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Abstract

In this paper we investigate the existence and uniqueness of weak solutions of the
nonautonomous Hamilton-Jacobi-Bellman equation on the domain (0,∞) × Ω. The
Hamiltonian is assumed to be merely measurable in time variable and the open set
Ω may be unbounded with nonsmooth boundary. The set Ω is called here a state
constraint. When state constraints arise, then classical analysis of Hamilton-Jacobi-
Bellman equation lacks appropriate notion of solution because continuous solutions
could not exist. In this work we propose a notion of weak solution for which, under a
suitable controllability assumption, existence and uniqueness theorems are valid in the
class of lower semicontinuous functions vanishing at infinity.

1 Introduction

The notion of weak (or viscosity) solution to a first-order partial differential equation was
introduced in the pioneering works [8, 9, 20] by Crandall, Evans, and Lions to investigate
stationary and evolutionary Hamilton-Jacobi-Bellman (H-J-B) equations, using sub/super
solutions involving superdifferentials and subdifferentials of continuous function associated
to C1 test functions. In particular, they obtained existence and uniqueness results in the
class of continuous functions for the Cauchy problem associated to the following H-J-B
equation

−∂tV + H (t, x,−∇xV ) = 0 on (0, T )× Rn,

when the Hamiltonian H is continuous, while in [3, 26] the authors extended the existence
results to a large class of continuous Hamiltonians. When the solution is differentiable, then
it solves the H-J-B equation also in the classical sense. However, it is well known that such
a kind of notion turns out to be quite unsatisfactory for H-J-B equations arising in control
theory and the calculus of variations (we refer to [2, 20] for further discussions). Indeed, the
value function, that is a weak solution of H-J-B equation, loses the differentiability property
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(even in the absence of state constraints) whenever there are multiple optimal solutions at
the same initial condition. When additional state constraints are present it also loses its
continuity. At most we expect lower semicontinuity of the value function. So, subsequently,
the definition of solution was extended to lower semicontinuous functions.

For the Mayer problem (of optimal control theory) free of state constraints involving a
continuous cost function and Lipschitz continuous dynamics, the uniqueness of continuous
solutions of the associated H-J-B equation can be addressed using the notion of viscosity
solution. Further, the definition of solution can be stated equivalently in terms of “nor-
mals” to the epigraph and the hypograph of the solution. But, when the dynamics is
only measurable in time such equivalence may fail to be true. Nevertheless, the study of
uniqueness of weak solutions can be carried out by using the solutions concept from [15], see
also Sections 3 and 4 below, based on “normals” to the epigraph. Previously, to deal with
Hamiltonian measurable in time, in [17] the author proposed a new notion of weak solution
(cfr. [21] for equivalent formulations of such a kind of solutions) in the class of continuous
functions, proving, by a blow-up method, the uniqueness and existence in the stationary
case on a general open subset of Rn and for the evolutionary case on (0,∞)×Rn. The C1

test functions needed to define such solutions are more complex, involving in addition some
integrable mappings. We point out that, under the assumptions that H is measurable
in time, Lipschitz continuous in the space variable, and convex in the last variable, the
so called representation theorems (cfr. [16, 22] and the reference therein) associate to the
H-J-B equation a control problem in such a way that the value function is a weak solution.
This yields an existence result for weak solutions.

To deal with discontinuous solutions, in [18], Ishii introduced the concept of lower and
upper semicontinuous envelopes of a function, proving that the upper semicontinuous enve-
lope of the value function of an optimal control problem is the largest upper semicontinuous
subsolution and its lower semicontinuous envelope is the smallest lower semicontinuous su-
persolution. This approach, however, does not ensure the uniqueness of (weak) solutions
of the H-J-B equation. On the other hand the upper semicontinuous envelope does not
have any meaning in optimal control theory while dealing with minimization problems (the
lower semicontinuous envelope determines the value function of the relaxed problem). In
[4, 5, 10] a different concept of solutions was developed for the H-J-B equation associated
to the Mayer optimal control problem not involving state constraints, but having a dis-
continuous cost. In this approach only subdifferentials are involved. In particular, in [10],
results are expressed using the Fréchet subdifferentials instead of C1 test functions. By
[8, Proposition 1.1], Fréchet subdifferentials of continuous functions coincide with those
defined in [9] via C1 test functions. While investigating in [15] the merely measurable case,
it became clear that in order to get uniqueness, it is convenient to replace subdifferentials
by normals to the epigraph of solutions. Such “geometric” definition of solution avoids
using test functions and allows to have a unified approach to both the continuous and the
measurable case.

To deal with state constrained problems, the usual assumptions on data may be not
sufficient to derive existence and uniqueness results for the H-J-B equations. In [25] Soner
proposed a controllability assumption (the Slatter like assumption) to investigate an au-
tonomous control problem, recovering the continuity of the value function through an inward
pointing condition (under the assumption that the set Ω is bounded with ∂Ω ∈ C2): that is,
he assumed that for any x ∈ ∂Ω we can find a control u satisfying 〈 f(x, u), νx〉 < 0, where
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νx is the outward unit normal to Ω at x and f is the dynamics of control system. Such
condition implies uniqueness of viscosity solutions. However, it cannot be used for sets with
nonsmooth boundary and the boundedness assumption on Ω may be quite restrictive for
many applied models: for instance, macroeconomics models often consider cones as state
constraints. To allow nonsmooth boundaries, Ishii and Koike generalized the concept of
Soner’s condition in the framework of infinite horizon problems and continuous solutions
(cfr. [19] and the references therein). More generally, various versions of inward pointing
condition are useful to get continuity or Lipschitz continuity of the value function, see for
instance [6]. Furthermore, in [13, 14] the authors, dealing with paratingent cones and closed
set of constraints with possibly empty interior, carry out the analysis under another con-
trollability requirement named outward pointing condition. Such condition ensures, roughly
speaking, that any boundary point of Ω can be reached by trajectories laying in the relative
interior of Ω. The outward pointing conditions allow furthermore to use the so called back-
ward neighboring feasible trajectory theorems, fundamental to address the control systems
under state constraints. It was used, in particular, in [11], to study an H-J-B equation
on finite time interval, when the Hamiltonian is convex and positively homogeneous in the
third variable.

We would like to underline here that, in contrast, the inward pointing condition is
neither needed, nor well adapted in the context of lower semicontinuous functions because
it does not imply uniqueness of solutions to the H-J-B equation unless further regularity
assumptions are imposed on the solutions.

The novelty of our work consists in examining the weak solutions (in the sense of Defini-
tion 3.2 below) of the H-J-B equation on (0,∞)×Ω (where Ω is an open subset of Rn with
possibly nonsmooth boundary) and with time-measurable Hamiltonian (associated with an
infinite horizon optimal control problem). Proofs of uniqueness make use of the geometric
properties of epigraphs of such solutions. We recover the uniqueness, from a neighboring
feasible trajectory theorem (cfr. [6]) under a backward controllability assumption, in a
class of lower semicontinuous functions vanishing at infinity. More precisely, we prove the
existence and uniqueness of weak solutions of the following problem{

−∂tW + H (t, x,−∇xW ) = 0 on (0,∞)× Ω

limt→∞ supy∈domW (t,·) |W (t, y)| = 0.

The outline of this paper is as follows. In Section 2 we introduce notations and recall
some results from nonsmooth analysis. The main result is stated in Section 3 whose proof
is left to Section 4. In the last section we discuss the particular case of the Lipschitz
continuous solutions.

2 Preliminaries

We denote by | · | and 〈 ·, ·〉 the Euclidean norm and scalar product in Rk, respectively,
and by µ the Lebesgue measure. Let (X, | · |X) be a normed space, B(x, δ) stand for
the closed ball in X with radius δ > 0 centered at x ∈ X and B = B(0, 1). For a
nonempty subset C ⊂ X we denote the interior of C by intC, the boundary of C by ∂C,
the convex hull of C by coC, its closure by coC, and the distance from x ∈ X to C by
dC(x) := inf {|x− y|X : y ∈ C}. If X = Rk, in what follows “− ” stands for the negative
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polar cone of a set, i.e., C− =
{
p ∈ Rk : 〈 p, c〉 6 0 ∀c ∈ C

}
. Moreover, we denote the

positive polar cone of C by C+ := −C−.
Let I and J be two closed intervals in R. We denote by L1(I; J) the set of all J-valued

Lebesgue integrable functions on I. We say that f ∈ L1
loc(I; J) if f ∈ L1(K; J) for any

compact subset K ⊂ I. We denote by Lloc the set of all functions f ∈ L1
loc([0,∞);R+)

such that limσ→0 θf (σ) = 0 where θf (σ) = sup
{∫

J f(τ) dτ : J ⊂ [0,∞), µ(J) 6 σ
}

. We

recall that for a function q ∈ L1
loc([0,∞);R) the integral

∫∞
t0
q(s) ds := limT→∞

∫ T
t0
q(s) ds,

whenever this limit exists.
Let D ⊂ Rn be nonempty and {Ah}h∈D be a family of nonempty subsets of Rk. The

upper and lower limits, in the Kuratowski-Painlevé sense, of Ah at h0 ∈ D are the closed
sets defined respectively by

Lim sup
h→Dh0

Ah =

{
v ∈ Rk : lim inf

h→Dh0
dAh(v) = 0

}
, Lim inf
h→Dh0

Ah =

{
v ∈ Rk : lim sup

h→Dh0

dAh(v) = 0

}
.

Consider a nonempty subset E ⊂ Rk and x ∈ E. The contingent cone TE(x) to E at x is

defined as the set of all vectors v ∈ Rk such that lim infh→0+
dE(x+ hv)

h
= 0. The limiting

normal cone to E at x, written NE(x), is defined by NE(x) := Lim supy→Ex TE(y)−. It is
known that NE(x)− ⊂ TE(x) whenever E is closed. The Clarke tangent cone is defined by
NE(x)−.

Let ϕ : Rk → R ∪ {±∞} be an extended real function. We write domϕ for the
domain of ϕ, epiϕ for the epigraph of ϕ, and hypoϕ for the hypograph of ϕ. The (Fréchet)
subdifferential, respectively the (Fréchet) superdifferential, of ϕ at x0 ∈ domϕ are the
possibly empty sets defined by

∂−ϕ(x0) =

{
p ∈ Rk : lim inf

x→x0

ϕ(x)− ϕ(x0)− 〈 p, x− x0〉
|x− x0|

> 0

}
, ∂+ϕ(x0) = −∂−(−ϕ)(x0).

The contingent epiderivative and the contingent hypoderivative of ϕ at x0 ∈ domϕ, in
the direction u ∈ Rk, written D↑ϕ(x0)(u) and D↓ϕ(x0)(u), respectively, are defined by

D↑ϕ(x0)(u) = lim inf
h→0+, u′→u

ϕ(x0 + hu′)− ϕ(x0)

h
, D↓ϕ(x0)(u) = −D↑(−ϕ)(x0)(u).

It is well known that (cfr. [1, Proposition 6.1.4])

epiD↑ϕ(x0) = Tepiϕ(x0, ϕ(x0)) & hypoD↓ϕ(x0) = Thypoϕ(x0, ϕ(x0)). (1)

From [7] we know that, for a measurable mapping ϕ, p ∈ ∂−ϕ(x0) if and only if there
exists a continuous function ψ : Rk → R, differentiable at x0, such that ψ(x) < ϕ(x) for
all x 6= x0, ϕ(x0) = ψ(x0), and ∇ψ(x0) = p. If in addition ϕ is continuous, then ψ can be
chosen to be of class C1. In this respect for a lower semicontinuous function ϕ the notion of
the (Fréchet) subdifferential we consider differs from the one in [9], where only continuous
viscosity solutions were investigated and C1 support functions were used. Similar remark
can be made about superdifferentials.

A set-valued map F : Rk  Rn taking nonempty values is said to be upper semicon-
tinuous at x ∈ Rk if for any ε > 0 there exists δ > 0 such that F (x′) ⊂ F (x) + εB for all
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x′ ∈ B(x, δ). If F is upper semicontinuous at every x then it is said to be upper semicon-
tinuous. F is said to be lower semicontinuous at x ∈ Rk if Lim infy→x F (y) ⊂ F (x). F is
said to be lower semicontinuous if F is lower semicontinuous at every x ∈ Rk. F is called
continuous at x ∈ Rk if it is lower and upper semicontinuous at x and it is continuous if it
is continuous at each point x.

Definition 2.1. A set-valued map P : I  Rk is locally absolutely continuous if it takes
nonempty closed images and for any [S, T ] ⊂ I, every ε > 0, and any compact subset
K ⊂ Rk, there exists δ > 0 such that for any finite partition S 6 t1 < τ1 6 t2 < τ2 6 ... 6
tm < τm 6 T of [S, T ],

m∑
i=1

(τi − ti) < δ =⇒
m∑
i=1

max
{
d̃P (ti)(P (τi) ∩K), d̃P (τi)(P (ti) ∩K)

}
< ε,

where d̃E(E′) := inf {β > 0 : E′ ⊂ E + βB} for any E,E′ ⊂ Rk (the infimum over an
empty set is +∞, by convention).

3 Main Result

Consider the infinite horizon optimal control problem

minimize

∫ ∞
t0

L(t, x(t), u(t)) dt (2)

over all the trajectory-control pairs of the state constrained control system on I = [t0,∞){
x′(t) = f(t, x(t), u(t)), u(t) ∈ U(t), for a.e. t ∈ I
x(t0) = x0, x(I) ⊂ A,

(3)

where f : [0,∞)×Rn×Rm → Rn and L : [0,∞)×Rn×Rm → R are given, A is a nonempty
closed subset of Rn, U : [0,∞) Rm is a Lebesgue measurable set-valued map with closed
nonempty images and (t0, x0) ∈ [0,∞) × A is the initial datum. Every trajectory-control
pair (x(·), u(·)) that satisfies the state constrained control system (3) on an interval of the
form I = [t0, T ] or I = [t0,∞) is called feasible on I. We refer to such x(·) as a feasible
trajectory. The infimum of the cost functional in (2) over all feasible trajectory-control
pairs on I = [t0,∞), with the initial datum (t0, x0), is denoted by V (t0, x0) (if no feasible
trajectory-control pair exists at (t0, x0), or if the integral in (2) is not defined for every
feasible pair, we set V (t0, x0) = +∞). The function V : [0,∞)× A→ R ∪ {±∞} is called
the value function of problem (2)-(3). We say that (x̄(·), ū(·)) is an optimal trajectory-
control pair at (t0, x0) ∈ ([0,∞)×A)∩domV if V (t0, x0) =

∫∞
t0
L(s, x̄(s), ū(s)) ds. Finally,

H (t, x, p) := sup
u∈U(t)

(〈 f(t, x, u), p〉 − L(t, x, u))

is the Hamiltonian function associated to the above problem.
We denote by (h) the following assumptions on f and L:

(h) (i) ∀x ∈ Rn the mappings f(·, x, ·) and L(·, x, ·) are Lebesgue-Borel measurable and
there exists φ ∈ L1([0,∞);R) such that L(t, x, u) > φ(t) for a.e. t > 0 and all
(x, u) ∈ Rn × Rm;
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(ii) ∃ c ∈ L1
loc([0,∞);R+) such that for a.e. t > 0 and for all x ∈ Rn, u ∈ U(t)

|f(t, x, u)|+ |L(t, x, u)| 6 c(t)(1 + |x|);

(iii) for a.e. t > 0 and all x ∈ Rn, the set-valued map

Rn 3 y  {(f(t, y, u), L(t, y, u)) : u ∈ U(t)} (4)

is continuous with closed images, and the set

{(f(t, x, u), L(t, x, u) + r) : u ∈ U(t), r > 0} (5)

is convex.

We denote by (h)′ the assumptions (h) with the further requirement:

(h)′ (iv) ∃ k ∈ L1
loc([0,∞);R+) such that for a.e. t > 0 and for all x, y ∈ Rn, u ∈ U(t)

|f(t, x, u)− f(t, y, u)|+ |L(t, x, u)− L(t, y, u)| 6 k(t)|x− y|,

and by (h)′′ the assumptions (h)′ with the further:

(h)′′ (v) k ∈ Lloc and lim supt→∞
1

t

∫ t
0 (c(s) + k(s)) ds <∞;

(vi) ∃ q ∈ Lloc such that for a.e. t > 0

sup
u∈U(t)

(|f(t, x, u)|+ |L(t, x, u)|) 6 q(t), ∀x ∈ ∂A.

Moreover, we denote by (B) and (OPC) the following assumptions:

(B) domV 6= ∅ and there exist T > 0 and ψ ∈ L1([T,∞);R+) such that for all (t0, x0) ∈
domV ∩ ([T,∞) × Rn) and any feasible trajectory-control pair (x(·), u(·)) on I =
[t0,∞), with x(t0) = x0,

|L(t, x(t), u(t))| 6 ψ(t) for a.e. t > t0;

(OPC) there exist η > 0, r > 0, M > 0 such that for a.e. t > 0 and any y ∈ ∂A+ηB, and any
v ∈ f(t, y, U(t)), with infn∈N1

y,η
〈n, v〉 6 0, we can find w ∈ f(t, y, U(t)) ∩ B(v,M)

satisfying

inf
n∈N1

y,η

{〈n,w〉, 〈n,w − v〉} > r,

where N1
y,η := {n ∈ ∂B : n ∈ coNA(x), x ∈ ∂A ∩B(y, η)}.

We denote by (IPC) the conditions (OPC) in which f(t, y, U(t)) is replaced by−f(t, y, U(t)).

Remarks 3.1.

(i) If L(t, x, u) = e−λtl(t, x, u), with l bounded and λ > 0, then (B) is satisfied.
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(ii) If f(t, ·, u) and L(t, ·, u) are continuous, uniformly in u ∈ U(t), then the set-valued
map in (4) is continuous for a.e. t > 0.

Define the augmented Hamiltonian H : [0,∞)× Rn × Rn × R→ R by

H(t, x, p, q) = sup
u∈U(t)

(〈 f(t, x, u), p〉 − qL(t, x, u)) .

Definition 3.2. A function W : [0,∞) × A → R ∪ {+∞} is called a weak (or viscosity)
solution of H-J-B equation on (0,∞)×A if there exists a set C ′ ⊂ (0,∞), with µ(C ′) = 0,
such that for all (t, x) ∈ domW ∩ (((0,∞)\C ′)× ∂A)

−pt +H(t, x,−px,−q) > 0 ∀ (pt, px, q) ∈ TepiW (t, x,W (t, x))−, (6)

and for all (t, x) ∈ domW ∩ (((0,∞)\C ′)× intA)

−pt +H(t, x,−px,−q) = 0 ∀ (pt, px, q) ∈ TepiW (t, x,W (t, x))−. (7)

The next theorem ensures the existence and uniqueness of (weak) solutions of the
Hamilton-Jacobi-Bellman equation in the class of the lower semicontinuous functions van-
ishing at infinity.

Theorem 3.3. Assume (h)′′ and (OPC). Let W : [0,∞) × A → R ∪ {+∞} be a lower
semicontinuous function such that domV (t, ·) ⊂ domW (t, ·) 6= ∅ for all large t > 0 and

lim
t→∞

sup
y∈domW (t,·)

|W (t, y)| = 0. (8)

Then the following statements are equivalent:

(i) W=V;

(ii) W is a weak solution of H-J-B equation on (0,∞) × A and t  epiW (t, ·) is locally
absolutely continuous.

Moreover, if in addition (B) holds true, then V is the unique weak solution satisfying
(8) with locally absolutely continuous t epiV (t, ·).

Remarks 3.4.

(i) The proof of Theorem 3.3 given below implies that instead of lower semicontinuity of
W we can assume that

lim inf
s→0+, y→Ax

W (s, y) = W (0, x) ∀x ∈ A,

to get the same conclusion as in Theorem 3.3.

(ii) Proposition 4.4-(v) and Remark 4.1-(i) below imply that under the assumptions (h)
and (OPC), if dom(V ) 6= ∅, then the set-valued map t  epiV (t, ·) is locally abso-
lutely continuous even though V may be discontinuous.
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(iii) From the proof of implication (ii) =⇒ (i) of Theorem 3.3 given in Section 4, it follows
that Theorem 3.3 holds true again if the condition (8) is replaced by the weaker
requirement

lim inf
t→∞

sup
y∈domW (t,·)

|W (t, y)| = 0,

and assuming further regularity:

∃ τ > 0 : lim inf
s→t−, y→intAx

W (s, y) = W (t, x) ∀ (t, x) ∈ (τ,∞)×A. (9)

By Proposition 4.4-(iii) given below and [6, Theorem 2], the value function V satisfies
(9) whenever (h) holds true.

(iv) Under the assumption (OPC), if for all large t > 0 and all x ∈ A{
D↑W (t, x)(−1,−v) : v ∈ F (t, x) ∩ int (NA(x)−)

}
∩ R 6= ∅,

then condition (9) is satisfied. Indeed, let τ > 0 be such that for all t ∈ (τ,+∞) and
x ∈ A there exists v̄ ∈ F (t, x) ∩ int (NA(x)−) with finite D↑W (t, x)(−1,−v̄). Then,
by [24, Theorem 2], there exists η > 0 such that x + sw ∈ A for all w ∈ B(v̄, η)
and s ∈ [0, η]. Now, by the definition of contingent epiderivative there exists α ∈ R
and hi → 0+, wi → v̄ satisfying W (t− hi, x− hiwi)−W (t, x) 6 αhi for all i. Since
x − hiwi ∈ intA for all large i, passing to the lower limit as i → ∞ and using the
lower semicontinuity of W , we get (9).

(v) Under the assumptions of Theorem 3.3 and that f and L are continuous, by [23,
Theorem 1], the statement (i) of Theorem 3.3 is equivalent to the following: for all
(t, x) ∈ domW ∩ ((0,∞)× ∂A)

−pt + H (t, x,−px) > 0 ∀ (pt, px) ∈ ∂−W (t, x),

and for all (t, x) ∈ domW ∩ ((0,∞)× intA)

−pt + H (t, x,−px) = 0 ∀ (pt, px) ∈ ∂−W (t, x).

4 Proofs

We recall first two more definitions. Let I ⊂ R+ be a given interval. Consider a set-valued
map Q : I  Rk and let y ∈ Q(s) for some s ∈ I, y ∈ Rk. The contingent derivative
DQ(s, y) of Q at (s, y) is the set-valued map DQ(s, y) : R  Rk whose graph is given by
graphDQ(s, y) = TgraphQ(s, y). By [1, Proposition 5.1.4],

DQ(s, y)(1) =

{
v ∈ Rk : lim inf

h→0+

dQ(s+h)(y + hv)

h
= 0

}
. (10)

For a set-valued map G : I × Rk  Rk taking nonempty values, a locally absolutely
continuous function x : I → Rk is called a G-trajectory if x′(t) ∈ G(t, x(t)) for a.e. t ∈ I.

Let us define the set-valued maps G : [0,∞) × Rn  Rn × R, F : [0,∞) × Rn  Rn,
and G̃ : [0,∞)× Rn × R Rn × R by

G(t, x) := {(f(t, x, u),−L(t, x, u)− r) : u ∈ U(t), r ∈ [0, c(t)(1 + |x|)− L(t, x, u)]} ,

F (t, x) := f(t, x, U(t)) & G̃(t, x, v) := G(t, x).

Remarks below follow directly from the assumptions.
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Remarks 4.1.

(i) Notice that, if (OPC) holds true, then

−F (t, x) ∩ coTA(x) 6= ∅ for a.e. t > 0, ∀x ∈ A. (11)

(ii) Let (t0, x0) ∈ [0,∞)×Rn. Then, by Gronwall’s lemma and our growth assumptions,
any absolutely continuous trajectory x : [t0,∞)→ Rn solving the differential equation

in (3) and starting from x0 at time t0 satisfies 1 + |x(t)| 6 (1 + |x0|) e
∫ t
t0
c(s) ds

for all
t > t0. In particular, feasible trajectories starting at the same initial condition are
uniformly bounded on every finite time interval. Moreover, setting for all R > 0

γR(t) := (1 +R) c(t)e
∫ t
0 c(s) ds ∀t > 0,

it follows that γR ∈ L1
loc([0,∞);R+) and for any R > 0, any (t0, x0) ∈ [0,∞) ×

(A∩B(0, R)), and any feasible trajectory-control pair (x(·), u(·)) on I = [t0,∞), with
x(t0) = x0, we have

|f(t, x(t), u(t))|+ |L(t, x(t), u(t))| 6 γR(t) for a.e. t > t0.

(iii) To apply the results from [15, Sections 2 and 4] we extend them to maps with sublinear
growth in the following way: letting R > 0 and T > 0, the set-valued map G∗ :
[0, T ]×Rn+1  Rn+1 defined by G∗(t,X) = G̃(t,X) for any (t,X) ∈ [0, T ]×B(0,M)
and G∗(t,X) = G̃(t, π(X)) for any (t,X) ∈ [0, T ]×(Rn+1\B(0,M)), where π(·) stands

for the projection operator onto B(0,M) and M = R+ 2
∫ T
0 γR(s) ds, satisfies

sup
v∈G∗(t,X), X∈Rn+1

|v| 6 2γR(t) for a.e. t ∈ [0, T ].

Thus, X : [t0, T ]→ Rn+1, with X(t0) ∈ B(0, R), is a G∗-trajectory if and only if it is
G̃-trajectory on [t0, T ].

(iv) Since we assume that the set-valued map U(·) takes nonempty images, so are G(·)
and F (·). Moreover, (OPC) implies that A is the closure of its interior. Similarly, for
(IPC).

Proposition 4.2. Under assumption (h), for all x ∈ Rn the set-valued maps F (·, x) and
G(·, x) are Lebesgue measurable. Furthermore, for a.e. t > 0 the set-valued maps G(t, ·)
and F (t, ·) are continuous with closed convex images.

Proof. The first statement follows from assumption (h)-(i). Notice that, by (h)-(iii), for
a.e. t > 0, F (t, ·) is continuous and F (t, x) is closed convex, since it is the projec-
tion of the closed set in (4) and the convex set in (5). Now, consider t > 0 and x ∈
Rn such that {(f(t, x, u), L(t, x, u)) : u ∈ U(t)} is closed and (h)-(ii) holds true. Let
(f(t, x, uk),−L(t, x, uk)− rk)→ (a, b) ∈ Rn × R with uk ∈ U(t) and rk ∈ [0, c(t)(1 + |x|)−
L(t, x, uk)] for all k. Since {L(t, x, uk)}k is bounded we deduce that {rk}k is bounded. So,
we may assume that rk → r > 0. Then (f(t, x, uk), L(t, x, uk)) → (a,−b − r), and, by
closedness, there exists u ∈ U(t) such that a = f(t, x, u) and −b − r = L(t, x, u). This
proves that G(t, x) is closed.
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Now, let t ∈ [0,∞) be such that x  {(f(t, x, u), L(t, x, u)) : u ∈ U(t)} is continu-
ous. Then x  G1(t, x) := {(f(t, x, u),−L(t, x, u)) : u ∈ U(t)} and x  G2(t, x) :=
{(f(t, x, u),−c(t)(1 + |x|) : u ∈ U(t)} are continuous. Thus x  G1(t, x) ∪ G2(t, x) is
continuous, and it follows that Γ : x  co (G1(t, x) ∪G2(t, x)) is continuous too (cfr. [1]).
Since G(t, x) = Γ(x), we deduce that G(t, x) is convex and G(t, ·) is continuous.

In the same way as the proof of continuity of G(t, ·) in the above Proposition, we show
the next result.

Proposition 4.3. If (h)′ holds true, then for a.e. t > 0 the set-valued map G(t, ·) is
Lipschitz continuous with constant k(t) + c(t).

The following Proposition summarizes some properties satisfied by the value function
V .

Proposition 4.4. Assume (h). Then

(i) V is lower semicontinuous and for any (t, x) ∈ domV there exists an optimal trajectory-
control pair (x̄(·), ū(·)) at (t, x). Moreover, for any x ∈ A

lim inf
s→0+, y→Ax

V (s, y) = V (0, x); (12)

(ii) there exists a set C ⊂ [0,∞), with µ(C) = 0, such that for any (t, x) ∈ domV ∩
(([0,∞)\C)×A)

∃ ū ∈ U(t), D↑V (t, x)(1, f(t, x, ū)) 6 −L(t, x, ū); (13)

(iii) there exists a set C ′ ⊂ (0,∞), with µ(C ′) = 0, such that for any (t, x) ∈ domV ∩
(((0,∞)\C ′)× intA)

∀u ∈ U(t), D↑V (t, x)(−1,−f(t, x, u)) 6 L(t, x, u); (14)

(iv) there exists a set C ′′ ⊂ (0,∞), with µ(C ′′) = 0, such that for any (t, x) ∈ domV ∩
(((0,∞)\C ′′)× intA)

∀u ∈ U(t), −L(t, x, u) 6 D↓V (t, x)(1, f(t, x, u)); (15)

(v) if (11) holds true and domV 6= ∅ then t epiV (t, ·) is locally absolutely continuous.

Remark 4.5. We would like to underline that the local absolute continuity of t epiV (t, ·)
does not yield local absolute continuity or even continuity of V (·, x). It implies however
that lim infs→t0−, x→Ax0 V (s, x) = V (t0, x0) for all (t0, x0) ∈ domV ∩ ((0,∞)×A) and that
lim infs→t0+, x→Ax0 V (s, x) = V (t0, x0) for all (t0, x0) ∈ domV ∩ ([0,∞)×A).

Proof of Proposition 4.4. The first two statements in (i) are well known. Let x ∈ A. If
V (0, x) = +∞ then, since V is lower semicontinuous, (12) holds true. Suppose next that
(0, x) ∈ domV . Consider an optimal trajectory-control pair (x̄(·), ū(·)) at (0, x). Then, by
the dynamic programming principle, for all s > 0

V (s, x̄(s)) = V (0, x)−
∫ s

0
L(ξ, x̄(ξ), ū(ξ)) dξ.
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So, lims→0+ V (s, x̄(s)) = V (0, x). The lower semicontinuity of V ends the proof of (i).
To prove (ii), let j ∈ N+. From [15, Corollary 2.7] applied to the set-valued map G̃, there

exists a set Cj ⊂ [0, j], with µ(Cj) = 0, such that for any (t0, x0) ∈ (([0, j]\Cj)×A)∩domV
and any optimal trajectory-control pair (x̄(·), ū(·)) at (t0, x0),

∅ 6= Lim sup
ξ→t0+

{
1

ξ − t0

(
x̄(ξ)− x0,−

∫ ξ

t0

L(s, x̄(s), ū(s)) ds

)}
⊂ G(t0, x0). (16)

Furthermore, by the dynamic programming principle, for all t > t0

V (t, x̄(t))− V (t0, x0) = −
∫ t

t0

L(s, x̄(s), ū(s)) ds.

So, dividing by t − t0 this equality, passing to the lower limit as t → t0+, and using (16),
we get (13). Then (ii) follows setting C = ∪j∈N+Cj .

We prove next (iii). Let j ∈ N+. From Remark 4.1-(iii), [15, Theorem 2.9] applied to
the set-valued map −G̃(j − ·, ·, ·), and from the measurable selection theorem, we can find
a subset C ′j ⊂ [1/j, j], with µ(C ′j) = 0, such that for any (t0, x0) ∈ ((1/j, j]\C ′j) × intA
and any u0 ∈ U(t0) there exist t1 ∈ [1/j, t0) and a trajectory-control pair ((x, v), (u, r))(·)
satisfying

(x′(t), v′(t)) = (f(t, x(t), u(t)),−L(t, x(t), u(t))− r(t)) for a.e. t ∈ [t1, t0]

(x(t0), v(t0)) = (x0, 0)

u(t) ∈ U(t), r(t) ∈ [0, c(t)(1 + |x(t)|)− L(t, x(t), u(t))] for a.e. t ∈ [t1, t0]

(x′(t0), v
′(t0)) = (f(t0, x0, u0),−L(t0, x0, u0)),

(17)

and x([t1, t0]) ⊂ A. Hence, if (t0, x0) ∈ domV , by the dynamic programming principle it
follows that for all s ∈ [t1, t0]

V (s, x(s))− V (t0, x0)

t0 − s
6

1

t0 − s
(v(s)− v(t0)).

Passing to the lower limit when s→ t0−, we have that

D↑V (t0, x0)(−1,−f(t0, x0, u0)) 6 L(t0, x0, u0).

Since u0 ∈ U(t0) is arbitrary and setting C ′ = ∪j∈N+C ′j , we get (iii). Moreover, arguing in
a similar way, we deduce that (iv) holds true as well.

Now, assume (11) and that domV 6= ∅. Notice that the value function V is bounded
from the below and since it is lower semicontinuous, t epiV (t, ·) takes closed images. Let
(t̄, x̄) ∈ domV . Then, by the dynamic programming principle, it follows that the set-valued
map t epiV (t, ·) takes nonempty values on [t̄,∞). If t̄ > 0, consider τ ∈ [0, t̄). From (11)
and (10), it follows that −F (t, x) ∩DP (t, x)(1) 6= ∅ for a.e. t ∈ (τ, t̄] and all x ∈ A, where
P (·) ≡ A. Hence, Remark 4.1-(iii), the viability theorem [15, Theorem 4.2] applied to the
set-valued map −F (t̄− ·, ·), and the measurable selection theorem, imply that there exists
a feasible trajectory-control pair (x̃(·), ũ(·)) on I = [τ, t̄] satisfying x̃(t̄) = x̄. So, applying
again the dynamic programming principle and since τ ∈ [0, t̄) is arbitrary, it follows that
t  epiV (t, ·) takes nonempty values on [0, t̄]. Now, fix 0 6 t1 6 t0. Let K ⊂ Rn+1 be a
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nonempty compact subset, (x1, v1) ∈ epiV (t1, ·) ∩K, and put R = maxy∈K |y|. Consider
an optimal trajectory-control pair (x̄(·), ū(·)) at (t1, x1). Then

V (t1, x1)−
∫ t0

t1

φ(s) ds =

∫ ∞
t1

L(s, x̄(s), ū(s)) ds−
∫ t0

t1

φ(s) ds

>
∫ ∞
t0

L(s, x̄(s), ū(s)) ds = V (t0, x̄(t0)).

Since v1 > V (t1, x1) we get (x̄(t0), v1 −
∫ t0
t1
φ(s) ds) ∈ epiV (t0, ·). Hence we deduce that

(x1, v1) ∈ epiV (t0, ·) +

∫ t0

t1

(γR(s) + |φ(s)|) dsB.

On the other hand, let (x0, v0) ∈ epiV (t0, ·) ∩ K. Applying again Remark 4.1-(iii), the
viability theorem [15, Theorem 4.2], and the measurable selection theorem, we deduce
that there exists a feasible trajectory-control pair (x̃(·), ũ(·)) on I = [t1, t0] satisfying
x̃(t0) = x0. So, by the dynamic programming principle, we get V (t1, x̃(t1)) 6 V (t0, x0) +∫ t0
t1
L(s, x̃(s), ũ(s)) ds 6 v0 +

∫ t0
t1
γR(s) ds, i.e., (x̃(t1), v0 +

∫ t0
t1
γR(s) ds) ∈ epiV (t1, ·). Fi-

nally, since (x0, v0) = (x̃(t1), v0 +
∫ t0
t1
γR(s) ds) + (x0 − x̃(t1),−

∫ t0
t1
γR(s) ds), we conclude

(x0, v0) ∈ epiV (t1, ·) + 2

∫ t0

t1

γR(s) dsB,

and so (v) follows.

The proof of the following lemma can be found in the Appendix.

Lemma 4.6. Assume (h)′. Let W : [0,∞) × A → R ∪ {+∞} be such that t  epiW (t, ·)
is locally absolutely continuous. If there exists a set C ′ ⊂ (0,∞), with µ(C ′) = 0, such that
for all (t, x) ∈ domW ∩ (((0,∞)\C ′)× intA)

−pt +H(t, x,−px,−q) 6 0 ∀ (pt, px, q) ∈ TepiW (t, x,W (t, x))−, (18)

then for all 0 < τ0 < τ1 and any feasible trajectory-control pair (x(·), u(·)) on I = [τ0, τ1],
with x([τ0, τ1]) ⊂ intA and (τ1, x(τ1)) ∈ domW , the solution w(·) of{

w′(t) = −L(t, x(t), u(t)) for a.e. t ∈ [τ0, τ1]

w(τ1) = W (τ1, x(τ1))
(19)

satisfies

(x(t), w(t)) ∈ epiW (t, ·) ∀t ∈ [τ0, τ1].

Remark 4.7. By the definition of local absolutely continuity, our assumption implies that
epiW (t, ·) is a nonempty closed set for all t > 0. In particular, domW (t, ·) 6= ∅ and W (t, ·)
is lower semicontinuous for all t > 0.

Arguing in analogous way as in the proof of Lemma 4.6, we have the following result
involving the hypograph:
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Lemma 4.8. Assume (h)′. Let W : [0,∞)×A→ R ∪ {+∞} be such that

t {(x, v) : v 6W (t, x) 6= +∞}

is locally absolutely continuous. If there exists a set C ′ ⊂ (0,∞), with µ(C ′) = 0, such that
for all (t, x) ∈ domW ∩ (((0,∞)\C ′)× intA)

−pt +H(t, x,−px,−q) 6 0 ∀ (pt, px, q) ∈ ThypoW (t, x,W (t, x))+,

then for all 0 < τ0 < τ1 and any feasible trajectory-control pair (x(·), u(·)) on I = [τ0, τ1],
with x([τ0, τ1]) ⊂ intA and (τ0, x(τ0)) ∈ domW , the solution w(·) of{

w′(t) = −L(t, x(t), u(t)) for a.e. t ∈ [τ0, τ1]

w(τ0) = W (τ0, x(τ0))
(20)

satisfies

(x(t), w(t)) ∈ hypoW (t, ·) ∀t ∈ [τ0, τ1].

Proposition 4.9. Let W : [0,∞)× A → R ∪ {+∞} be such that t  epiW (t, ·) is locally
absolutely continuous.

(i) If (h)(i)-(ii) hold true and G(t, ·) is upper semicontinuous, with closed convex images,
for a.e. t > 0, then the following two statements are equivalent:

(a) there exists a set C ⊂ (0,∞), with µ(C) = 0, such that for all (t, x) ∈ domW ∩
(((0,∞)\C)×A)

∃ ū ∈ U(t), D↑W (t, x)(1, f(t, x, ū)) 6 −L(t, x, ū); (21)

(b) there exists a set C ′ ⊂ (0,∞), with µ(C ′) = 0, such that for all (t, x) ∈ domW ∩
(((0,∞)\C ′)×A)

−pt +H(t, x,−px,−q) > 0 ∀ (pt, px, q) ∈ TepiW (t, x,W (t, x))−.

(ii) If (h)′ holds true, then the following two statements are equivalent:

(a)′ there exists a set C ⊂ (0,∞), with µ(C) = 0, such that for all (t, x) ∈ domW ∩
(((0,∞)\C)× intA)

∀u ∈ U(t), D↑W (t, x)(−1,−f(t, x, u)) 6 L(t, x, u); (22)

(b)′ there exists a set C ′ ⊂ (0,∞), with µ(C ′) = 0, such that for all (t, x) ∈ domW ∩
(((0,∞)\C ′)× intA)

−pt +H(t, x,−px,−q) 6 0 ∀ (pt, px, q) ∈ TepiW (t, x,W (t, x))−.
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Proof. We prove (i). Suppose (a). Fix (t, x) ∈ domW ∩ (((0,∞)\C) × A) and let
(pt, px, q) ∈ TepiW (t, x,W (t, x))−. From (1) and (21), we have (1, f(t, x, ū),−L(t, x, ū)) ∈
TepiW (t, x,W (t, x)). Thus pt + 〈 px, f(t, x, ū)〉 − qL(t, x, ū) 6 0, and so

−pt +H(t, x,−px,−q) > 0.

Suppose next that (b) is satisfied and let j ∈ N+. By the separation theorem, (b) implies
that

({1} ×G(t, x)) ∩ coTepiW (t, x,W (t, x)) 6= ∅ (23)

for all (t, x) ∈ domW ∩ (((0, j)\C ′) × A). By [15, Corollary 2.7] and [12, Corollary 3.2],
for a set Cj ⊂ [0, j], with µ(Cj) = 0, and for all t0 ∈ [0, j]\Cj and all (x0, v0) ∈ P (t0) :=
epiW (t0, ·) there exists a G̃-trajectory (x, v)(·) on [t0, j], with (x(t0), v(t0)) = (x0, v0),
satisfying (x, v)(t) ∈ P (t) for all t ∈ [t0, j] and

∅ 6= Lim sup
ξ→t0+

{
1

ξ − t0
(x(ξ)− x0, v(ξ)− v(t0))

}
⊂ G(t0, x0).

Taking v0 = W (t0, x0), by the measurable selection theorem we conclude that there exist
two measurable functions u(·) and r(·), with u(t) ∈ U(t) and r(t) ∈ [0, c(t)(1 + |x(t)|) −
L(t, x(t), u(t))] for a.e. t ∈ [t0, j], such that v(t) = W (t0, x0) −

∫ t
t0
L(s, x(s), u(s)) ds −∫ t

t0
r(s) ds >W (t, x(t)) for any t ∈ [t0, j]. Then

v(t)− v(t0) >W (t, x(t))−W (t0, x0) ∀ t ∈ [t0, j].

So, dividing by t − t0 the last inequality and passing to the lower limit as t → t0+, (21)
follows for C = ∪j∈N+Cj .

To prove (ii), suppose that (h)′ holds true. Assuming (a)′ and arguing similarly to
(i), we can conclude that there exists C ′ ⊂ (0,∞), with µ(C ′) = 0, such that −pt +
H(t, x,−px,−q) 6 0 for all (pt, px, q) ∈ TepiW (t, x,W (t, x))− and all (t, x) ∈ domW ∩
(((0,∞)\C ′)× intA). Now, assume (b)′ and let j ∈ N+. From Remark 4.1-(iii), Proposition
4.2, and [15, Theorem 2.9] applied to the set-valued map G̃(j − ·, ·), and the measurable
selection theorem, we can find a subset Cj ⊂ [1/j, j], with µ(Cj) = 0, such that for any
(t0, x0) ∈ ((1/j, j]\Cj)× intA and any u0 ∈ U(t0) there exist t1 ∈ [1/j, t0) and a trajectory-
control pair ((x, v), (u, r))(·) satisfying (17) and x([t1, t0]) ⊂ intA. From Lemma 4.6 we
get

v(s)− v(t0) >W (s, x(s))−W (t0, x(t0)) ∀ s ∈ [t1, t0].

Hence, dividing by t0 − s, passing to the lower limit as s → t0−, and since u0 ∈ U(t0) is
arbitrary, we have (22) after taking C = ∪j∈N+Cj .

Proof of Theorem 3.3. By Proposition 4.9, (ii) is equivalent to the following:

(iii) there exists a set C ⊂ (0,∞), with µ(C) = 0, such that for all (t, x) ∈ domW ∩
(((0,∞)\C)×A)

∃ ū ∈ U(t), D↑W (t, x)(1, f(t, x, ū)) 6 −L(t, x, ū), (24)
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for all (t, x) ∈ domW ∩ (((0,∞)\C)× intA)

∀u ∈ U(t), D↑W (t, x)(−1,−f(t, x, u)) 6 L(t, x, u), (25)

and t epiW (t, ·) is locally absolutely continuous.

Furthermore, the implication (i) =⇒ (iii) follows from Proposition 4.4. We have to prove
(ii) =⇒ (i). Fix (t0, x0) ∈ (0,∞)×A.

We first show that W (t0, x0) > V (t0, x0). If W (t0, x0) = +∞, then W (t0, x0) >
V (t0, x0). Suppose next that (t0, x0) ∈ domW . From the separation theorem and (6)
we deduce (23) for all (t, x) ∈ domW ∩ (([0,∞)\C ′) × A). By [12, Corollary 3.2] applied
with P (t) = epiW (t, ·) there exists an absolutely continuous trajectoryX0(·) = (x0(·), v0(·))
solving 

X ′(t) ∈ G̃(t,X(t)) for a.e. t ∈ [t0, t0 + 1], X(t) = (x(t), v(t))

x([t0, t0 + 1]) ⊂ A
x(t0) = x0, v(t0) = W (t0, x0)

v(t) >W (t, x(t)) ∀t ∈ [t0, t0 + 1].

(26)

We claim that for any j ∈ N+ the trajectory X0(·) admits an extension on the interval
[t0, t0+j] to a G̃-trajectory Xj(·) satisfying (26) on [t0, t0+j]. We proceed by the induction
argument on j ∈ N+. Let j ∈ N+ and suppose that Xj(·) = (xj(·), vj(·)) satisfies the claim.
Then, using (23) and applying again [12, Corollary 3.2] on the time interval [t0+j, t0+j+1],
we can find a G̃-trajectory X(·) = (x(·), v(·)) satisfying

X ′(t) ∈ G̃(t,X(t)) for a.e. t ∈ [t0 + j, t0 + j + 1]

x([t0 + j, t0 + j + 1]) ⊂ A
x(t0 + j) = xj(t0 + j), v(t0 + j) = vj(t0 + j)

v(t) >W (t, x(t)) ∀t ∈ [t0 + j, t0 + j + 1].

Putting Xj+1(t) = (xj(t), vj(t)) if t ∈ [t0, t0 + j] and Xj+1(t) = (x(t), v(t)) if t ∈ (t0 +
j, t0 + j + 1], we deduce that Xj+1(·) satisfies our claim. Now, consider the G̃-trajectory
X(t) = (x(t), v(t)) given by

X(t) = Xj(t) if t ∈ [t0 + j, t0 + j + 1].

By the measurable selection theorem, there exist two measurable functions u(·) and r(·),
with u(t) ∈ U(t) and r(t) ∈ [0, c(t)(1 + |x(t)|) − L(t, x(t), u(t))] for a.e. t > t0, such that
v(t) = W (t0, x0)−

∫ t
t0
L(s, x(s), u(s)) ds−

∫ t
t0
r(s) ds for all t > t0. Then

W (t0, x0) >W (t, x(t)) +

∫ t

t0

L(s, x(s), u(s)) ds ∀ t > t0. (27)

Thus (t, x(t)) ∈ domW for all t > t0. Since L(t, ·, ·) > φ(t) for a.e. t > 0, where φ ∈
L1([0,∞);R), it follows that the limit limt→∞

∫ t
t0
L(s, x(s), u(s)) ds exists. So, using (8) and

passing to the limit in (27) as t → ∞ yields W (t0, x0) >
∫∞
t0
L(s, x(s), u(s)) ds. Therefore

W (t0, x0) > V (t0, x0). Consequently W ≥ V .
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We show next that W (t0, x0) 6 V (t0, x0) for all (t0, x0) ∈ [0,∞)×A. If V (t0, x0) = +∞,
then V (t0, x0) > W (t0, x0). So, let us assume that (t0, x0) ∈ domV . Fix ε > 0. By our
assumptions, there exists T ′ > t0 such that domV (t, ·) ⊂ domW (t, ·) for all t > T ′ and

sup
y∈domW (t,·)

|W (t, y)| 6 ε ∀ t > T ′. (28)

Let (x̄(·), ū(·)) be an optimal trajectory-control pair at (t0, x0) and consider si ↑ +∞ with
{si}i ⊂ (T ′,∞). Put X̄(·) = (x̄(·), z̄(·)) where z̄(t) = −

∫ t
t0
L(s, x̄(s), ū(s)) ds. For all

(t, x, w) ∈ [0,∞)× Rn × R define

Q(t, x, w) := {(f(t, x, u), L(t, x, u)) : u ∈ U(t)} .

Applying [6, Theorem 2] we deduce that for any i there exists a Q-trajectory Xi(·) =
(xi(·), zi(·)) solving 

X ′i(t) ∈ Q(t,Xi(t)) for a.e. t ∈ [t0, si]

Xi(si) = (x̄(si), z̄(si))

xi(t) ∈ intA ∀ t ∈ [t0, si)

and
lim
i→∞

∥∥Xi − X̄
∥∥
∞,[t0,si]

= 0.

Hence, by the measurable selection theorem, for any i there exists a measurable selection
ui(t) ∈ U(t) such that (xi(·), ui(·)) satisfies

x′i(t) = f(t, xi(t), ui(t)) for a.e. t ∈ [t0, si]

xi(si) = x̄(si)

xi(t) ∈ intA ∀ t ∈ [t0, si),

lim
i→∞

xi(t0) = x̄(t0), (29)

and

lim
i→∞

∫ si

t0

L(s, xi(s), ui(s)) ds =

∫ ∞
t0

L(s, x̄(s), ū(s)) ds. (30)

Now, fix i ∈ N+ and consider {τj}j ⊂ (T ′, si) with τj → si. Note that, by the dynamic
programming principle, xi(τj) ∈ domV (τj , ·) for all j. Consider the solution wj(·) of the
Cauchy problem {

w′(t) = −L(t, xi(t), ui(t)) for a.e. t ∈ [t0, τj ]

w(τj) = W (τj , xi(τj)).

From Lemma 4.6, we conclude that∫ τj

t0

L(s, xi(s), ui(s)) ds+W (τj , xi(τj)) >W (t0, xi(t0)) ∀j.

Hence, by (28), ∫ τj

t0

L(s, xi(s), ui(s)) ds+ ε >W (t0, xi(t0)) ∀j,
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and taking the limit as j → ∞ we get
∫ si
t0
L(s, xi(s), ui(s)) ds+ ε > W (t0, xi(t0)). Passing

now to the lower limit as i → ∞, using (29), (30), and the lower semicontinuity of W ,
we have

∫∞
t0
L(s, x̄(s), ū(s)) ds + ε > W (t0, x0), i.e., V (t0, x0) + ε > W (t0, x0). Since ε is

arbitrary, we conclude that V (t0, x0) >W (t0, x0). Hence V = W on (0,∞)×A.
Since t  epiW (t, ·) is locally absolutely continuous and W is lower semicontinuous,

lim infs→0+, y→AxW (s, y) = W (0, x) for all x ∈ A. So, fix x0 ∈ A. From (12) and what
precede, we have

W (0, x0) = lim inf
s→0+, y→Ax0

W (s, y) = lim inf
s→0+, y→Ax0

V (s, y) = V (0, x0).

Now, assume in addition (B). Let t̄ ∈ [0,∞) be such that domV (t̄, ·) 6= ∅. By (OPC)
this implies that domV (t, ·) 6= ∅ for all t ∈ [0, t̄]. Moreover, by the dynamic programming
principle, it follows that domV (s, ·) 6= ∅ for all s > t̄. Hence,

|V (s, y)| 6
∫ ∞
s

ψ(ξ) dξ ∀y ∈ domV (s, ·), ∀ s > T.

So, we deduce that V satisfies (8).

5 Lipschitz Continuous Solutions

In [6] we provided sufficient conditions for the local Lipschitz continuity of the value function
under state constraints. Before stating an existence and uniqueness result for Lipschitz
continuous solutions (in the Crandall-Lions sense) of H-J-B equation, we show a geometric
result (in the spirit of Section 3) involving the hypographs of functions.

Proposition 5.1. Under all the assumptions of Theorem 3.3 suppose that the set-valued
map

t {(x, v) ∈ A× R : v 6W (t, x) 6= +∞} (31)

is locally absolutely continuous.
Then the following statements are equivalent:

(i) W = V ;

(ii) there exists a set C ′ ⊂ (0,∞), with µ(C ′) = 0, such that for all (t, x) ∈ domW ∩
(((0,∞)\C ′)×A)

−pt +H(t, x,−px,−q) > 0 ∀ (pt, px, q) ∈ TepiW (t, x,W (t, x))−,

for all (t, x) ∈ domW ∩ (((0,∞)\C ′)× intA)

−pt +H(t, x,−px,−q) 6 0 ∀ (pt, px, q) ∈ ThypoW (t, x,W (t, x))+,

and t epiW (t, ·) is locally absolutely continuous.
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Proof. Notice first of all that by the definition of locally absolutely continuous set-valued
map, the hypograph of W (t, ·) restricted to domW (t, ·) is closed. Assume (i). From
Proposition 4.4-(iv), we can find a subset C ⊂ (0,∞), with µ(C) = 0, such that for any
(t0, x0) ∈ ((0,∞)\C) × intA we have −L(t0, x0, u0) 6 D↓V (t0, x0)(1, f(t0, x0, u0)) for all
u0 ∈ U(t0), i.e., recalling (1),

(1, f(t0, x0, u0),−L(t0, x0, u0)) ∈ ThypoV (t0, x0, V (t0, x0)) ∀u0 ∈ U(t0).

So,
−pt +H(t, x,−px,−q) 6 0 ∀ (pt, px, q) ∈ ThypoV (t, x, V (t, x))+.

The first inequality in (ii) follows from Theorem 3.3.
Now assume (ii). By Theorem 3.3 and the proof of (ii) =⇒ (i) of Theorem 3.3, it is

just sufficient to show (25). Arguing as in the proof of Proposition 4.4-(iii), there exists
C ′ ⊂ (0,∞), with µ(C ′) = 0, such that for any (t0, x0) ∈ ((0,∞)\C ′)×intA and u0 ∈ U(t0),
we can find t1 ∈ (0, t0) and a trajectory-control pair ((x, v), (u, r))(·) satisfying (17) and
x([t1, t0]) ⊂ intA. By Lemma 4.8, taking {si}i ⊂ (t1, t0) with si → t0−, we get that for all
i the solution wi(·) of {

w′(t) = −L(t, x(t), u(t)) for a.e. t ∈ [si, t0]

w(si) = W (si, x(si)),

satisfies wi(t0) = W (si, x(si))−
∫ t0
si
L(s, x(s), u(s)) ds 6W (t0, x(t0)). Hence W (si, x(si))−

W (t0, x0) 6
∫ t0
si
L(s, x(s), u(s)) ds 6 v(si) for all i. Dividing by t0 − si and passing to the

lower limit as i→∞, we have the conclusion.

Remark 5.2. Assuming further that f , L, and W : [0,∞) × A → R are continuous
functions, then, using the same arguments as in the proofs of [10, Theorem 4.3 and Lemma
4.3], the assumption (31) in Proposition 5.1 can be skipped and (i) is equivalent to the
following:{

−pt + H (t, x,−px) > 0 ∀(t, x) ∈ (0,∞)×A, ∀ (pt, px) ∈ ∂−W (t, x)

−pt + H (t, x,−px) 6 0 ∀ (t, x) ∈ (0,∞)× intA, ∀ (pt, px) ∈ ∂+W (t, x).

From Theorem 3.3 and Proposition 5.1 we get immediately the following three corollar-
ies.

Corollary 5.3. Assume (h)′′ and (OPC). Let W : [0,∞) × A → R ∪ {+∞} be a lower
semicontinuous function such that domV (t, ·) ⊂ domW (t, ·) 6= ∅ for all large t > 0 and (8)
holds true. Suppose that

µ{ t ∈ [0,∞) : ∃x ∈ A, (t, x) ∈ domW, {0} 6= TepiW (t, x,W (t, x))− ⊂ R× Rn × {0} } = 0.

Then the following statements are equivalent:

(i) W = V ;
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(ii) there exists a set C ′ ⊂ (0,∞), with µ(C ′) = 0, satisfying for all (t, x) ∈ domW ∩
(((0,∞)\C ′)× ∂A)

−pt + H (t, x,−px) > 0 ∀ (pt, px) ∈ ∂−W (t, x),

for all (t, x) ∈ domW ∩ (((0,∞)\C ′)× intA)

−pt + H (t, x,−px) = 0 ∀ (pt, px) ∈ ∂−W (t, x),

and t epiW (t, ·) is locally absolutely continuous.

Corollary 5.4. Under all the assumptions of Corollary 5.3 suppose that the set-valued map

t {(x, v) ∈ A× R : v 6W (t, x) 6= +∞} ,

is locally absolutely continuous and

µ{ t ∈ [0,∞) : ∃x ∈ A, (t, x) ∈ domW, {0} 6= ThypoW (t, x,W (t, x))+ ⊂ R× Rn × {0} } = 0.

Then the following statements are equivalent:

(i) W = V ;

(ii) there exists a set C ′ ⊂ (0,∞), with µ(C ′) = 0, satisfying for all (t, x) ∈ domW ∩
(((0,∞)\C ′)×A)

−pt + H (t, x,−px) > 0 ∀ (pt, px) ∈ ∂−W (t, x),

for all (t, x) ∈ domW ∩ (((0,∞)\C ′)× intA)

−pt + H (t, x,−px) 6 0 ∀ (pt, px) ∈ ∂+W (t, x),

and t epiW (t, ·) is locally absolutely continuous.

Remark 5.5. Let W : [0,∞)×A→ R be a locally Lipschitz continuous function. Then it
is well known that{

0 6= (pt, px, q) ∈ TepiW (t, x,W (t, x))− =⇒ q 6= 0

0 6= (pt, px, q) ∈ ThypoW (t, x,W (t, x))+ =⇒ q 6= 0.

and if ∂−W (t, x) 6= ∅, then TepiW (t, x,W (t, x))− = ∪λ>0 λ(∂−W (t, x),−1). Similarly, if
∂+W (t, x) 6= ∅, then ThypoW (t, x,W (t, x))+ = ∪λ>0 λ(∂+W (t, x),−1).

From Corollary 5.4 and Remark 5.5, we deduce the following:

Corollary 5.6. Assume (h)′′ and (OPC). Let W : [0,∞) × A → R be a locally Lipschitz
continuous function satisfying (8). Then the following statements are equivalent:

(i) W = V ;
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(ii) there exists a set C ′ ⊂ (0,∞), with µ(C ′) = 0, satisfying for all (t, x) ∈ domW ∩
(((0,∞)\C ′)×A)

−pt + H (t, x,−px) > 0 ∀ (pt, px) ∈ ∂−W (t, x),

for all (t, x) ∈ domW ∩ (((0,∞)\C ′)× intA)

−pt + H (t, x,−px) 6 0 ∀ (pt, px) ∈ ∂+W (t, x).

Now, let l : [0,∞)× Rn × Rm → [0,∞) be a bounded measurable function, λ > 0, and

L(t, x, u) = e−λtl(t, x, u). (32)

Proposition 5.7. Assume (32), (h)′′, and (IPC).
Then, there exists λ̄ > 0 such that for all λ > λ̄ the value function V is the unique

locally Lipschitz continuous function on [0,∞)×A satisfying
−pt + H (t, x,−px) > 0 ∀ (pt, px) ∈ ∂−V (t, x), for a.e. t > 0, ∀x ∈ A
−pt + H (t, x,−px) 6 0 ∀ (pt, px) ∈ ∂+V (t, x), for a.e. t > 0, ∀x ∈ intA,

limt→∞ supy∈A |V (t, y)| = 0.

(33)

Proof. From [6, Theorem 4] and the proof of [6, Corollary 1] it follows that there exists
λ̄ > 0 such that for all λ > λ̄ the value function V is locally Lipschitz continuous on
[0,∞)×A. Moreover, arguing as in the proofs (i) =⇒ (ii) of Theorem 3.3 and Proposition
5.1, and from Remarks 3.1-(i) and 5.5, we deduce that V satisfies (33).

Now, let W : [0,∞)×A→ R be a locally Lipschitz continuous function satisfying (33).
From the proof (ii) =⇒ (i) of Theorem 3.3 it follows that W > V on (0,∞) × A. Let
(t0, x0) ∈ (0,∞) × A, (x̄(·), ū(·)) be optimal at (t0, x0), and ε > 0, T ′ > t0 such that (28)
holds true. Consider si ↑ +∞ with {si}i ⊂ (T ′,∞). Fix i ∈ N+ and let {τj}j ⊂ (t0, s0) and
{yj}j ⊂ intA be such that τj → t0 and yj → x0. Repeating the same arguments as in the
proof of the implication (ii) =⇒ (i) of Theorem 3.3 and using [6, Theorem 2], we show that
for all j there exists a measurable selection uj(·) ∈ U(·) on [τj , si] such that (xj(·), uj(·))
satisfies 

x′j(t) = f(t, xj(t), uj(t)) for a.e. t ∈ [τj , si]

xj(τj) = yj

xj(t) ∈ intA ∀ t ∈ [τj , si],

lim
j→∞

‖xj − x̄‖∞,[τj ,si] = 0, (34)

and

lim
j→∞

∫ si

τj

L(s, xj(s), uj(s)) ds =

∫ si

t0

L(s, x̄(s), ū(s)) ds. (35)

Consider the solution wj(·) of the Cauchy problem{
w′(t) = −L(t, xj(t), uj(t)) for a.e. t ∈ [τj , si]

w(τj) = W (τj , yj).
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From Lemma 4.8 we get

W (τj , yj)−
∫ si

τj

L(s, xj(s), uj(s)) ds 6W (si, xj(si)) ∀ j.

So, by (28), passing to the limit as j → ∞, using (34), (35), and the continuity of W , we
have W (t0, x0) 6

∫ si
t0
L(s, x̄(s), ū(s)) ds+ ε. Then, passing to the limit as i→∞ and since

ε is arbitrarily small, we get W (t0, x0) 6 V (t0, x0).
Finally, since V = W on (0,∞) × A, from the continuity of V and W , the conclusion

follows.

Appendix

Proof of Lemma 4.6. Notice that, by the separation theorem, (18) is equivalent to {−1} ×
−G(t, x) ⊂ coTepiW (t, x, v) for all v >W (t, x) and all (t, x) ∈ (((0,∞)\C ′)×intA)∩domW .
Let 0 < τ0 < τ1. Thus

(1, f̃(s, x, u), L̃(s, x, u)) ∈ coTgraphQ(s, x, v) (36)

for a.e. s ∈ [0, τ1−τ0], any (x, v) ∈ Q(s)∩(intA×R), and any u ∈ U(s), where f̃(s, x, u) :=
−f(τ1 − s, x, u), L̃(s, x, u) := L(τ1 − s, x, u), and Q(s) := epiW (τ1 − s, ·). Consider a
trajectory-control pair (x(·), u(·)) solving (3) on I = [τ0, τ1], with x([τ0, τ1]) ⊂ intA and
(τ1, x(τ1)) ∈ domW . Putting ũ(·) = u(τ1 − ·), we claim that dQ(s)((y(s), w̃(s))) = 0 for all
s ∈ [0, τ1−τ0], where y(·) = x(τ1−·) and w̃(·) = w(τ1−·) are the unique solutions of y′(s) =
f̃(s, y(s), ũ(s)) and w̃′(s) = L̃(s, y(s), ũ(s)) a.e. s ∈ [0, τ1 − τ0], respectively, with y(0) =
x(τ1) and w̃(0) = W (τ1, x(τ1)). Putting g(s) = dQ(s)((y(s), w̃(s))), from [15, Lemma 4.8],

applied to the single-valued map s  
{

(f̃(s, y(s), ũ(s)), L̃(s, y(s), ũ(s)))
}

, it follows that

g(·) is absolutely continuous. Pick (ξ(s), r(s)) ∈ Q(s) with g(s) = |(y(s), w̃(s))− (ξ(s), r(s))|
for all s ∈ [0, τ1− τ0]. We claim that g(·) ≡ 0 on (0, τ1− τ0]. Indeed, otherwise, we can find
T ∈ (0, τ1 − τ0] with g(T ) > 0. Denoting t∗ = sup {t ∈ [0, T ] : g(t) = 0}, let ε > 0 be such
that ξ(s) ∈ intA and g(s) > 0 for any s ∈ (t∗, t∗ + ε]. Consider s ∈ (t∗, t∗ + ε) where g(·),
y(·), and w̃(·) are differentiable, with y′(s) = f̃(s, y(s), ũ(s)) and w̃′(s) = L̃(s, y(s), ũ(s)).
Let (θ, v) ∈ TgraphQ(s, ξ(s), r(s)) and θi → θ, vi → v, hi → 0+ satisfy

(ξ(s), r(s)) + hivi ∈ Q(s+ hiθi) ∀i.

Then, setting Z = (y(s), w̃(s)) and Y = (ξ(s), r(s)), we get

g(s+ hiθi)− g(s) 6 |(y(s+ hiθi), w̃(s+ hiθi))− Y − hivi| − |Z − Y | .

Dividing this inequality by hi and passing to the limit as i→∞ we have

g′(s)θ 6 〈 p,
(
f̃(s, y(s), ũ(s)), L̃(s, y(s), ũ(s))

)
θ − v〉, (37)

where p =
Z − Y
|Z − Y |

. Since (37) holds for any (θ, v) ∈ TgraphQ(s, ξ(s), r(s)). Taking convex

combinations of elements in TgraphQ(s, ξ(s), r(s)) we conclude that (37) holds for all (θ, v) ∈
coTgraphQ(s, ξ(s), r(s)). By (36) the inequality (37) holds true for

θ = 1 & v =
(
f̃(s, ξ(s), ũ(s)), L̃(s, ξ(s), ũ(s))

)
.
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Therefore g′(s) 6 k(s) |y(s)− ξ(s)| 6 k(s)g(s). From the Gronwall lemma we conclude that
g(·) ≡ 0 on [t∗, t∗+ε], leading to a contradiction. Thus g = 0 and the proof is complete.
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