
HAL Id: hal-02133738
https://hal.science/hal-02133738

Submitted on 19 May 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A phase field model for dislocation climb
Pierre-Antoine Geslin, Benoît Appolaire, Alphonse Finel

To cite this version:
Pierre-Antoine Geslin, Benoît Appolaire, Alphonse Finel. A phase field model for dislocation climb.
Applied Physics Letters, 2014, 104 (1), pp.011903. �10.1063/1.4860999�. �hal-02133738�

https://hal.science/hal-02133738
https://hal.archives-ouvertes.fr


A phase field model for dislocation climb
Pierre-Antoine Geslin, Benoît Appolaire, and Alphonse Finel 
 
Citation: Applied Physics Letters 104, 011903 (2014); doi: 10.1063/1.4860999 
View online: http://dx.doi.org/10.1063/1.4860999 
View Table of Contents: http://scitation.aip.org/content/aip/journal/apl/104/1?ver=pdfcov 
Published by the AIP Publishing 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP:

195.221.211.137 On: Tue, 07 Jan 2014 15:34:25

http://scitation.aip.org/content/aip/journal/apl?ver=pdfcov
http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/www.aip.org/pt/adcenter/pdfcover_test/L-37/2079205716/x01/AIP-PT/APL_ArticleDL_1213/aipToCAlerts_Large.png/5532386d4f314a53757a6b4144615953?x
http://scitation.aip.org/search?value1=Pierre-Antoine+Geslin&option1=author
http://scitation.aip.org/search?value1=Beno�t+Appolaire&option1=author
http://scitation.aip.org/search?value1=Alphonse+Finel&option1=author
http://scitation.aip.org/content/aip/journal/apl?ver=pdfcov
http://dx.doi.org/10.1063/1.4860999
http://scitation.aip.org/content/aip/journal/apl/104/1?ver=pdfcov
http://scitation.aip.org/content/aip?ver=pdfcov
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France

(Received 24 September 2013; accepted 17 December 2013; published online 7 January 2014)

We propose a phase field method to model consistently dislocation climb by vacancy absorption or

emission. It automatically incorporates the exact balance between the vacancy flux and the phase

field associated with the dislocation evolution, enforced by the conserved character of the total

population of vacancies. One of its major advantage is the natural introduction of a dynamic

coefficient controlling the kinetics of vacancy emission/absorption by the dislocation. We also

derived a closed-form expression of the climb rate valid from the diffusion-limited to the

attachment-limited regimes. VC 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4860999]

Dislocations are linear defects responsible for plastic de-

formation in crystalline solids. These defects change glide

plane by absorbing point defects (climb). Whereas this climb

mechanism is inhibited at low temperature, it becomes an

essential part of plastic activity at high-temperature (creep).

Therefore, the analysis of climb dynamics is mandatory to

have a better understanding of the creep behavior of metals

and alloys.

Kabir et al.1 used a Monte-Carlo method to study dislo-

cation climb in iron. The vacancy concentration and the dis-

location density in these simulations are inherently very high

because of the limited system size. Climb has also been

investigated qualitatively with the phase field crystal tech-

nique2 but with the same limitation in system size.

To access more relevant scales, recent works3–5 intro-

duced climb in Dislocation Dynamics (DD) modeling based

on vacancy diffusion. The climb rate is obtained by integrat-

ing analytically Fick’s equation with strong assumptions.

Especially, each point of the dislocation is assumed to act as

a perfect source/sink of vacancies and the elastic interactions

between dislocations and vacancies are neglected. This first

assumption can be spurious in some cases where the jogs

concentration along the line is low and climb becomes lim-

ited by point defect emission/absorption.6

Gao et al.7 coupled pipe diffusion theory and DD to

investigate climb dynamics in case of low jog concentration,

but neglecting bulk diffusion, an essential feature of disloca-

tion climb. Among the previously developed models, none is

able to investigate climb behavior influenced by both bulk

diffusion and absorption/emission kinetics.

The phase field method seems particularly adapted to

the study of dislocation climb because it naturally incorpo-

rates diffusion processes. Phase field models have been

extensively used to reproduce microstructure evolutions at

mesoscale.8,9 They rely on an out-of-equilibrium thermody-

namics formulation, incorporate elastic long range interac-

tions and the coupling of a microstructure with defects, such

as dislocations.10–13 It is therefore essential to extend its

applicability to dislocation climb. A phase field approach of

climb has been proposed recently14 to analyze prismatic loop

evolution by point defect absorption in irradiated iron.

However, this formulation does not guarantee the correct

balance between the defect fluxes in the matrix and the dislo-

cation evolution (the dislocation loop may evolve unrealisti-

cally without defect fluxes in the matrix).

In the present Letter, we propose a general phase field

model to investigate dislocation climb. We distinguish bulk

vacancies and vacancies composing dislocation loops and

formulate dynamic equations such that the total number of

vacancies is conserved. By means of a dynamic coefficient,

the exchange rate between the two populations of vacancies

can be controlled. This parameter can account for a limiting

absorption/emission mechanism. We study its influence on

the climb rate.

We restrict ourselves to the case of non-irradiated mate-

rials where the role of interstitials on climb is negligible

compared to vacancies. Our model relies on different fields,

the bulk vacancy concentration denoted by c(r) and a set of

phase fields /iðrÞ representing dislocation loops lying within

specific crystallographic planes: /iðrÞ ¼ 1 if r is inside a

loop of type i and 0 outside. For the sake of simplicity, we

will focus on a single loop within a single plane and along

which the dislocation is purely edge. Generalization to more

complex situations is straightforward.

The free energy density of the system is decomposed in

three terms, the vacancy free energy fch(c), the dislocation

core energy fcoreð/Þ, and the elastic energy felð/; cÞ.
In the dilute solution limit, we have

fchðcÞ ¼
Ef

X
cþ kT

X
c lnðcÞ þ ð1� cÞlnð1� cÞ½ �; (1)

where Ef is the formation energy of vacancies and X the

atomic volume.

The dislocation core energy fcoreð/Þ is written as the

sum of a double-well potential and a gradient term

fcoreð/Þ ¼ A/2ð1� /Þ2 þ B

2
jn � $/j2; (2)

where n denotes the normal to the vacancy loop. To avoid

unrealistic surface energy on the surface of the loop, the gra-

dient term contribution is nullified along n. The width anda)pageslin@onera.fr

0003-6951/2014/104(1)/011903/4/$30.00 VC 2014 AIP Publishing LLC104, 011903-1

APPLIED PHYSICS LETTERS 104, 011903 (2014)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP:

195.221.211.137 On: Tue, 07 Jan 2014 15:34:25

http://dx.doi.org/10.1063/1.4860999
http://dx.doi.org/10.1063/1.4860999
mailto:pageslin@onera.fr
http://crossmark.crossref.org/dialog/?doi=10.1063/1.4860999&domain=pdf&date_stamp=2014-01-07


energy of the dislocation core determine the parameters A
and B.

The elastic energy is expressed as

felðc;/; �Þ ¼
1

2
ð�� �0ðc;/ÞÞ : C : ð�� �0ðc;/ÞÞ � ra : �;

(3)

where C is the stiffness tensor, ra the applied stress tensor,

and double dots “:” denote double contractions. The eigen-

strain tensor �0ðc;/Þ can be divided into a vacancy contribu-

tion �0
vðcÞ and a dislocation loop contribution �0

l ð/Þ. The

eigenstrain contribution of a single loop is expressed as

follows: e0
l;ijð/Þ ¼ 1

2
ðbinj þ bjniÞhð/ÞdðnÞ, where bi is the

component of the dislocation Burgers vector, d the Dirac

function, and n the distance to the loop plane. The function

hð/Þ is a monotonic function with h(0)¼ 0, h(1)¼ 1, and

h0ð0Þ ¼ h0ð1Þ ¼ 0. The generalization to any number of

loops is straightforward. We suppose that the vacancy eigen-

strain varies linearly with c, which is valid for low concen-

trations, and that the eigenstrain associated with a single

vacancy is dijV
�=3X (V* is the vacancy relaxation volume).

In this paper, we neglect the influence of elastic interaction

between vacancies and dislocations by setting V*¼ 0. A

detailed study on the influence of this parameter on the climb

rate will be presented elsewhere.

The phase field f/g and the vacancy field {c} are not

conserved. However, the dislocation loop grows/shrinks by

absorbing/emitting vacancies such that the combined field

w ¼ cþ / is conserved. Therefore, to ensure its conserva-

tion, the evolution of {w} is supposed to follow a Cahn-

Hilliard equation:

_w ¼ r �Mr dF�

dw
; (4)

where the driving force is controlled by the total free energy

F�ðfwg; f/g; f�gÞ expressed in terms of the fields {w} and

f/g and f�g (kinetics on strain fields f�g will be addressed

below). The physical meaning of the mobility M will be dis-

cussed below. To close the set of dynamical equations, we

write an Allen-Cahn dynamics on the non-conserved param-

eter f/g

_/ ¼ �L
dF�

d/
; (5)

where L is a kinetic coefficient. In order to express the dy-

namics in terms of the more natural concentration and dislo-

cation fields {c}, f/g, the change of variable c ¼ w� / is

performed to give

_c ¼ r �Mr dF

dc
þ L

dF

d/
� dF

dc

� �
; (6)

_/ ¼ �L
dF

d/
� dF

dc

� �
; (7)

where now the free energy Fðfcg; f/g; f�gÞ is a functional

of the fields {c} and f/g and is expressed as the integral of

the sum of the densities of Eqs. (1)–(3). A quick inspection

of Eq. (6) indicates that M is simply the vacancy mobility,

related to the diffusivity Dv by MðcÞ ¼ XDvcð1� cÞ=kT for

dilute systems. The term L dF=d/� dF=dcð Þ plays the role

of a source term in Eq. (6) and controls the exchanges

between the fields f/g and {c} at a rate related to L.

The absorption/emission of vacancies at the dislocation

core is usually assumed to be fast compared to the bulk dif-

fusion of vacancies,3,15 such that the surrounding vacancies

remain at equilibrium with the dislocation cores. This is the

local equilibrium assumption. However, the vacancy absorp-

tion/emission at the dislocation is a complex mechanism

involving the jog density along the line, pipe diffusion, and

the elementary mechanism of absorption/emission at a jog.

In fcc and hcp metals, jogs are high energy defects and their

concentration along the dislocation can be low.6 In such

cases, the absorption/emission mechanism involves the dif-

fusion of point defects to/from the existing jogs and the

nucleation of new jogs, two phenomena slowing down the

dislocation climb. Analytical models for the climb rate in

these situations can be found in the literature.6,16,17 The exis-

tence of such regimes where the climb rate is limited by the

absorption mechanism is supported by experimental works:

on gold18 where the measured climb rate differs from the

one predicted with the local equilibrium assumption, and on

magnesium6,19 where the activation energy of climb is found

to be significantly larger than the self-diffusion energy.

The parameter L can be chosen to reproduce the whole

spectrum of behaviors between these two limit cases. In the

spirit of a coarse-graining procedure, the parameter L reflects

a lower space and time scale kinetic process which appears

at mesoscale as a thermally activated mechanism. Therefore,

L should be written as L ¼ L0 expð�DE=kTÞ, where DE is an

energy barrier (possibly involving the jog formation energy)

and L0 a coefficient independent of temperature.

The dimensionless equations are obtained after normaliza-

tion with the characteristic length l0¼ b, time t0 ¼ b2=Dv, and

energy E0 ¼ kTb3=Xc0ð1� c0Þ, where c0 is the equilibrium

vacancy concentration. In particular, the dimensionless vacancy

mobility at equilibrium becomes �Mðc0Þ ¼ 1 and the dimen-

sionless kinetic coefficient is written as �L ¼ Lb2=Mðc0Þ. Thus,

if �L � 1 (respectively, �L � 1), the attachment dynamics is

much faster (much slower) than vacancy bulk diffusion.

Equations (6) and (7) are integrated numerically with a

finite difference method on a staggered grid20,21 in Fourier

space and using an explicit Euler scheme. As elastic relaxa-

tion is much faster than diffusion processes, the elastic fields

are considered to follow quasi-statically the concentration

and plastic fields c and /. Therefore, static mechanical equi-

librium r � r ¼ 0 is solved at each time step.

We use the parameters of aluminum (see Table I) taken

from Refs. 22 and 23. We use the Voigt isotropic average22

under the argument that elastic anisotropy is small in alumi-

num. The dislocation core energy has been arbitrary set to

Ec ¼ 1:0 eVÅ
�1

.

The equations are discretized on a grid of dimensions

Lx¼ 364.8 Å and Ly¼ 729.60 Å with a grid spacing

d¼ 2.85 Å. A dislocation dipole is introduced with a platelet

/ ¼ 1 of thickness d at the center of the simulation box (see

inset in Fig. 1). Elastic equilibrium and Eq. (7) are solved

with periodic boundary conditions whereas the vacancy

011903-2 Geslin, Appolaire, and Finel Appl. Phys. Lett. 104, 011903 (2014)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP:

195.221.211.137 On: Tue, 07 Jan 2014 15:34:25



equilibrium concentration c0 is imposed at the boundaries to

mimic an infinite source. Different external shear stresses ra

(inset in Fig. 1) are applied to study the influence of the me-

chanical force on the climb rate. The climb rate is deter-

mined once a stationary regime is reached and before elastic

interactions with periodic images become significant.

Fig. 1 displays the stationary climb rate (symbols) as a

function of the applied stress for different values of the ki-

netic absorption/emission coefficient �L.

As observed in Fig. 1, the decrease of �L changes drasti-

cally the climb rate behavior. This behavior can be investi-

gated further by means of an analytical treatment (asymptotic

analysis) in a stationary regime. We assume that the character-

istic length of the vacancy concentration profile is much larger

than the core width. In this limit, we expect that the phase

field will be of the form /ðr; tÞ ¼ /ðr � R0ðtÞÞ, where R0(t)
represents the position of the dislocation core. The spatial de-

rivative of / along the climb direction is sharply peaked

around the dislocation position on a length scale of the order

of the dislocation core. Multiplying Eq. (7) by this derivative

and integrating through a small domain leads to a single equa-

tion that relates the climb rate v1 ¼ _R0 to the concentration cd

in the neighborhood of the core and to the applied stress ra

v1 ¼
3Lw

2
lðcdÞ � rað Þ; (8)

where lðcdÞ ¼ @fch=@c denotes the chemical potential and w
the core width. To find the concentration cd which depends

on the vacancy concentration profile, we consider that the

vacancies follow a quasi-static kinetics with respect to the

dislocation field. This is a valid approximation in the case of

a moderate driving force.24 By approximating the chemical

potential by lðcÞ ¼ kT lnðc=c0Þ, the stationary equation for

the concentration c becomes Dc¼ 0. Following standard

approaches,3,22 this equation can be solved in a hollow

cylinder centered on the dislocation with external radius R
and internal radius rd subjected to the boundary conditions

c(R)¼ c0 and c(rd)¼ cd. The climb rate is then obtained from

the spatially averaged vacancy flux towards the dislocation

v2 ¼
2p Dvc0

b lnðR=rdÞ
1� cd

c0

� �
; (9)

which is also function of cd. The climb rates given by Eqs.

(8) and (9) should of course be the same. This leads to a

boundary condition on cd which reads

cd

c0

¼
�L

C
W

C
�L

exp
C
�L
þ raX

kT

� �� �
; (10)

where W(x) is the Lambert function, defined by WðxÞeWðxÞ ¼ x
and C ¼ 4pb=3w lnðR=rdÞ is a dimensionless factor function

of geometrical parameters and is of the order of unity. Injecting

this solution in Eq. (9) leads to the dislocation climb rate. In the

limit �L � C, where the climb rate is controlled by diffusion, a

first order expansion in C=�L leads to

v�L�C ’
2p Dvc0

b lnðR=rdÞ

�
1� e

raX
kT

�
1þ C

�L
ð1� e

raX
kT Þ
��
: (11)

When �L ! þ1, we obtain exactly the solution derived with

the local equilibrium assumption.3,22 In the opposite case
�L � C, where climb is controlled by the emission/absorption

kinetics, an asymptotic expansion of the W-Lambert function

gives

v�L�C ’ �
3

2
wraL; (12)

where the expressions of �L and C have been used. In this

limit, the climb rate is linear in ra and L, as expected.

To compare quantitatively the numerical climb rate with

the analytical solution, a least-square fit is performed on our nu-

merical results with the geometrical factor g ¼ 2p=lnðR=rdÞ as

the only fitting parameter. Indeed, this parameter may differ

from its analytical expression considering that the boundary

condition in the numerical and analytical solutions are not

the same. We find g¼ 2.3 which is still very close to

2p=lnðLx=wÞ ¼ 2:1, obtained with the natural choices for the

external radius R¼ Lx/2 and the internal radius rd¼w/2.

The continuous lines in Fig. 1 represent the fitted solution. The

small discrepancies may come from the elastic interactions

between periodic images in the numerical results and from the

non-stationarity of the concentration field naturally incorporated

in our simulation and neglected in the analytical treatment.

In conclusion, we have proposed a phase field model for

dislocation climb. A dynamical coefficient enables to control

TABLE I. Simulation parameters.22,23

Burgers vector b 2.85 Å

Elastic constant k 59 GPa

Elastic constant l 26 GPa

Vacancy formation energy Ef 0.67 eV

Vacancy migration energy Em 0.61 eV

Pre-exponential factor D0 1:51� 10�5 m2 s�1

Atomic volume X 16.4 Å3

Dislocation core energy Ec 1.0 eV Å�1

Dislocation core width wc 17.1 Å

FIG. 1. Climb rate vs. external stress ra for different values of �L at

T¼ 812 K from simulation results (symbols) and analytical solutions for the

climb rate combining Eqs. (9) and (10) with g ¼ 2p=lnðR=rdÞ as a fitting pa-

rameter (lines). Simulation set up (inset).
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the kinetic of emission/absorption of vacancies at the dislo-

cation. Using this coefficient, the whole spectrum between

absorption-limited and diffusion-limited climb is accessible.

An analytical analysis of the model is presented and a

closed-form expression of the climb rate is derived, which

reproduces with accuracy the numerical data obtained with

our simulations. In principle, a quantitative estimate of the

parameter L can be obtained from large scale molecular dy-

namics simulations. It can also be evaluated by analyzing va-

cancy diffusion profile at the level of the jogs with an

analytical approach similar to the asymptotic analysis used

above. This would lead to an expression of an effective

dynamic coefficient L function of dislocation properties

(jog density, pipe diffusion coefficient).25 Large scale simu-

lations, such as those needed to study creep can be reached

within this phase field approach by using a larger grid spac-

ing, provided it stays smaller than any other characteristic

length scales (in particular dislocations curvature radius and

mean dislocation spacing). This phase field model also opens

the possibility to investigate the climb behavior of disloca-

tions junctions, and walls, out of reach of the current DD

approaches3–5 because of the small distances between dislo-

cations. Moreover, this model can be coupled to a phase field

model for dislocation glide11 and will thus provide a com-

plete picture of dislocation dynamics in solids and its cou-

pling to microstructure evolutions.

We would like to thank Yann Le Bouar for fruitful

discussions.
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