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Abstract. This work is a formulation of the least action principle for classical mechanical
dissipative systems. We consider a whole conservative system composed of a damped moving
body and its environment receiving the dissipated energy. This composite system has a
conservative Hamiltonian H = K1 + V1 + H2 where K1 is the kinetic energy of the moving
body, V1 its potential energy and H2 the energy of the environment. The Lagrangian is found
to be L = K1 − V1 − Ed where Ed is the energy dissipated from the moving body into the
environment. The usual variation calculus of least action leads to the correct equation of the
damped motion.

1. Introduction
The Least Action Principle (LAP) is one of the most valuable heritages from the classical
mechanics[1-3]. The fact that the formulation of the whole classical physics as well as of the
quantum theory in its path integral formalism[4]could be based on or related to this single
mathematical rule gives to LAP a fundamental priority to all other visibly different principles,
empirical laws and differential equations in different branches of physics. This priority of LAP
has nourished two ambitions of physicists. The first one is the (rather controversial) effort to
deepen the understanding of nature through this principle and to search for the fundamental
meaning of its exceptional universality in physics[3,5,6]. The second one is to extend it to
more domains such as thermodynamics and statistical mechanics (with the pioneer efforts of
Boltzmann, Helmholtz and Hertz[7]), stochastic dynamics (e.g., large deviation theory[8] and
stochastic mechanics[9]), and dissipative mechanical systems[10-12]. The present work follows
this last effort to formulate LAP for classical mechanical dissipative systems.

LAP was originally formulated only for Hamiltonian system[2], i.e., the sum H = K + V
of kinetic energy K and potential energy V of the considered system satisfies the Hamiltonian
equations. For Hamiltonian systems, any real trajectory between two given configuration points
must satisfy the LAP, a vanishing first variation of the action A created by tiny deformation of
the trajectory[2,6]:

δA = δ

∫ tb

0
Ldt =

∫ tb

0
δLdt = 0 (1)

where the action A =
∫ tb
0 Ldt is a time integral of the Lagrangian L = K − V on the trajectory

over a fixed time period tb. One of the important results of this variational calculus is the
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Euler-Lagrange equation given by[6] (for one freedom x)

d

dt

(
∂L

∂ẋ

)
− ∂L

∂x
= 0 (2)

where ẋ is the velocity. In many cases when H and L do not depend on time explicitly, a
Hamiltonian system is energy conservative.

A problem of variation takes place for nonconservative systems whose dissipative force, say,
fd is artificially introduced into the equation of motion in this way d

dt

(
∂L
∂ẋ

)
− ∂L

∂x = fd. This is

equivalent to write
∫ tb
0 (δL+ fdδx)dt = 0. However, it is impossible to define an action integral

with a single (Lagrangian) function satisfying Eq.(2). Hence LAP is absent for dissipative
systems.

There has been a longstanding effort to recover LAP for dissipative system[11]. Since
all systems in nature are energy dissipative, this formulation is essential for this beautiful
fundamental principle to be better understood, applied to a much wider range of systems and
to be related to many other scientific principles relative to the energy dissipation[10,11,13].

As far as we know, the first variational calculus applied to damped motion dates back to
Euler’s work in 1744 for the brachistochrone (shortest time) problem with friction[13]. More
recently, Rayleigh[15] has introduced a ‘dissipative function’ D = 1

2ζẋ
2, for the special case of

the Stokes’ law fd = −mζẋ, to write d
dt

(
∂L
∂ẋ

)
+ ∂D

∂ẋ − ∂L
∂x = 0, where ζ is the drag constant and m

the mass of the damped body. Nevertheless, LAP is not recovered since there is no Lagrangian
for defining an action which satisfies Eq.(1). Other major propositions include the Bateman
approach[16] to introduce complementary variables and equations, the definition of dissipative
Lagrangian by multiplying the non dissipative one with an exponential factor exp(ζt)[17] where t
is the time, the fractional derivative formulation[18], and the pseudo-Hamiltonian mechanics[19]
where a parameter was introduced to characterize the degree of dissipation. The reader is
referred to the reviews in [10,11,14,18,19] about the details of these propositions. In general,
the Lagrangian in these solutions is not unique and has no energy connection like L = K − V
(see for instance the quasi-Lagrangian L = eζt(K−V ) and the corresponding quasi-Hamiltonian
H = e−ζtK+eζtV for damped harmonic oscillator[17]). Hence no variational or optimal calculus
was possible in general form[10,11,14].

A common character of these previous works is to consider the damped body as an isolated
body in the calculations. The problem is that a dissipative system is coupled to an environment
and loses energy into the latter which becomes an integral part of the motion. As far as this lost
energy is not considered, the Lagrangian of the ’isolated’ body inevitably loses energy connection
and generic optimal characters[10,11] as mentioned above.

The aim of this work is to recover LAP in a general way for dissipative system with an energy
connected and unique Lagrangian which is related as usual to the conservative Hamiltonian by
Legendre transformation. The three conventional formulations of analytical mechanics, i.e., the
Hamiltonian, Lagrangian and the Hamilton-Jacobi equations, are all preserved.

2. The conservative Hamiltonian
Our basic idea is to consider the damped moving body (system 1) and its environment (system
2) as a whole conservative system. The total Hamiltonian includes the instantaneous kinetic
and the potential energy of the body, as well as the mechanical energy transformed into heat or
other forms of energy (noises, vibration, electromagnetic radiation etc.) into the environment.
The body moves along the axis x with velocity ẋ. Its environment is composed of N bodies
with position xi and velocity ẋi (i = 1, 2, ..., N). The energy transfer from system 1 to system 2
occurs only through a friction force. The total Hamiltonian reads H = K1+V1+K2+V2+Hint

where K1 = 1
2mẋ2 is the kinetic energy and V1 the potential energy of the system 1,
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K2 =
1
2

∑N
i miẋi(t)

2 the kinetic energy and V2 =
∑N

i v(xi) the potential energy of system 2 with
v(xi) the potential energy of the particle i, and Hint the interaction energy between the system
1 and 2. Hint is responsible for the friction law and determined by the coupling mechanism
on the interface between the moving body and the environment. We can suppose that, for a
limited time period of the motion under consideration, this interface (body’s shape and size,
body-environment distance, nature of the closest parts of the environment to the interface, etc.)
and the friction law do not change significantly, hence the interaction mechanism should not
change with the virtual variation of paths. In this case Hint can be neglected in the variational
calculus and we only have H = K1 +K2 + V1 + V2 or H = H1 +H2 where H1 = K1 + V1 is the
total energy of the system 1 and H2 = K2 + V2 that of the system 2.

It should be stressed that the impact of the thermal fluctuation in system 2 on system 1 should
be neglected. The motion of the system 1 remains classical mechanical and deterministic. This
is reasonable for a mechanical body which is much larger than the constituents of system 2 and
has much larger energy variation during the motion than the energy fluctuation of the thermal
motion in system 2.

3. Variational calculus of LAP for damped motion
The Lagrangian L of the whole conservative system can be defined by using the Legendre
transformation L = pẋ+

∑N
i pi(t)ẋi(t) −H = K1 − V1 + 2K2 −H2 where p is the momentum

of system 1 and pi the momentum of the particle i of the system 2. The corresponding action
is given by

A =

∫ tb

0
Ldt =

∫ tb

0
(K1 − V1 + 2K2 −H2)dt. (3)

H2 can be expressed as a function of xi(t) and the velocity ẋi(t) of the constituent parts of the
system 2. Its general expression reads

H2 =

N∑
i

1

2
mẋ2i (t) + V2[x1(t), x2(t)...xN (t)] (4)

With this expression of H2, the Lagrangian only depends on its variables at the time moment
t, i.e.,

L = K1(ẋ(t))− V1(x(t)) + 2K2(ẋi(t))−H2(xi(t), ẋi(t)) i = 1, 2, ..., N (5)

The usual variation calculus with a tiny variation δx(t) of the path x(t) damped body yields :

δA =

∫ tb

0
[
∂L

∂x
δx+

∂L

∂ẋ
δẋ]dt

=

∫ tb

0
[
∂L

∂x
− d

dt

∂L

∂ẋ
]δxdt.

(6)

where we have made a time integration by parts of δẋ with the conditions δx(a) = δx(b) = 0.
The LAP requires δA = 0, which, due to the arbitrary nature of δx(t), leads to

∂L

∂x
− d

dt

∂L

∂ẋ
= 0. (7)

This is the differential equation for the damped motion of the system 1.
In order to make calculation with Eq.(7), H2 must be written as an explicit function of x and

ẋ. For this purpose, we suppose that H2 changes in time only due to the energy dissipation of
the system 1. We can write H2(t) = H2(ta)+Ed(x(t)) where H2(ta) is the energy of the system
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2 at the initial time ta (a constant for the motion hereafter), and Ed(x(t)) the energy received
from system 1 through the work of the friction force fd(x, ẋ) from the initial moment ta to a
moment t (0 ≤ t ≤ tb):

Ed(x(t)) = −
∫ x(t)

xa

fd(x(τ), ẋ(τ))dx(τ) (8)

where τ is any time moment between ta = 0 and t, and dx(τ) a small displacement along the
path at the time τ . The Lagrangian can be written as L(x(t), ẋ(t)) = K1(ẋ(t)) + 2K2(ẋi(t))−
V1(x(t)) − Ed(x(t)) where the constant H2(ta) is dropped. Introducing this Lagrangian into
Eq.(7) and considering the fact that K1 and K2 are not explicit function of x(t) and that K2,
V1 and Ed are not explicit function of ẋ(t) at time t, one gets

d

dt

∂K1

∂ẋ
+

∂V1

∂x
+

∂Ed

∂x
= 0. (9)

Considering fd(x(t), ẋ(t)) = −∂Ed(x(t))
∂x(t) = − ∂

∂x(t)

∫ x(t)
0 f(x(τ), ẋ(τ))dx(τ) [20], we straightfor-

wardly obtain

mẍ = −∂V1

∂x
+ fd, (10)

the Newtonian equation for the damped motion with the friction fd.
To see the second formulism of classical mechanics, the Hamiltonian equations, we calculate

the total time derivative of H reads dH
dt = ∂H

∂t +
∂H
∂x ẋ+

∂H
∂p ṗ. Compare this to the same derivative

made with the Legendre transformation H = pẋ − L, i.e., dH
dt = ṗẋ + ṗẍ − ∂L

∂t − ∂L
∂x ẋ − ∂L

∂ẋ ẍ

and considering the Euler-Lagrange equation Eq.(7), we get, besides ∂H
∂t = ∂L

∂t , the following
Hamiltonian equations [6] :

ṗ = −∂H

∂x
, ẋ =

∂H

∂p
(11)

from which the conservation of total energy H can be calculated [2].
To see the third formalism of classical mechanics, the Hamilton-Jacobi equation, we relax tb in

the time integral of action or consider the integral as indefinite, and compute L = dA
de = ∂A

∂t +
∂A
∂x ẋ.

Thanks to Eq.(7) and the Legendre transformation, we can get p = ∂A
∂t and the Hamilton-Jacobi

equation :

∂A

∂t
+H = 0 (12)

for the whole system.

4. Concluding remarks
In summary, we have proposed a formulation of the least action principle for damped motion with
an universal, energy connected and unique Lagrangian, thanks to the model of a conservative
system composed of the damped moving body and of its environment. We hope that these
results are helpful for further study of the relations between the fundamental principles of
Lagrangian/Hamiltonian mechanics and the variational principles relative to energy dissipation
[23-27]. It is shown that the three conventional formulations of analytical mechanics, i.e., the
Hamiltonian, Lagrangian and the Hamilton-Jacobi equations, are all preserved.

This work is presented in term of friction as the coupling between the moving body and
its environment. But the formulation is not limited to friction. This is an advantage of the



5

1234567890 ‘’“”

SPMCS2017 IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 1113 (2018) 012003  doi :10.1088/1742-6596/1113/1/012003

substitution of H2 by Ed which is written as a function of the damped motion without involving
the details of the motions of the tiny particles in the environment. Hence the coupling can be any
mechanism depending on the motion and dissipating energy from it. For instance, the emission
of electromagnetic wave or light into the void (environment) from an accelerated charged body,
or emission of sound by a vibrating body.

Finally we would like to mention that, although the term “least action” is used here for
historical reason, the stationarity δA = 0 is not necessarily a minimum. The nature of the
stationarity (minimum, maximum or inflection) of A has been addressed in our recent work
[22] by numerical simulation of damped motion and of variational analysis, in which the action
Aop along the optimal path is calculated and compared to the actions of many paths around
the optimal one. One of the conclusions is that the stationarity of Aop undergoes a transition
from minimum to maximum when drag constant ζ and the dissipated energy increase. Further
investigation is necessary to confirm this evolution of action stationarity.
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