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ABSTRACT

We present the Multiscale non-Gaussian Segmentation (MnGSeg) analysis technique. This wavelet-based method combines the anal-
ysis of the probability distribution function (PDF) of map fluctuations as a function of spatial scales and the power spectrum analysis
of a map. This technique allows us to extract the non-Gaussianities identified in the multiscaled PDFs usually associated with turbu-
lence intermittency and to spatially reconstruct the Gaussian and the non-Gaussian components of the map. This new technique can
be applied on any data set. In the present paper, it is applied on a Herschel column density map of the Polaris flare cloud. The first
component has by construction a self-similar fractal geometry similar to that produced by fractional Brownian motion (fBm) simula-
tions. The second component is called the coherent component, as opposed to fractal, and includes a network of filamentary structures
that demonstrates a spatial hierarchical scaling (i.e. filaments inside filaments). The power spectrum analysis of the two components
proves that the Fourier power spectrum of the initial map is dominated by the power of the coherent filamentary structures across
almost all spatial scales. The coherent structures contribute increasingly from larger to smaller scales, without producing any break in
the inertial range. We suggest that this behaviour is induced, at least partly, by inertial-range intermittency, a well-known phenomenon
for turbulent flows. We also demonstrate that the MnGSeg technique is itself a very sensitive signal analysis technique that allows the
extraction of the cosmic infrared background (CIB) signal present in the Polaris flare submillimetre observations and the detection of
a characteristic scale for 0.1. l. 0.3 pc. The origin of this characteristic scale could partly be the transition of regimes dominated by
incompressible turbulence versus compressible modes and other physical processes, such as gravity.

Key words. ISM: structure – turbulence – methods: data analysis – methods: statistical – techniques: image processing –
ISM: general

1. Introduction

A good statistical characterisation and morphological analysis
of the interstellar medium (ISM) is important for many astro-
physical studies. Identifying the general gas density distribution
of molecular clouds as a function of their hosted star formation
activity allows us to recognise the dominating physical process
of the region and thus to make a link between the ISM struc-
ture formation and the emergence of star formation activity. A
detailed decomposition of the signal received at different wave-
lengths is also fundamental in order to characterise correctly the
properties of the different foreground Galactic components, such
as the temperature and column density of ISM gas, and the extra-
galactic components, such as the cosmic infrared background
(CIB) and the cosmic microwave background.

For these reasons, a reliable morphological analysis of inter-
stellar maps is needed. During the last decades, some statistical
tools became the foundations of many theories of ISM structure
formation and star formation, such as the Fourier power spec-
trum (Crovisier & Dickey 1983; Green 1993; Miville-Deschênes
et al. 2003), the probability distribution function (PDF; Padoan
et al. 1997b; Federrath et al. 2008; Schneider et al. 2013;

Burkhart et al. 2017), and the ∆-variance (Stutzki et al. 1998;
Ossenkopf et al. 2008a,b), a method that filters and averages
the structures of different sizes l in a map to produce a spec-
trum showing the relative amount of structure as a function of
structure size. Column density PDFs and the ∆-variance slope
have proven to be strongly dependent on the type of forcing
(compressive or non-compressive) present in turbulent medium,
and are sensitive to turbulence intermittency (Federrath et al.
2009, 2010). From theory and molecular cloud simulations, it has
been proposed that turbulent motions are the main cloud-shaping
mechanism and that they produce a lognormal low (column) den-
sity PDF (e.g. Padoan & Nordlund 2002; Hennebelle & Chabrier
2008; Ward et al. 2014; Burkhart 2018) followed by a power-law
tail due to self-gravitating gas (e.g. Kritsuk et al. 2011; Girichidis
et al. 2014). This scenario is supported by observations using
Herschel dust column density maps or extinction maps (e.g.
Schneider et al. 2013, 2015; Kainulainen et al. 2013; Pokhrel
et al. 2016; Alves et al. 2017), while a pressure governed power-
law tail is proposed by Kainulainen et al. (2011) and Tremblin
et al. (2014).

In addition, fluctuations of some physical properties in the
ISM, such as the density, can be so large that the average value
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provides inadequate information. For instance, in their analysis
of the statistical properties of the line centroid velocity in a tur-
bulent, compressible, but gravitationless simulation, Lis et al.
(1996) found that the global PDF of centroid velocity is close
to Gaussian. However, PDFs of the centroid velocity increments,
i.e. the two-point statistics for a centroid velocity map separated
by a distance l, show non-Gaussian wings increasing towards
small values of l. The same behaviour has also been measured
on CO data for the Polaris and Taurus fields (Hily-Blant et al.
2008).

The dilution effect of averaging large density or velocity
fluctuations over a field is also affecting the Fourier power
spectrum and the ∆-variance analysis. As noted by Panopoulou
et al. (2017), even if the distributions of structure widths in a
field, in simulated data or in observations, demonstrate clearly
the existence of a dominating characteristic scale, the spatial
power spectrum analysis still show a unique power law attributed
to a scale-free medium. The power spectrum analysis of the
Polaris field observed by Herschel is a good example (Miville-
Deschênes et al. 2010; Men’shchikov et al. 2010) where the
field is dominated by highly contrasted structures and where
the spatial power spectrum has a single power law without
any break pointing at a characteristic scale. Similar results
were obtained on Polaris using the ∆-variance method (Stutzki
et al. 1998), which shows the same information content as the
Fourier power spectrum (Bensch et al. 2001; Ossenkopf et al.
2008a). In addition, a new technique recently introduced by
Ossenkopf-Okada & Stepanov (2019) that compares the power
of isotropic and anisotropic structures shows that Polaris has an
almost scale-free filamentary spectrum. Schneider et al. (2011)
and Elia et al. (2014) concluded, by applying the ∆-variance on
nearby molecular clouds and regions across the Galactic plane,
that despite the presence of characteristic scales, the underly-
ing cloud structure is self-similar. This discrepancy between
the common scale-free medium measured in the ISM and the
presence of highly contrasted filamentary structures remains a
fundamental issue in our understanding of the density distribu-
tion of the ISM. From these results we can conclude that the
typical power spectrum analysis used to measure the hierarchical
nature of the ISM fails to identify the typical sharp transitions in
density and filamentary structures in the ISM. These structures
are nevertheless physically important since they are crucial to the
mechanisms of star formation (e.g. Elmegreen et al. 2001).

Historically, Crovisier & Dickey (1983) and Green (1993)
measured the first angular power spectrum of HI emission
directly from interferometric data. Even if Green (1993) admitted
that various structures in the ISM, such as sheets and filaments,
dominate at multiple spatial scales, the fact that there was no
preferred angular scale measured in the HI emission power
spectrum was interpreted as a sign that turbulence must play a
significant role in the hierarchical structure of the ISM. In order
to test the fractal nature of the ISM, Elmegreen et al. (2001) com-
pared HI emission maps of the Large Magellanic Cloud (LMC)
with fractal models made from the inverse Fourier transform of
random complex-number noise in the u-v plane multiplied by a
power law. These models are often called fractional Brownian
motion (fBm). The resulting fractal models were also exponenti-
ated in order to reproduce the log-normal PDF usually obtained
in simulations of magnetohydrodynamical turbulence. However,
even if the fractal model respects similar one-point and two-
point statistics compared to the LMC (the PDF and the power
spectrum analysis, respectively) the model lacks all the usual
structures associated with the ISM, such as filaments, holes,
and shells. Fractal models fail to reproduce the common sharp

transition in intensity seen in the ISM. Recently, Elia et al. (2018)
has shown that fBm models are not a good approximation of
the ISM, but that multifractal analysis offers a more complete
characterisation of molecular cloud structures.

In the light of these past studies, it is important to recall
some fundamental properties of fully developed turbulence. As
can be seen in hydrodynamical simulations, a turbulent field can
be described as a superposition of some random distribution, as
produced by fBm simulations, and a set of localised and coherent
structures, which also demonstrate a spatial hierarchical scaling
(Farge 1992). These coherent structures are sometimes identi-
fied as a manifestation of intermittency. Federrath et al. (2010)
summarised the signature of intermittency in three manifesta-
tions: (1) non-Gaussian wings in density and/or velocity PDFs;
(2) anomalous scaling of the higher-order (p > 4) structure func-
tions of the velocity field and velocity increments, implying that
the statistics are increasingly non-Gaussian at small scales; and
(3) coherent structures of intense vorticity and of strong shocks.
In this paper intermittency is considered in a broad sense as
irregularities and alternation in the spatial statistical distribution
of ISM properties and more specifically for density fluctuations
in the case of the present study. This definition corresponds
closely to “the dual nature of molecular clouds” described in the
review of Falgarone et al. (2004), where the diffuse component,
traced by the 12CO (J =1–0) line emission, is fractal and highly
dynamical and the coherent (as opposed to fractal) component,
traced by mid-infrared absorption and submillimetric dust ther-
mal emission, is accurately described by a network of filaments
and dense cores.

As demonstrated by Elmegreen et al. (2001) for HI emis-
sion and Miville-Deschênes et al. (2007) for dust far-infrared
emission, if exponentiated fBms are able to reproduce the non-
Gaussian wings of log-normal PDFs, these mock fractal sim-
ulations fail to reproduce the typical coherent structures in the
ISM. Furthermore, Robitaille et al. (2014) have shown, by apply-
ing for the first time the segmentation method described in the
present paper, that exponentiated fBms also fail to reproduce the
non-Gaussian wings of PDFs measured as a function of spatial
scales. In the same way as for the PDF analysis of centroid veloc-
ity increments, Robitaille et al. (2014) showed that dust emission
at 250 µm also has more important non-Gaussian wings towards
small spatial scales.

In this paper we present a novel decomposition technique
based on complex-wavelet power spectrum analysis that we have
developed to perform an in-depth analysis of the ISM signal1.
This new technique can be applied on any data set, for exam-
ple column density and velocity centroid maps. Contrary to
the Fourier power spectrum, this new technique is sensitive to
the dense and coherent filamentary structures. By merging the
multiscale PDF analysis with the power spectrum analysis, the
technique exposes, in the case of density fluctuations, the dual
or even plural nature of molecular clouds and how the diffuse
medium is linked to the dense coherent structures. A new com-
plementary method, also using complex-wavelet transforms, the
Reduced Wavelet Scattering Transform, was also recently pro-
posed by Allys et al. (2019). Compared to our technique, this
method focuses on the detailed statistical description of non-
Gaussian structures in the ISM rather than on the extraction and
on the impact of such structures on the Fourier power spectrum.

Since this paper focuses on the transition between the two
regimes of non-coherent and coherent structures in the ISM, our

1 The codes and tutorials applied on mock simulations are available at
https://github.com/jfrob27/pywavan
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in-depth analysis is performed on the Polaris region, which rep-
resents the early stages of star formation activity in a molecular
cloud. In future works, this analysis technique will be applied
to centroid velocity maps and numerical simulations where the
intermittent behaviour of the density and velocity field can be
compared.

The paper is organised as follows. An overview of the
power spectrum analysis is presented in Sect. 2 and the wavelet
power spectrum and the Multiscale non-Gaussian Segmenta-
tion technique (MnGSeg) are presented in Sect. 3. In Sect. 4
we applied MnGSeg to the Herschel column density image of
Polaris located at 150 pc, identified the signature of the CIB, and
revealed a characteristic scale. Finally, the results are discussed
in Sect. 5, and a conclusion is presented in Sect. 6.

2. Assumptions behind the power spectrum
analysis

The classical power spectrum is usually calculated in Fourier
space. A schematic representation of 2D Fourier space, or the
u-v plane, is shown in Fig. 1. The Fourier transform decomposes
the signal f (x)2 into a linear combination of Fourier coefficients
defined as

f̂ (k) =

∫ ∞

−∞
f (x)e−2πix·kdk, (1)

where the wavenumber k describes the spatial frequency con-
tent of the signal or the image. Each Fourier coefficient is a
complex number from which can be calculated the amplitude,
A =

√
Re2 + Im2, and the phase, φ = arctan(Im/Re). The power

spectrum analysis of a signal is a statistical measure of the
amount of power |A|2 as a function of the spatial frequency k.
In an ideal world, the experiment leading to the structure for-
mation in the ISM would be reproduced several times under the
same initial condition in order to average the different outcomes
and to get an adequate statistical sample. This methodology is
obviously impossible to achieve in our context. Consequently,
we are forced to assume the ergodicity of the medium, so that the
local intensity fluctuations averaged over many samples is equal
to the spatial average of intensity fluctuations of one realisation.
Usually, for the Fourier power spectrum, the information in 2D
Fourier space is averaged over the azimuthal angles θ shown in
Fig. 1, so that

P(k) = 〈| f̂ (k)|2〉θ. (2)

According to the Kolmogorov theory of turbulence
(Kolmogorov 1941), the velocity power spectrum of an isother-
mal, subsonic, and non-compressive turbulent medium follows a
power law over the spatial frequencies

P(k) ∝ k−γ, (3)

where γ is the power-law index. The power spectrum is equiv-
alent to the Fourier transform of the second-order structure
function (Boldyrev 2002). The pth-order structure function is
defined as

〈| f (x′) − f (x)|p〉 ∝ |x′ − x|ζp , (4)

where f (x) referred generally to the fluid velocity v(x) has
a power law of ζp = p/3. For the second-order longitudinal

2 Throughout the paper, bold variables denote vectorial quantities. For
simplicity, when quantities are averaged over azimuthal angles, as in
Eq. (2), the variable is then considered scalar.
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Fig. 1. Schematic representation of 2D Fourier space, where u and v
are the two dimensions, k is the wavenumber, and θ is the azimuthal
angle.

structure function a power law of ζ2 = 2/3, which relates to
the Fourier power spectrum index as γ = ζ2 + 1 = 5/3. For a
3D incompressible and isotropic turbulent medium, the Fourier
power spectrum then becomes P3D(k) ∝ k−2k−5/3 ∝ k−11/3.
Experimental evidence suggests that ζp is lower than p/3 for
p > 4 (She & Leveque 1994; Boldyrev 2002; Padoan et al.
2004). This implies that the velocity fluctuations are increasingly
non-Gaussian on small scales, a phenomenon also referred to as
inertial-range intermittency (Frisch 1995).

The scale-free property (i.e., a scaling function with a unique
power law) of the turbulence assumes that the velocity compo-
nents or the density distribution of a gas dominated by turbulent
motions are random variables. Consequently, all the structural
properties of a turbulent medium is contained in its power spec-
trum. The same arguments were used for the development of the
∆-variance analysis (Stutzki et al. 1998), which shows the same
information contained in the power spectrum (Ossenkopf et al.
2008a). It can be shown that this method is equivalent to the
Fourier power spectrum smoothed by the filter spectrum at each
scale or size l (Farge 1992; Bensch et al. 2001).

Although the Fourier power spectrum is useful to describe
the intensity distribution of a map, notably when intensity fluc-
tuations as a function of spatial scales are largely random, it
fails to provide an accurate description of the distribution of
more complex medium. In the case of the ISM gas distribu-
tion, where compressive mechanisms and the intermittency of
turbulence produced dense filamentary structures, intensity dis-
tributions as a function of spatial scales are no longer random nor
isotropic, as is the case for instance in fractal simulations. These
inhomogeneities in the medium also break the ergodic assump-
tion. The spatial average of intensity fluctuations is no longer
representative of intensity fluctuations occurring locally in the
map.

The Fourier power spectrum loses all the local informa-
tion associated with intensity fluctuations as a function of the
spatial scales. Because the trigonometric functions associated
with the Fourier coefficients ( f̂ (k) in Eq. (1)) oscillate forever,
all the information content of f (x) is completely delocalised
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(Farge 1992). As a solution to this limitation, Robitaille et al.
(2014) shows that the analysis of the wavelet power spectrum of
an image allows access not only to the spatial frequency content
of the signal, but also to the information on the localised inten-
sity fluctuation in an image as a function of the spatial scales.
The gain in information is substantial and can be used to localise
the transitions to high-intensity regions, perhaps associated with
important changes in the main physical mechanisms at play.

In contrast to the ∆-variance spectrum, which averages all
the wavelet coefficients as a function of spatial scale or size l and
therefore loses all the local intensity fluctuation information, the
MnGSeg technique, as primarily described by Robitaille et al.
(2014), isolates the random and isotropic component of a map as
a function of the spatial scales by analysing the PDF of complex-
valued and directional wavelet coefficients before analysing the
power spectrum. This method has the advantage of separat-
ing the map component that satisfies the ergodic assumption
from the dense and anisotropic structures, such as the ubiquitous
interstellar coherent filaments, which normally bias the Fourier
power spectrum analysis. These two components refer to “the
dual nature of molecular clouds” described by Falgarone et al.
(2004). In addition to the non-biased power spectrum, which
can measure the true scale-free nature of a map, this multiscale
segmentation technique allows us to separate density structures
contributing to the non-Gaussian part of the PDFs, i.e. structures
that correspond to intermittency in the simple isotherm model,
but in the context of the more complex ISM, may also correspond
to self-gravitating structures, for instance.

3. The MnGSeg technique

This section reintroduces the MnGSeg procedure described by
Robitaille et al. (2014) and improves on it.

3.1. Wavelet power spectrum

Wavelet transforms are designed to analyse local fluctuations in
a signal. The wavelet transform is obtained with the convolution
of a map f (x) with a family of translated and dilated wavelets
generated from the mother wavelet function ψ(x):

f̃ (l, x) =
1
l

∫ ∫ +∞

−∞
f (x′)ψ∗

( x′ − x
l

)
dx′. (5)

As a result, a low or a high wavelet coefficient f̃ (l, x) means
that at the position x and spatial scale l, the signal has a small or a
large variation compared to the mean value of the signal. As was
true for the Fourier transform, the wavelet transform respects the
Plancherel relation∫ ∫ ∞

−∞
| f (x)|2dx =

2π
Cψ

∫ ∞

0
PW (l)

dl
l
, (6)

where

PW (l) =

∫ ∫ ∞

−∞
| f̃ (l, x)|2dx. (7)

and

Cψ =

∫ ∫ +∞

−∞

|ψ̂(k)|2
|k|2 dk. (8)

Equation (7) represents the global wavelet power spectrum.
This relation is true for all wavelet functions ψ(x). However,
because some functions have a better resolution in frequency

space, some wavelets estimate the power spectrum of a signal
more accurately. Kirby (2005) showed that the Morlet wavelet is
the best wavelet function for reproducing the Fourier power spec-
trum. The Morlet wavelet is complex-valued and anisotropic. It
is defined in Fourier space as

ψ̂(k) = e−|k−k0 |2/2

= e−[(u−|k0 | cos θ)2+(v−|k0 | sin θ)2]/2,
(9)

where the constant |k0| is set to π
√

2/ ln 2 ≈ 5.336 to ensure
that the admissibility condition3 is almost met (Kirby 2005).
As defined in Eq. (9), in Fourier space the complex Morlet
wavelet is equivalent to a Gaussian kernel that can easily sam-
ple spatial frequencies as a function of the azimuthal angle θ (see
bottom left panel of Fig. 2). In contrast to a real isotropic wavelet,
complex-valued wavelets with an azimuthal dependency allow
us to estimate the true power, as defined in Eq. (2).

With this additional azimuthal dependency, it is also possible
to estimate the power spectrum of an image by integrating over
θ instead of over x as in Eq. (7). Because of the finite azimuthal
resolution of the Morlet wavelet, the integration is exchanged
for a discrete summation over a limited number of angles. Kirby
(2005) showed that the optimal angle interval for an efficient and
uniform sampling is δθ = 2

√−2 ln 0.75/|k0| (see top right panel
of Fig. 2). Equation (7) thus becomes

PW (l, x) =
δθ

Nθ

Nθ−1∑
j=0

| f̃ (l, x, θ j)|2, (10)

where f̃ (l, x, θ) are the Morlet wavelet coefficients for map f (x)
and Nθ = ∆θ/δθ is the number of directions θ needed to sample
Fourier space over the range ∆θ. Since, for a real image, quad-
rants 3 and 4 represented in Fig. 1 are redundant, they are the
complex conjugates respectively of quadrants 1 and 2, only the
angles in quadrant 1 and 2 need to be sampled, which leads to
∆θ = π (see bottom right panel of Fig. 2). The convolution oper-
ation for the wavelet transform can be done directly in Fourier
space, so that f̃ (l, x, θ) = F −1

{
f̂ (k)ψ̂∗l,θ(k)

}
, where F −1 denotes

the inverse Fourier transform and ψ̂l,θ(k) represents the Fourier
transform of a “daughter” Morlet wavelet dilated at a given scale
l and rotated at an azimuthal angle θ.

Compared to the Fourier power spectrum analysis, the com-
plex Morlet wavelet power spectrum analysis, as defined in
Eq. (10), is not only dependent on the spatial scale l, but also
on the map position x. This property provides a far more com-
plete description of intensity fluctuations as a function of spatial
scale in a map. From PW (l, x) we can recover the global wavelet
power spectrum by averaging the power over all positions x,

PW (l) =
1

Nx

∑
x

PW (l, x), (11)

where Nx = Nx ×Ny corresponds to the number of pixels in the
map. By converting the spatial scale l to the Fourier wavenum-
ber k using k = |k0|/l, we can compare the global wavelet power
spectrum of Eq. (11) directly with the Fourier power spectrum
defined in Eq. (2).

3 The admissibility condition requires the zero mean value of the
wavelet function,

∫ +∞
−∞ ψ(x)dx = 0. Since without any correction ψ̂(0) ,

0 for the Morlet wavelet (see Eq. (9)), this wavelet is only marginally
admissible.
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Fig. 2. Top left panel: real part of the Morlet wavelet. Top right panel: Morlet wavelet rotated over an azimuthal angle of π, also called the Fan
wavelet (Kirby 2005). Bottom left panel: Morlet wavelet in Fourier space. Bottom right panel: Morlet wavelet rotated over an azimuthal angle of π
in Fourier space.

3.2. Non-Gaussian segmentation

The complex-wavelet power spectrum allows us to analyse the
local variation in intensity and global power as a function of
spatial scales. This complete description of the intensity fluctua-
tions in the map can be used to isolate the random component
linked to the scale-free nature of the ISM. The residues of
this segmentation procedure does not satisfy the randomness
and the ergodicity assumptions and are called coherent struc-
tures because of their fundamental properties of being spatially
correlated across the scales.

As for the previous segmentation analysis by Robitaille et al.
(2014), in order to separate these two components we use the
coherent vorticity extraction algorithm (Nguyen van yen et al.
2012; Azzalini et al. 2005). This iterative algorithm was initially
developed as a method for determining the optimal denoising
threshold among wavelet coefficients. In many cases, denoising
consists in deleting the wavelet coefficients of a noisy signal
whose modulus is below a threshold, usually found at small
scales, and reconstructing the denoised signal from the remain-
ing coefficients (Azzalini et al. 2005). In our case, the algorithm
is applied at every spatial scale and as a function of the azimuthal
direction. For our analysis, the noisy random coefficients are
considered to be the scale-free component of the map and the
other set of coefficients is considered to be the coherent struc-
tures of the map. The algorithm is defined as follows: let Φ be
the threshold splitting the non-Gaussian terms from the Gaussian
terms in the wavelet coefficient distribution, and LΦ the func-
tion indicator. The threshold Φ is first estimated according to the
variance

σ2
l,θ(Φ) =

1
Nl,θ(Φ)

∑
x
LΦ(| f̃l,θ(x)|)| f̃l,θ(x)|2, (12)

where

LΦ(| f̃l,θ(x)|) =

{
1 if | f̃l,θ(x)| < Φ
0 else. (13)

and

Nl,θ(Φ) =
∑

x
LΦ(| f̃l,θ(x)|). (14)

The iterative calculation then converges to an optimal value
of the threshold Φ which allows us to separate outliers from ran-
domly distributed wavelet coefficients. The sequence is defined
by{

Φ0(l, θ) = ∞
Φn+1(l, θ) = qσl,θ(Φn(l, θ)), (15)

where q is a dimensionless constant controlling how restrictive
the definition of non-Gaussianities is. The first study using the
MnGSeg technique chose the value of q following two criteria:
the normal distribution of the power for the Gaussian features
and the unique power law of its power spectrum. In the present
paper, q is dynamical and thus dependent on the spatial scale.
We considered that the amount of non-Gaussianities produced by
turbulence intermittency and/or compressive physical processes
(e.g. shocks) as a function of scale is unknown and that the
non-Gaussianity contributions vary from one scale to another.
Consequently, in order to adjust the parameter q to its optimal
value at each spatial scale, when the algorithm converges to an
optimal value for a threshold Φ, we calculate the skewness of the
Gaussian wavelet coefficient distribution (i.e. the third moment
of the distribution; see the skewness definition in Eq. (24)). If
the skewness is greater than 0.4, the value of q is diminished by
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0.1. This operation is repeated until convergence of the param-
eter q. The value 0.4 is justified by the fact that the distribution
skewness is evaluated on the absolute value of complex-valued
wavelet coefficients, and consequently that the distribution is
not Gaussian, but Rician. Rician distributions are not completely
symmetrical and have a non-zero skewness.

3.3. Power spectra analysis and reconstruction

After the convergence of the extraction algorithm, two sets of
wavelet coefficients are obtained, the Gaussian set f̃ G

l,θ (x) and
the non-Gaussian set, also called the coherent set, f̃ C

l,θ (x). Then
Eqs. (10) and (11) can be applied in order to calculate the power
spectrum of both sets, PG(k) and PC(k). Since both power spec-
tra are obtained from the squared amplitude of independent
wavelet coefficients, the total power spectrum, equivalent to the
Fourier power spectrum is simply the linear combination of the
segmented components:

P(k) = PG(k) + PC(k). (16)

As demonstrated by Robitaille et al. (2014), images corre-
sponding to both set of coefficients can also be reconstructed.
Originally, the reconstruction formula used the same synthe-
sising wavelet as the analysing wavelet, the Morlet wavelet.
However, thanks to the redundancy of continuous wavelets,
many reconstruction formulas exit for a wavelet decomposed sig-
nal (Farge 1992). J. Morlet found empirically that even the delta
function can be used to reconstruct the signal. In that case the
reconstruction formula becomes

f (x) = Cδ

∑
l

Nθ−1∑
j=0

l f̃ (l, x, θ j) + µ0, (17)

where µ0 is the mean value of the original map and Cδ is a cor-
rection factor. The reconstruction was found to be optimal when
the scale separation in logarithm ∆ ln l is set to δθ, the same sep-
aration as for the azimuthal angle. This separation allows the
construction a quasi-orthogonal set of wavelet coefficients rep-
resenting the signal. The reconstruction is not perfect, but it is
sufficient for most applications. The correction factor Cδ is set
to σr/σ0, where σr and σ0 are the standard deviations of the
reconstructed map and the original map, respectively.

Because of the linearity of Eq. (17) and the linearity of
wavelet transforms,

f (x) = Cδ

(
f G(x) + f C(x)

)
+ µ0, (18)

where,

f G(x) =
∑

l

Nθ−1∑
j=0

l f̃ G(l, x, θ j), (19)

and

f C(x) =
∑

l

Nθ−1∑
j=0

l f̃ C(l, x, θ j). (20)

Here f G(x) and f C(x) are the reconstructed maps of the
Gaussian and coherent wavelet coefficient sets, respectively.

4. Application on Polaris flare column density map

In this section, we apply the MnGSeg technique on the Polaris
flare region. The data are briefly presented before doing the full
analysis.

4.1. Data

We used the SPIRE 250 µm and the column density map of
Polaris derived from Herschel imaging data taken as part of
the HGBS and the “Evolution of interstellar dust” key programs
(André et al. 2010; Abergel et al. 2010; Miville-Deschênes et al.
2010). The column density map was produced following a pro-
cedure described in most Herschel papers (see e.g. Palmeirim
et al. 2013; Schneider et al. 2015; Könyves et al. 2015) and adopt-
ing a mean molecular weight per hydrogen molecule µH2 = 2.8
(Kauffmann et al. 2008). The column density map has an angular
resolution of 36′′, corresponding to the half-power beam width
resolution of Herschel/SPIRE 500 µm data and is estimated to
be accurate to better than ∼50% (e.g. Roy et al. 2014). The pixel
size is 14′′. The 250 µm map has an angular resolution of 18′′
and a pixel size of 6′′. The Polaris column density map is shown
in Fig. 3.

4.2. Fourier and wavelet power spectra

The Fourier and wavelet power spectra were calculated on the
Polaris flare region located at high Galactic latitude (b ∼ 25◦).
This region has no ongoing star formation activity. Only prestel-
lar cores and unbound starless cores have been detected so far
(André et al. 2010; Ward-Thompson et al. 2010).

The power spectrum analysis of this region was performed
by Miville-Deschênes et al. (2010) on the three wavelengths
observed by the SPIRE instrument, 250, 350, and 500 µm, and
the IRAS 100 µm map. All power spectra (once corrected for
the noise, the SPIRE beam, and the point sources contribution)
show a straight power law with, within the uncertainties, a sim-
ilar power law of −2.7. This measurement also agrees with the
previous power law measured by Stutzki et al. (1998) using the
∆-variance method on this low-density region properly traced by
CO.

Figure 4 presents our power spectrum analysis of the Polaris
flare region presented in Fig. 3. To reduce the map edge effects,
the Fourier transform and wavelet transforms were done on a
map ∼1.25 times larger than the original one, where the frame
pixel values are zero and an apodisation was applied over 3% of
the original map edges. The mean pixel value of the map was
subtracted prior to the apodisation to reduce the gap between the
intensity of the signal and the zero value pixel frame. In order
to produce the wavelet power spectrum, Eqs. (10) and (11) were
calculated on the ∼1.25 times larger map for every scale corre-
sponding to the diamond symbol in Fig. 4. Miville-Deschênes
et al. (2010) previously modelled the Polaris power spectrum as

P(k) = Γ(k)Psky(k) + N(k), (21)

where

Psky(k) = AISMkγ + P0. (22)

The factor Γ(k) is the telescope transfer function, N(k) is the
noise level, and P0 models the excess of power at small scales
induced by point sources and the CIB associated with unre-
solved infrared galaxies at high redshift. In order to measure
the power associated with Psky(k), the original power spectrum
is first subtracted by the noise level and then divided by the
telescope transfer function. For this analysis, the noise level is
estimated by the last point of the wavelet power spectrum at
k ≈ 1.75 arcmin−1. The fit values for the Fourier power spec-
trum are listed in Table 1. The fit is estimated between 0.05
and 0.8 arcmin−1. The measured power law is shallower than
the previous measurements made on individual wavelength maps
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Fig. 3. Polaris column density map derived from Herschel imaging data taken as part of the HGBS and “Evolution of interstellar dust” key
programs. The brightest structure with the highest column density value located on the south-western part of the field has been labelled as MCLD
123.5+24.9 and as the “saxophone” by Schneider et al. (2013).

by Miville-Deschênes et al. (2010) (see Sect. 4.5 for a cor-
responding power spectrum analysis of the Herschel 250 µm
map).

The wavelet power spectrum closely matches the Fourier
power spectrum except for small deviations that are noticeable
near the noise level.

4.3. Intermittency

The good correspondence between the Fourier and wavelet
power spectra validates Eq. (11) and suggests that the Fourier
power spectrum is sensitive only to the mean variation of column
density over the map as a function of spatial scales. However,
as is seen in many numerical simulations and as is generally
measured in column density PDFs of star formation regions,
molecular cloud dense structures produce a tail at large densities

on the column density distribution. These tails do not generally
have a significant impact on the mean value of a statistical distri-
bution. Large skewness has also been predicted as a function of
spatial scales on centroid velocity increments by Federrath et al.
(2010, their Fig. 9) for solenoidal and compressive forcing. PDFs
should be close to Gaussian distributions (in semi-log plots)
on large scales and present exponential tails on smaller scales.
Concerning Polaris, they concluded that the kurtosis values mea-
sured on centroid velocity increments (CVIs) were compatible
with intermittency of solenoidal (incompressible) forcing. This
measure of intermittency was in good agreement with the CVIs
of 12CO(1–0) IRAM map by Hily-Blant et al. (2008, their Fig. 4).

In this paper, we use the spatial scale filtering property of
wavelet transforms as an alternative to the two-point statistics
used to calculate CVIs. In addition, the spatial scale filtering was
performed on a column density map rather than on a velocity
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Fig. 4. Fourier (solid lines) and wavelet (diamonds) power spectra of
the Polaris flare region presented in Fig. 3. The black line and black
symbols represent the original power spectrum, P(k) in Eq. (21), while
the blue line and blue symbols represent Psky(k) in Eq. (22).

Table 1. Fit values for the column density map Fourier power
spectrum.

AISM Power law (γ) P0
(H2 cm−2)2 (H2 cm−2)2

(5.1± 0.2)× 1039 2.38± 0.02 (2.5± 0.5)× 1039

centroid map. This choice allowed us to perform the multiscale
analysis on a wider range of spatial scales and to investigate the
intermittent behaviour of the density field.

We recall that in the case of compressible and supersonic
turbulence, the velocity field and density fluctuations become
strongly coupled (Kritsuk et al. 2007). Large velocity-shears
indeed produce intermittent structures in the velocity field that
can follow boundaries of high-density structures traced in a col-
umn density map (Hily-Blant & Falgarone 2009). In addition,
Federrath et al. (2010) showed that the PDFs of the logarithm
of the density are usually roughly consistent with log-normal
distributions for both solenoidal and compressive forcings. They
attributed the non-Gaussian higher-order moment deviations of
the distributions, such as the skewness and the kurtosis, to tur-
bulence intermittency. They suggested that these deviations can
be caused by head-on collisions of strong shocks or oscillations
in very low-density rarefaction waves. In agreement with this
interpretation, Hily-Blant et al. (2008) showed that for Polaris
the centroid velocity structures associated with increments of
CVI tails closely follow the boundaries of the optically thin 12CO
emission traced by the broad 12CO line wings. Finally, Miville-
Deschênes et al. (2003) showed that power spectra of integrated
emission and centroid velocity fields of the high Galactic lati-
tude HI cirrus Ursa Major have similar 3D spectral index and
that their spatial fluctuations share similar structures, despite
the moderate correlation. These results support the fact that for
statistical measurements over a region, the amount of velocity
fluctuations as a function of scale has an impact on the gas den-
sity fluctuations, even if velocity and density fluctuations are not
expected to be perfectly correlated.

Fig. 5. Intermittency measure I(l, x) as a function of the spatial fre-
quency k. Frequencies from ∼0.01 to ∼0.75 arcmin−1 are plotted, and
approximately correspond to scales where enough statistically indepen-
dent points are available on large scales and where the signal is not
dominated by noise on small scales.

In Fig. 5, we display the normalised PDFs of the squared
amplitude of complex-wavelet coefficients as a function of spa-
tial scale. This plot corresponds to the intermittency measure as
defined by Farge (1992):

I(l, x) =
| f̃ (l, x)|2
〈| f̃ (l, x)|2〉x

, (23)

As described by Farge (1992), if I(l, x) = 1 for all x and
for all l, then it means that there is no flow intermittency. In
that case, each location x would have the same power spectrum,
which corresponds to what we expect from a Fourier power spec-
trum. Figure 5 shows extreme departures from the mean power
value at almost every spatial scales above 0.025 arcmin−1. The
intermittency measure shows that many locations on the maps
contribute more than 30 times the average over x to the Fourier
power spectrum for a broad range of scales. The intermittency
PDFs in Fig. 5 are calculated for a constant bin of 0.5; how-
ever, the number of statistically independent pixels varied as
a function of spatial scales. The number of independent pixels
is determined following the relation n = (Nx ×Ny)/l2. Figure 6
shows the intermittency measure in linear scale for three spa-
tial frequencies smaller than 0.1 arcmin−1, where the number of
independent pixels is respected.

The skewness of the intermittency PDFs was calculated as
a statistical measurement of the increasing intermittency as a
function of the spatial scale. The skewness is defined as

ς(l) =
〈(I(l, x) − 〈I(l, x)〉x)3〉x

σ3
l

, (24)

where σl is the standard deviation of the intermittency mea-
sure I(l, x) for the given scale l. Figure 7 shows the skewness
value ς for each spatial scale converted in wavenumber k. It can
be seen that ς(k) increases exponentially towards smaller scales
until the scales become dominated by the noise level. The skew-
ness value follows the fitted relation ς(k) = (103± 1)× k1.31± 0.08.
A small deviation from the exponential fit is present at 0.02 .
k . 0.08 arcmin−1, which corresponds to 0.1 . l . 0.3 pc. This
deviation will be discussed further in Sect. 4.6.
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Fig. 6. Intermittency measure in linear scale for three spatial frequen-
cies. Compared to Fig. 5, the number of bins for each spatial scale
respects the relation n = (Nx ×Ny)/l2, where k = |k0|/l.
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Fig. 7. Skewness, ς(l), for the intermittency measures defined in
Eq. (23) and shown Figs. 5 and 6.

4.4. Multiscale non-Gaussian segmentation

This section presents the result of the MnGSeg technique applied
on the Polaris flare region. Power spectra of both components
are shown in Fig. 8, the Gaussian and the coherent parts, where
the noise level is subtracted and the telescope transfer function
is divided. As seen in the intermittency PDFs of wavelet coef-
ficients in the previous section, intermittency in density starts
to appear on large spatial scale leading to the segmentation of
coherent features by the MnGSeg technique from k & 0.02. It
corresponds to a spatial scale of ∼0.4 pc. The coherent fea-
tures then dominate on all lower scales and follow closely the
total power law measured in the Fourier power spectrum. The
Gaussian part of the segmentation also has a power law followed
by a complete flattening on small scales. According to the previ-
ous model of the Fourier power spectrum described in Eqs. (21)
and (22), it is now possible to propose a more detailed model tak-
ing into account respectively the Gaussian and coherent power
spectra, PG(k) and PC(k),

PG(k) = φ(k)(AG
ISMk−γG + PCIB(k)) + N(k), (25)
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Fig. 8. Segmented power spectra for the Polaris flare column density
map. The total Fourier power spectrum shown in Fig. 4 is represented
by the solid black line. The red diamonds show the power spectrum for
the Gaussian self-similar part of the map. The blue triangles show the
power spectrum for the non-Gaussian coherent part of the map. The
black dashed line represents the fits of the curves and the green dashed
line represents the CIB and contribution level of the sources. The 3D
Kolmogorov power law of −11/3 is plotted with the red dash-dotted
line.

Table 2. Fit values for the column density map Gaussian and the
non-Gaussian power spectra.

AISM Power law (γ) PCIB/sources
(H2 cm−2)2 (H2 cm−2)2

Gaussian (1.3± 0.2)× 1038 3.05± 0.07 (4.4± 0.3)× 1039

Coherent (4.2± 0.4)× 1039 2.41± 0.04 (7± 8)× 1038

and

PC(k) = φ(k)(AC
ISMk−γC + Psrc). (26)

Since the noise component of the signal usually respects
a distribution close to a normal distribution, it should now be
present entirely in the Gaussian segmented part. This argument
should also be generally true for the CIB component, except for
the brightest and most nearby galaxies which are found in the
small-scale non-Gaussian component. The CIB signature can be
easily associated with the flattened part of the Gaussian power
spectrum where coherent structures, on the same spatial scales,
are still contributing to the coherent power law (i.e. for 0.3 ≤ k ≤
1.0 arcmin−1). A comparison with the CIB component extracted
from the Polaris region is done at 250 µm in the next section. The
values for the power spectra fits, according to Eqs. (25) and (26)
are summarised in Table 2. Both wavelet power spectra were fit-
ted between 0.03 ≤ k ≤ 1.0 arcmin−1 after subtracting the noise
level for the Gaussian part only, and divided by the telescope
transfer function for both spectra. The coherent power-law fit cor-
responds, within the uncertainties, to the power law estimated for
the total Fourier power spectrum. On the other hand, the Gaus-
sian power-law fit is steeper and closer to the Kolmogorov power
law of −11/3 for a 3D turbulent medium.

The Gaussian and coherent reconstructed maps following the
relations 19 and 20 are shown in Fig. 9. The Gaussian map
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Fig. 9. Gaussian (left) and coherent (right) reconstructed column density maps following Eqs. (19) and (20); the correction factor Cδ has been
multiplied to both maps, and the mean values of the initial map µ0 has been distributed to both maps.

shows smooth features dominated by large-scale density fluc-
tuations, as measured by the steeper power law of its power
spectrum. The small-scale fluctuations are dominated by a gran-
ular component characterised by the flat part of the Gaussian
power spectrum and dominated by the CIB signal. The PDFs
associated to the Gaussian map are compared to a fBm in Fig. 10.
Both maps are filtered for k & 0.3 arcmin−1 in order to filter
the CIB and the instrumental noise in the case of the Polaris
map. The Gaussian PDFs show that the segmentation algorithm
successfully removed most of the intermittent coefficients com-
pared to the original intermittency measure in Fig. 5. After the
segmentation, most of the intermittency values are in the range
0 < I(l, x) . 2.5 and, in contrast with the original intermittency
measure, all the distributions are now centred on 1.0 and are sim-
ilar across the wavenumber k. Compared to the fBm simulation,
the PDFs associated with the Gaussian density fluctuations of
Polaris are broader. This may come from the fact that the Polaris
region shows more areas of low density than the fBm. In frac-
tal analysis, this aspect refers to the lacunarity of the structures
(Mandelbrot 1982). Even if two fractal images share the same
power law, their appearance can differ according to their differ-
ent distribution I(l, x). In this case the main difference is that
the fBm image, constructed in Fourier space, is made only of
stationary fluctuations, which is not necessarily the case for the
ISM density fluctuations.

The coherent map in Fig. 9 is dominated by the denser elon-
gated structures. According to its power spectrum in Fig. 8, the
non-Gaussian fluctuations are present on a broad range of spatial
scales. A closer inspection of the coherent map indeed indi-
cates that most of the filamentary structures are embedded in
larger structures that have been identified as non-Gaussianities.
No particular break is visible in the coherent power spectrum,
which could be interpreted as no spatial scales being predomi-
nant for the non-Gaussianities. This result is in agreement with
the recent analysis of Polaris filamentary structures done by
Ossenkopf-Okada & Stepanov (2019), where the Polaris Flare
shows an almost scale-free filamentary spectrum. However, as

Fig. 10. Top left panel: Gaussian reconstructed map filtered for scales
k & 0.3 arcmin−1. Top right panel: fractional Brownian motion simu-
lation with the same power law as the Gaussian part of Polaris. The
fBm is also filtered for k & 0.3 arcmin−1. Bottom left panel: intermit-
tency measure as defined in Eq. (23) for the Gaussian segmentation of
wavelet coefficients. Bottom right panel: intermittency measure of the
fBm simulation on the same spatial scales as Polaris.

defined in Eqs. (10) and (11), the power spectrum is only sensi-
tive to the mean value of the power distribution. As can be seen in
Fig. 11, the intermittency measure for the non-Gaussian wavelet
coefficients is largely skewed and not centred on I(k, x) = 1.0,
which means that the coherent wavelet power spectrum, as is
the case for the Fourier power spectrum, is not directly rep-
resentative of the underlying power distribution. However, the
unique power law associated with the non-Gaussianities is still
a very interesting result and can be an indication that the
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Fig. 11. Intermittency measure as defined in Eq. (23) for the non-
Gaussian wavelet coefficients.

non-Gaussianities as a function of scales are linked to the iner-
tial range of the Gaussian part. This result might possibly be a
direct measurement of the inertial-range intermittency detected
on a density map of a star-forming region. This hypothesis is
discussed further in Sect. 5.

4.5. CIB measurement and extraction

The CIB corresponds to high-redshift starburst galaxies that are
unresolved by far-infrared and submillimetre observations (Puget
et al. 1996; Fixsen et al. 1998; Lagache et al. 1999). The energy
peak of this signal is around 200 µm. Because the redshift distri-
bution of these dusty star-forming galaxies is relatively broad,
the signal also changes as a function of the observed wave-
length (Béthermin et al. 2012). For this reason, using the column
density map is not appropriate for analysing the CIB signature
we detected in the Polaris flare region. A second segmentation
analysis has therefore been done on the Herschel 250 µm map
alone. Accurate CIB measurements using IRAS, Planck, and
Herschel observations have already been done (Planck
Collaboration XVIII 2011; Pénin et al. 2012; Viero et al.
2013a,b). Our analysis on the 250 µm map will be compared with
the Viero et al. (2013a) results on the Multi-tiered Extragalactic
Survey (HerMES; Oliver et al. 2012).

The segmented (Gaussian and coherent) power spectra for
the Herschel 250 µm map are presented in Fig. 12. The spec-
tra were calculated in the same way as for the column density
map. The fit values are listed in Table 3. The general shapes of
the spectra are similar to those calculated for the column density
map in Fig. 8. The fit values for the total Fourier power spec-
trum corresponds within uncertainties with the values fitted by
Miville-Deschênes et al. (2010) for the Herschel 250 µm map
of Polaris covering a larger and slightly different field of view.
Contrary to the column density map, the power for the Gaus-
sian power spectrum decreases quickly for k & 1 arcmin−1. This
difference can be attributed to the smaller beam pixel size at
250 µm.

Viero et al. (2013a) measured (from the combination of
different Herschel fields and extended sources masked at k =
1.406 arcmin−1) a power of (8.54± 0.31)× 103 Jy2 sr−1. Their
spectra are corrected for a cirrus power law fixed to γ =
3.0. Here, we considered the power law of the Gaussian
part only as the cirrus signal. Following Eq. (25), we find
a power of (7.6± 0.7)× 103 Jy2 sr−1. This value of the CIB
power corresponds very well to that evaluated previously by
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Fig. 12. Segmented power spectra for the Polaris flare map at 250 µm.
The total Fourier power spectrum is represented by the solid black line.
The red diamonds show the power spectrum for the Gaussian self-
similar part of the map. The blue triangles show the power spectrum
for the non-Gaussian coherent part of the map. The black dashed line
represents the fits of the curves and the green dashed line represents the
CIB and sources contribution level. The fit values are listed in Table 3.

Table 3. Fit values for the total 250 µm map, the Gaussian, and the
non-Gaussian power spectra.

AISM Power law (γ) PCIB/sources
(Jy2sr−1) (Jy2sr−1)

Fourier (3.07± 0.03)× 104 2.58± 0.01 (3.6± 0.1)× 103

Gaussian (8± 1)× 102 3.34± 0.05 (7.6± 0.7)× 103

Coherent (2.3± 0.2)× 104 2.75± 0.07 (2.9± 0.8)× 103

Viero et al. (2013a). It is important to recall that in our case
the CIB signal was dominated by the foreground emission of
Polaris. As we can see in Fig. 12, the small-scale CIB power was
dominated by the power of coherent structures and the MnGSeg
method succeeded nonetheless to extract the mean power of
this relatively faint signal over the map. Figure 13 shows on a
subregion of the Polaris flare that the spatial extraction of the
CIB signal is also possible using the MnGSeg decomposition. A
more in-depth analysis of the CIB signal is beyond the scope of
this paper, but the MnGSeg method is a good strategy for this
analysis.

4.6. Ratio coherent/Gaussian

As shown in Fig. 7 and described in Sect. 4.3, the skewness of
the intermittency PDFs increases exponentially towards smaller
scales until the scales become dominated by the noise level.
Another way to look at the intermittency measure is to com-
pare the two components by calculating the ratio of the coherent
power spectrum to the Gaussian power spectrum. The ratios for
the column density and the 250 µm maps are plotted in Fig. 14.
The ratios are corrected for the noise and CIB/sources contribu-
tions and, according to Eqs. (25) and (26), it is defined as

r(k) =
AC

AG k−γC+γG . (27)
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Fig. 13. Different segmentations applied on a subregion of the Polaris map at 250 µm. (a) Original map. (b) Gaussian map reconstructed from all
spatial scales. (c) Coherent map reconstructed from all spatial frequencies. (d) Original map without the frequencies associated with the flattened
and decreasing part of the Gaussian power spectrum related to the CIB (i.e. 0.9 . k . 2.2 arcmin−1). (e) Gaussian map without frequencies
0.9 . k . 2.2 arcmin−1. (f ) Sum of the Gaussian frequencies 0.9 . k . 2.2 arcmin−1 dominated by the CIB signal.

For both maps, the power spectra ratio have a power law
shape, as defined in Eq. (27), with a bump centred at k ≈
0.05 arcmin−1, which corresponds to ∼0.15 pc. This bump was
also seen in Fig. 7 for the skewness as a function of scales. The
dashed curve in Fig. 14 shows the exponential curve as defined
in Eq. (27) using the fitted power-law values for the column den-
sity map in Table 2. The dot-dashed curve shows the exponential
for the power spectra ratio fitted for 0.077 . k . 0.24 arcmin−1

and has a power law of 1.2± 0.1. Assuming that the power-law
fit shown in Fig. 8 were also affected by this bump around k ≈
0.05 arcmin−1, the corrected Gaussian power law would become
γr +γC = 3.6± 0.1, which corresponds to the Kolmogorov power
law for a 3D incompressible turbulent medium.

This excess of power is present in both the column density
map and the 250 µm map, which confirms that the excess is
real and not an artefact from the column density calculation.
Figure 15 shows the Gaussian and coherent reconstructed maps
for 0.025 . k . 0.077 arcmin−1, which corresponds to 0.11 .
l . 0.33 pc. As expected, the Gaussian map shows density fluc-
tuations that are more uniform than the coherent map. For this
range of spatial scales, the excess of power can be attributed to
contrasted structures that can also easily be identified in Fig. 3,
as the saxophone in the south-west region of the field. How-
ever, the excess of power in the power spectra ratio is also
present when the saxophone, the brightest, high column density
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Fig. 14. Ratio of the coherent to the Gaussian power spectra for the
column density and the 250 µm maps. The dashed curve shows the
exponential curve defined in Eq. 27 using the fitted power-law val-
ues for the column density map in Table 2. The dot-dashed curve
shows the exponential for the power spectra ratio fitted for 0.08 . k .
0.2 arcmin−1, which corresponds to 0.03 . l . 0.1 pc.
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Fig. 16. Anisotropy measure as a function of the azimuthal angle θ and
the wavenumber k as defined in Eq. (28).

region is excluded. This means that more quiescent regions of
the Polaris Flare, like the one defined by Schneider et al. (2013),
also exhibits this characteristic scale.

4.7. Anisotropies

Since the non-Gaussian segmentation is applied as a function of
azimuthal angles, the segmentation should also reveal structure
anisotropies as a function of spatial scales. Figure 16 shows the
anisotropy measure as suggested by Farge (1992) for the total set
of wavelet coefficients, the Gaussian part and the coherent part.
The anisotropy measure is defined as

A(l, θ) =

∑
x | f̃ (l, x, θ)|2

〈∑x | f̃ (l, x, θ)|2〉θ
. (28)

According to Fig. 16, non-Gaussianities start to appear in
most directions at k ≈ 0.018 arcmin−1. Larger anisotropies are
measured on large scales around 45◦ in the total set of coeffi-
cients and in the Gaussian part, whereas they are not detected as
non-Gaussianities. It is important to remember that these large
scales, the number of independent pixels is n ≈ 3, thus the sam-
ple for detecting outliers is very small. The next anisotropies are
measured at k ≈ 0.033 arcmin−1, where n & 20 in the Gaussian

and in the coherent part of the field with a value of A(l, θ) ≈ 2.5,
which is much lower than the intermittency measures shown
in Fig. 5. Anisotropies for k & 0.06 arcmin−1 fluctuate slightly
around 1.0, which means that in the inertial range structures
have no particular direction. This result is also in agreement with
the Polaris filamentary structure analysis of Ossenkopf-Okada &
Stepanov (2019). On the smallest scale, anisotropies are due to
the pixelation effect.

5. Discussion

The MnGSeg method, via simple assumptions such as the self-
similar nature of incompressible turbulence and the ergodicity
inferred by the Fourier power spectrum analysis, is able to extract
two fundamentally different statistical behaviours in molecular
cloud gas density distributions. This dual nature of molecular
clouds corresponds well to the previous description given by
Falgarone et al. (2004). One fractal component, characterised
by its self-similarity over the spatial scales and its unique power
law (see Figs. 8 and 10), corresponds to the diffuse component
of the Polaris flare. The other component, called the coherent
component, in contrast to the fractal component, displays a
network of filaments of different sizes. These coherent filamen-
tary structures are physically important because they are where
dense cores are embedded and thus crucial for star formation.
Ward-Thompson et al. (2010) identified the five densest cores
within the MCLD 123.5+24.9 highest density structure (also
called the saxophone). These starless cores were subsequently
studied for their chemical composition and their mass by
Shimoikura et al. (2012) and Wagle et al. (2015). Future analyses
of the comparison between the physical properties and the
spatial distribution of dense cores or young stellar objects and
the coherent ISM structures will be important in order to shed
the light of the impact of the ISM environment on the star
formation processes.

The fact that filamentary structures affect the power spec-
trum analysis of a region was already found by Schneider et al.
(2011) and Elia et al. (2014). However, in the present analysis,
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we demonstrate that the fluctuations associated with the coherent
filamentary component of the cloud dominate over most of what
is considered the inertial range of the power spectrum. This is
demonstrated in the present analysis on the Polaris flare and was
demonstrated previously on a larger area of the Galactic plane
(Robitaille et al. 2014). This result challenges the recent study
of Roy et al. (2019) suggesting that only filamentary structures
with a sufficiently high area filling factor and/or a high column
density contrasts have an impact on the scale-free power spec-
trum of dust continuum images. In the light of the present results,
the important question to ask is not why filamentary structures
do not produce any breaks in a power spectrum analysis, but
how the coherent filamentary structures we extracted with the
MnGSeg technique are related to the true scale-free component
of molecular clouds.

The segmentation procedure presented in this paper corre-
sponds well to the bifractal intermittency model described in
the review on turbulence by Frisch (1995). From a statistical and
geometrical point of view, the Gaussian “incompressible” com-
ponent extracted using the MnGSeg technique is monofractal by
construction, which means that a single power law for the inertial
range is sufficient to describe the dynamics of this component. In
the bifractal model described by Frisch (1995), the inertial range
of an intermittent turbulent flow is in fact the result of a compe-
tition between two power laws, where the one with the smallest
exponent dominates on small scales. In the case where the
steeper power corresponds to the Kolmogorov incompressible
turbulence, only structure functions of order higher than three
would be affected by the second power law. This means that the
Fourier power spectrum is not sensitive to the bifractal model of
intermittency. In our case we show that the Gaussian part of the
density map has a power law closer to the Kolmogorov incom-
pressible turbulence; however, the coherent part of the density
map still has an influence on the total Fourier power spectrum.

Frisch (1995) also proposed a more complete multifractal
model of the intermittence. There is no reason to believe that the
coherent component of the density map is monofractal. Theories
on fully developed turbulence predict that local variations of the
turbulent energy cascade can be defined as a multifractal system
(Frisch 1995; Arnéodo et al. 1995). A full multifractal analysis
of the Polaris density and velocity field is beyond the scope of
this paper. However, the extraction of a monofractal component
covering all spatial scales and filling the whole field is a first
step towards a better comprehension of how turbulence is
related to the ISM gas structures. An important comparaison of
multifractal analysis based on a box-counting approach has been
recently done by Elia et al. (2018) using Hi-GAL observations
(a key programme of Herschel), fBm images, and numerical
simulations. They found that all the investigated fields, which
are located in the Galactic plane, exhibit a multifractal structure
rather than a simple monofractal structure. According to this
result, numerical simulations appear, depending on the specific
model, more similar to observations than fBms. Multifractal
analysis methods of images or signals based on wavelet trans-
forms are already developed and are actively used in multiple
domains from turbulence analysis to medical research (Arnéodo
et al. 2000), and the MnGSeg analysis could be potentially
adapted to these approaches.

It is important to remember that the Kolmogorov energy
cascade was derived from the velocity structure function and
that our analysis is based on the density power spectrum. The
link between the density and velocity power spectrum has been
investigated mainly in the case of the warm ionised medium
(Armstrong et al. 1995; Terry & Smith 2007), where a power law

of γ = 11/3 for the electron density power spectrum has been
measured over a broad range of spatial scales. In hydrodynam-
ics and magnetohydrodynamics, equations show that fluctuations
in turbulence velocity, magnetic field, and density are coupled.
For subsonic to transonic turbulence, the velocity power spec-
trum depends slightly on the Mach number (Kritsuk et al. 2007).
At higher Mach number, density fluctuations are more sensitive
mainly due to the apparition of the compressive component of
the turbulence, which is measured by the shallower energy power
spectrum. The correlation between the density and velocity
power spectra has also been investigated through the velocity-
channel analysis (VCA; Lazarian & Pogosyan 2000), which is
based on the variations of the power spectra in velocity channels
at changing velocity resolution.

As mentioned in Sect. 2, the scale-free nature of ISM power
spectra is commonly associated with the energy cascade of the
Kolmogorov theory of turbulence, which predicts a power law of
γ = 11/3 for a subsonic and incompressible flow. This value is
rarely found in the ISM and the typical value is closer to that
measured for the total Fourier power spectrum of the Polaris
250 µm map: γ ≈ 2.6 (Padoan et al. 1997a). The shallower slope
is usually attributed to the presence of small-scale structures
present in the compressible ISM. Our analysis has demonstrated
that the non-Gaussianities associated with the coherent struc-
tures in the Polaris molecular cloud are present on a wide
range of spatial scales and not only at small scales. These
non-Gaussianities appear progressively towards the small scales
along the inertial range of the fractal diffuse component of the
cloud. The Fourier power spectrum being equivalent only to the
second-order structure function, it is essentially not sensitive to
these excesses of power as a function of spatial scales, referring
here to the non-Gaussianities shown in the intermittence mea-
sure of Figs. 5 and 6. The local reconstruction of the fluctuations
responsible for these excesses of power as a function of spa-
tial scales shows that the non-Gaussianities are associated with
the filamentary network of molecular clouds (see right panel of
Fig. 9). Following our algorithm, the non-Gaussianities of the
density distributions have been identified by calculating the third
moment of the distributions (i.e. the skewness).

In the more recent literature, an unclear partition is made
between the PDF analysis of density and velocity fields. While
the global PDFs of star-forming regions are generally applied
to column density maps (Federrath et al. 2010; Schneider et al.
2013), multiscale PDF analysis in order to detect intermittency
is generally reserved to velocity field or centroid velocity incre-
ments (Hily-Blant et al. 2008; Bertram et al. 2015). For the
turbulent ISM, it is generally assumed that the density PDF fol-
lows a lognormal distribution, where the standard deviation σ is
related to the Mach number through the relation

σ2 = ln(1 + b2M2), (29)

with b ≈ 0.5 determined by Padoan et al. (1997a) with super-
sonic magnetohydrodynamic (MHD) simulations. On the other
hand, as shown by Lis et al. (1996), some normalised PDFs
of centroid velocity increments have broad to near-exponential
wings in PDFs, while global PDFs for the entire velocity field
are approximately Gaussian. According to these observations,
should the global PDF of turbulent density or velocity fluc-
tuations still be considered a good measure of the turbulence
regime? Orkisz et al. (2017) showed in observations, by applying
a reconstruction method of the statistical properties of a vector
velocity field (Brunt & Federrath 2014), that there can be a strong
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intra-cloud variability of the compressive and solenoidal frac-
tions. In this case, a more local or scale-dependent approach for
PDF analyses would more suitable.

In this paper we propose an alternative approach to iden-
tify the intermittent behaviour of the ISM, where the non-
Gaussianities are identified by calculating the third moment of
fluctuation distributions as a function of scales. One powerful
aspect of our procedure is the use of complex-wavelet trans-
forms, which, contrary to the structure function or Fourier power
spectrum analysis, allows us to truly filter the spatial scales
and extract the non-Gaussian component contributing normally
to the shallower slope than ζp = p/3 for structure functions
with p > 3. Another advantage of the MnGSeg analysis is that
it allows us to calculate a non-biased power spectrum of a
map, i.e. a power spectrum analysis not affected by the non-
Gaussianities. For the column density map and for the intensity
map at 250 µm, the Gaussian power spectrum has a power law
closer to the Kolmogorov incompressible turbulence of 11/3.
This result could be interpreted, with caution, as a demonstration
of the correlation between fluctuations in velocity and density
and it shows that the segmentation procedure could extract the
incompressible turbulent component. Further analyses applying
the MnGSeg technique on centroid velocity maps and numerical
simulations, where the intermittent behaviour of both the density
and velocity field could be compared, are needed to confirm this
interpretation.

We can also interpret from these results that the ∼0.15 pc
characteristic scale identified in the ratio of the coherent to the
Gaussian power spectra in Fig. 14 is associated with the transi-
tion of regimes dominated by incompressible turbulence versus
compressible modes and by other physical processes such as
gravity. However, it has been seen in laboratory experiments that
incompressible turbulence alone can also produce intermittence.
For this reason, we cannot directly attribute the extracted non-
Gaussianities to compressive modes only. Schneider et al. (2011)
observed many characteristic scales by applying the ∆-variance
method over several Galactic clouds. For a 13CO line-integrated
map of Cygnus X they revealed two peaks, one at 4 pc and
another one at 80 pc. For all the low-mass star formation regions
they found a double-peak structure in their ∆-variance spectrum
of their extinction map. These regions are localised around 0.4–
1.5 pc and 2.9–4.6 pc. In contrast, they found no characteristic
scale for Polaris. They stated three main possible causes for these
∆-variance peaks: preferred geometric scales, such as length and
width of filaments or clumps; the decaying turbulence scales
(Mac Low & Ossenkopf 2000); or scale energy injection from
external or internal sources.

The origin of the characteristic scale identified with the
power spectra ratio is thus uncertain. Many mechanisms and
other forces in addition to the turbulence play a role in the
structure formation in the ISM. Among the forces, gravity itself
undoubtedly plays an important role. Coherent structures are
also seen in velocity fields. Observations (Galván-Madrid et al.
2010; Hennemann et al. 2012; Hacar et al. 2017, 2018) and sim-
ulations (Smith et al. 2016; Zamora-Avilés et al. 2017) show
that large filamentary structures represent a collection of smaller
and coherent subfilaments, sometimes called fibres. According
to the simulations, the turbulence being responsible initially for
the large-scale density fluctuations, filaments and their substruc-
tures formation would then be gravity-driven by accretion. This
scenario where dense substructures are no longer linked to the
turbulence could be seen to contradict the results of this paper,
where the hierarchical nature of the coherent structures seems
intimately linked with the energy cascade of the turbulence. This

could suggest, however, that coherent density-driven filaments
originate from shocks directly associated with compressive tur-
bulence. Our results are in agreement with the gravoturbulent
models of Larson (1981), Hennebelle & Chabrier (2008), and
more recently Lee et al. (2017) which take into account the scale
dependance of the supporting thermal, turbulent, and magnetic
energies. The magnetic field certainly also plays a role in the
formation of large filaments, where it has been found oriented
perpendicularly to nearby filaments, such as Musca and Taurus
(Palmeirim et al. 2013; Planck Collaboration XXXIII 2016). In
the case of the Polaris flare region, the projected magnetic field
was found to be preferentially aligned with the dust filamen-
tary structures (Panopoulou et al. 2015, 2016). However, even the
denser filamentary structure of the Polaris cloud has a lower col-
umn density than Musca and Taurus, and in contrast with these
two filaments, the Polaris flare does not show any sign of star-
formation activity. These peculiar properties of Polaris suggest
that the cloud is engaged in its initial phases of molecular cloud
formation and it could also have an impact on the magnetic field
configuration.

6. Conclusion

The MnGSeg technique is a new powerful analysis method
which constitutes a robust alternative to the classical Fourier
power spectrum. By coupling the multiscaled PDFs with the
power spectrum analysis, this novel technique is sensitive to the
progressive contribution of non-Gaussianities towards the small
spatial scales. These contributions commonly attributed to turbu-
lence intermittency are usually measured only with higher-order
structure function (p > 4). The great advantage of the MnGSeg
technique over the Fourier power spectrum or the structure func-
tion is that it can easily expose the relationship between the
self-similar Gaussian structures and the progressive contribution
of non-Gaussianities, and that it allows the spatial reconstruction
of both components.

Using the MnGSeg technique, we prove that the Fourier
power spectrum of the Polaris flare is dominated by the power
of its denser filamentary structures. The spatial combination of
these non-Gaussianities with the fractal scale-free component
produces no characteristic scale visible in the Fourier power
spectrum. The origin of these non-Gaussianities appearing as a
dense filamentary structure is likely diverse. Our results are in
agreement with a global emerging scenario, also seen through
numerical simulations, where turbulence plays a dominant role
in the early stages of molecular cloud formation. Then the inter-
play of turbulence intermittency, gravity, and other mechanisms
such as thermal instability, shocks, and the influence of mag-
netic fields are quickly responsible for the density enhancement
of the medium and ultimately the formation of stellar objects. In
this context the in-depth analysis of this transition between the
two regimes, the incompressible random turbulent field (demon-
strating a monofractal nature), and the coherent structures (most
likely multifractal and intimately linked to the formation of
stars) is fundamental for our global understanding of molecular
cloud formation and star formation in the ISM. We tentatively
measured this transition on a ∼0.15 pc scale, but further tests
need to be performed to confirm the association between this
characteristic scale and the turbulent regime transition.

The MnGSeg technique deserves to be applied also to veloc-
ity or centroid velocity maps. However, the direct application to
velocity quantities faces three main difficulties: the lower spatial
resolution of radio line maps; the multiple velocity components
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along the line of sight, especially for dense filamentary struc-
tures; and the multiple tracers needed to observe the different
gas phases and densities.

The future comparison of MnGSeg analyses of multiple col-
umn density maps of nearby molecular clouds will allow us to
understand the link between the formation of coherent structures
in the ISM and the emergence of star formation activity. The
application of a fully multifractal analysis of the coherent struc-
tures will also help to expose more accurately the plural nature
of molecular clouds and to validate whether the spatial variations
of the turbulence dissipation is ultimately linked to the core mass
function of star-forming regions.
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