overall heat-transfer coefficient (U ) )/(3192.492 2 RhrftBtu °  
Heat transfer área through reactor wall ( A ) 21238.47 ft  
Preexponential factor ( 0k ) 1121096.3 −× hr  
Activation energy ( aE ) lmolBtu /32400  
Ideal gas constant ( R ) RlbmolBtu °/987.1  
Heat of reaction ( H∆− ) lbmolPOBtu /39000  
Density of coolant ( ρ )  3/25.53 ftlb  
Heat capacity of coolant ( ρc ) )/(1 RlbBtu °  

Operating concentration ( AsC ) 3/066.0 ftlbmol  
Operating temperatura ( sT ) R560.77°  

Direct path time delay ( 1τ ) hr15.0  

Recycling path time delay ( 2τ ) hr18.0  
Recirculation coefficient (λ ) 0.2 
 

Table 1. Parameters of system in Example 2. 
 
The parameter values are listed in Table 1. )(txT  is the reactor temperature (T) and )(txC is the component 
concentration (CA). The input variable is the jacket reactor temperature (Tj). 1τ  is the time-delay due to the 
concentration and 2τ  is the time delay derived from matherial transport. Output matrix, [ ]101 =C , is assumed. 
Thus, transfer functions are obtained as: 

s
d e
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= ,       (58a) 

s
r esG 18.02108323.7)( −×= ,          (58b) 

Taking into account Corollary 3, the condition (5) is satisfied. From Step 2 of Procedure 1, it is proposed to relocate the  
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                 Figure 14: Nominal performance comparison of Example 2. 
 
poles of direct path such that z1 =1, z2=2. This, gives as result the oberver paremeter [ ]TL 9323.14341.41 = . Then,  
from a Nyquist stability analysis the observer parameter 03035 2 <<− L  is obtained. For the experiment 102 −=L  
is used. Finally, following the methodology in [17], the used PD controller is given as, 

,)( sKKsC Dp +=  

with 1.0=pK  and 55.0=DK . In order to improve the performance a set point filter is used, 
 

.
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A comparison with a recent work related to control of recycling plant proposed in [23] is performed. In 
[23], a delayed control strategy (DCS) is used with sesC 18.0290)( −= . Step reference adjustment were used in 
order to obtain unitary state staionary value. Figure 14 shows a comparison of the output performance under 
nominal conditions, the proposed observer-based control in this manuscript is denoted as POBC. Closed-
loop robustness with respect to parametric modelling uncertainties into system (56a)-(56b) is illustrated in 
what follows. Consider the recycling system under additive bounded uncertainties, given by, 

s
d e

bsas
sG 1

))((
)(

1

τα −

+−
=      (59a) 

s
r esG 2)( τβ −=             (59b) 

where additive uncertainties are defined as aaa ∆+= , 
111 τττ ∆+=  and 

222 τττ ∆+= . In this way, 
considering 6643.0=a and 0=∆a , the nominal case is set. Therefore a∆  is a deviation on the  
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              Figure 15: Output performance for uncertainties at direct loop )(sGd  . 

nominal parameter, same criteria is used for the other two defined uncertainties. In Figure 15, 
output is shown under uncertainties into direct loop )(sGd . This is, deviations 1357.0=∆a and 

02.0
1
=∆τ are considered, which corresponds to %20+  and %13+  of uncertainty, respectively. As 

Figure 15 shows, under these conditions, DCS is unstable while POBC remains stable. 
Moreover, Figure 15 shows the output performance when POBC is submitted to uncertainties of  

%95+  ( 6357.0=∆a ) and %13+  ( 02.0
1
=∆τ ) with the corresponding parameter. Therefore, 

POBC is robustly stable with the deviations ]6357.0,0[∈∆a  and ]02.0,0[
1
∈∆τ . Figure 16 shows 

the output performance for uncertainties into the recycling path )(sGr . Thus, a compraison of the 
output is considered with uncertainties of %222+ ( 22.0

2
=∆τ ) and %333+ ( 42.0

2
=∆τ ) in the 

recycling delay-time. From Figure 16, POBC is robustly stable with ]42.0,0[
2
∈∆τ , while for the 

case 42.0
2
=∆τ  DCS is unstable. 

    
6 Conclusions 
 

The analysis developed through this work gives a stabilization strategy for a particular kind of 
recycling system. The proposed stabilization scheme allows the use two different controllers, i.e., a 
Proportional-Derivative controller and a Proportional-Integral-Derivative controller with a proposed 
observer strategy. Explicit stability conditions of the proposed controller as well as the observer 
design are obtained in terms of the system model parameters. Even when a classical PID controller 
has the characteristic of step tracking reference and step disturbance rejection, in this work the used 
PID controller does not satisfies the mentioned properties and in this case only assures closed-loop  
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              Figure 16: Output performance for uncertainties at direct loop )(sGr  . 

stability, perhaps this is the consequence of dealing with a complex class of recycling systems, where 
the two paths consider unstable dynamics. The importance of this work arises from the fact that the 
proposed strategy simplify the stability problem with two different time-delay terms to a problem with 
only one delay term. It should be highlighted that the proposed control scheme can be applied to the 
case of the stable recycling system i.e., G1(s) and/or G2 (s) being stable subsystems. As a future 
work it should be interesting to extend the proposed control strategy to a class of systems 
without limit in the number of unstable poles in the transfer functions of the recycling system, 
G1(s) and G2(s). Also, the analysis of the time-delays varying case can be performed, taking into 
account the proposed control scheme. 
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